1
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Sibiya A, Karthikeyan S, Al-Ghanim KA, Govindarajan M, Malafaia G, Vaseeharan B. Toxicity assessment of Oreochromis mossambicus exposed to carbamazepine and selenium: Physiological and genotoxic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65764-65777. [PMID: 39604712 DOI: 10.1007/s11356-024-35534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Although the toxicity of selenium (Se) and carbamazepine (CBZ) has already been demonstrated, the possible effects of freshwater fish co-exposure to these pollutants have not been explored. Thus, we aimed to evaluate the potential impact of Se and CBZ (alone and combined) exposure (both 5 µg/L) in Oreochromis mossambicus after 28 days. Exposure to CBZ, alone or combined with Se, significantly increases the "red blood cells" and "mean corpuscular volume." In the gills, malondialdehyde levels in the "CBZ" and "Se + CBZ" groups were lower than in the control group. Furthermore, the exposure to treatments induced a significant increase in protein carbonyl formation in gills and DNA damage in gill and liver cells. Still, acetylcholinesterase activity in the brain was not changed. Thus, our study provides insight into the toxicity of metals and pharmaceutical drugs and warns about the ecotoxicological risk posed by such mixtures.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi, Tamil Nadu, 630004, India
| | | | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612 001, India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil.
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
3
|
Queirós V, Azeiteiro UM, Santos JL, Alonso E, Soares AMVM, Barata C, Freitas R. Unravelling biochemical responses in the species Mytilus galloprovincialis exposed to the antineoplastics ifosfamide and cisplatin under different temperature scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173668. [PMID: 38839013 DOI: 10.1016/j.scitotenv.2024.173668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
This study investigates the chronic impact of two of the most widely consumed antineoplastic drugs, Ifosfamide (IF) and Cisplatin (CDDP), on the bivalve species Mytilus galloprovincialis under current (17 °C) and predicted warming conditions (21 °C). Accompanying the expected increase in worldwide cancer incidence, antineoplastics detection in the aquatic environment is also expected to rise. Mussels were exposed to varying concentrations of IF (10, 100, 500 ng/L) and CDDP (10, 100, 1000 ng/L) for 28 days. Biochemical analyses focused on metabolic, antioxidant and biotransformation capacities, cellular damage, and neurotoxicity. Results showed temperature-dependent variations in biochemical responses. Metabolic capacity remained stable in mussels exposed to IF, while CDDP exposure increased it at 1000 ng/L for both temperatures. Antioxidant enzyme activities were unaffected by IF, but CDDP activated them, particularly at 21 °C. Biotransformation capacity was unchanged by IF but enhanced by CDDP. Nevertheless, cellular damage occurred at CDDP concentrations above 100 ng/L, regardless of temperature. Integrated biomarker responses highlighted CDDP's greater impact, emphasizing the critical role of temperature in shaping organismal responses and underscoring the complexity of environmental stressor interactions.
Collapse
Affiliation(s)
- Vanessa Queirós
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, 41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, 41011 Sevilla, Spain
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Chen Z, Sun X, Liu Y, Zhao X, Guo Y, Wang H. The characterization of developmental toxicity in fetal offspring induced by acetaminophen exposure during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116980. [PMID: 39226632 DOI: 10.1016/j.ecoenv.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Acetaminophen (APAP), an antipyretic and analgesic commonly used during pregnancy, has been recognized as a novel environmental contaminant. Preliminary evidence suggests that prenatal acetaminophen exposure (PAcE) could adversely affect offspring's gonadal and neurologic development, but there is no systematic investigation on the characteristics of APAP's fetal developmental toxicity. METHODS Pregnant mice were treated with 100 or 400 mg/kg∙d APAP in the second-trimester, or 400 mg/kg∙d APAP in the second- or third-trimester, or different courses (single or multiple) of APAP, based on clinical regimen. The effects of PAcE on pregnancy outcomes, maternal/fetal blood phenotypes, and multi-organ morphological and functional development of fetal mice were analyzed. RESULTS PAcE increased the incidence of adverse pregnancy outcomes and altered blood phenotypes including aminotransferases, lipids, and sex hormones in dams and fetuses. The expression of key functional genes in fetal organs indicated that PAcE inhibited hippocampal synaptic development, sex hormone synthesis, and osteogenic and chondrogenic development, but enhanced hepatic lipid synthesis and uptake, renal inflammatory hyperplasia, and adrenal steroid hormone synthesis. PAcE also induced marked pathological alterations in the fetal hippocampus, bone, kidney, and cartilage. The sensitivity rankings of fetal organs to PAcE might be hippocampus/bone > kidney > cartilage > liver > gonad > adrenal gland. Notably, PAcE-induced multi-organ developmental toxicity was more considerable under high-dose, second-trimester, and multi-course exposure and in male fetuses. CONCLUSION This study confirmed PAcE-induced alterations in multi-organ development and function in fetal mice and elucidated its characteristics, which deepens the comprehensive understanding of APAP's developmental toxicity.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Xiaoxiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiaoqi Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
5
|
Bouzidi I, Fkiri A, Saidani W, Khazri A, Mezni A, Mougin K, Beyrem H, Sellami B. The pharmaceutical triclosan induced oxidative stress and physiological disorder in marine organism and nanoparticles as a potential mitigating tool. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106424. [PMID: 38428315 DOI: 10.1016/j.marenvres.2024.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Environmental research plays a crucial role in formulating novel approaches to pollution management and preservation of biodiversity. This study aims to assess the potential harm of pharmaceutical triclosan (TCS) to non-target aquatic organism, the mussel Mytilus galloprovincialis. Furthermore, our study investigates the potential effectiveness of TiO2 and ZnO nanomaterials (TiO2 NPs and ZnO NPs) in degrading TCS. To ascertain the morphology, structure, and stability of the nanomaterials, several chemical techniques were employed. To evaluate the impact of TCS, TiO2 NPs, and ZnO NPs, both physiological (filtration rate (FR) and respiration rate (RR)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST)) activities and malondialdehyde (MDA) contents were measured in M. galloprovincialis gills and digestive gland. The mussel's responses varied depending on the contaminant, concentration, and organ, underscoring the significance of compiling these factors in ecotoxicity tests. The main toxic mechanisms of TCS and ZnO NPs at a concentration of 100 μg/L were likely to be a decrease in FR and RR, an increase in oxidative stress, and increased lipid peroxidation. Our findings indicate that a mixture of TCS and NPs has an antagonist effect on the gills and digestive gland. This effect is particularly notable in the case of TCS2 = 100 μg/L combined with TiO2 NP2 = 100 μg/L, which warrants further investigation to determine the underlying mechanism. Additionally, our results suggest that TiO2 NPs are more effective than ZnO NPs at degrading TCS, which may have practical implications for pharmaceutical control in marine ecosystems and in water purification plants. In summary, our study provides valuable information on the impact of pharmaceuticals on non-target organisms and sheds light on potential solutions for their removal from aqueous environments.
Collapse
Affiliation(s)
- Imen Bouzidi
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia; Institut Supérieur de Biotechnologies de Béja, Université de Jendouba, Jendouba, 8189, Tunisia
| | - Anis Fkiri
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, 7021, Tunisia
| | - Wiem Saidani
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Abdelhafidh Khazri
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Amine Mezni
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, 7021, Tunisia
| | - Karine Mougin
- Institut de Science des Matériaux, Université de Haute Alsace, IS2M-CNRS-UMR 7361, 15 Rue Jean Starcky, 68057, Mulhouse, France
| | - Hamouda Beyrem
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Badreddine Sellami
- National Institute of Marine Sciences and Technologies, Tabarka, 8110, Tunisia.
| |
Collapse
|
6
|
Impellitteri F, Riolo K, Multisanti CR, Zicarelli G, Piccione G, Faggio C, Giannetto A. Evaluating quaternium-15 effects on Mytilus galloprovincialis: New insights on physiological and cellular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170568. [PMID: 38309339 DOI: 10.1016/j.scitotenv.2024.170568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Among personal care products, quaternium-15 is prominently featured as a preservative in items such as shampoos, soaps, shaving products, and cosmetics. The widespread use of these products in people's daily routines contributes to quaternium-15 release into aquatic ecosystems. In this context, the primary aim of the study was to assess the physiological and cellular responses of the digestive gland and gills in Mytilus galloprovincialis to quaternium-15 exposure. Cell viability and the ability of digestive gland cells to regulate their volume were evaluated. Additionally, the expression of the genes involved in oxidative stress response was assessed to further substantiate the compound's harmful effects. Results indicated a significant decrease in both the viability of digestive gland cells and their RVD (regulatory volume decrease) capacity when exposed to a hypotonic solution. Furthermore, impairment of digestive gland cell function was corroborated by the modulation of oxidative stress-related gene expression, including SOD, Cat, as well as Hsp70 and CYP4Y1. Similar gene expression alterations were observed in the gills, reflecting impaired functionality in this vital organ as well. In summary, the outcomes of the study provide conclusive evidence of the toxicity of quaternium-15. This underscores the urgent need to further investigate the toxicological effects of this contaminant on aquatic ecosystems and emphasises the necessity of limiting the use of products containing quaternium-15.
Collapse
Affiliation(s)
- Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Santos J, Barreto A, Coelho T, Carvalho E, Pereira D, Calisto V, Maria VL. Amitriptyline ecotoxicity in Danio rerio (Hamilton, 1822) embryos - similar toxicity profile in the presence of nanoplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104372. [PMID: 38244879 DOI: 10.1016/j.etap.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Interaction of nanoplastics (NPls) with other environmental contaminants could affect their uptake by the organisms and their toxicity. Thus, the present study aims to investigate the polystyrene NPls (44 nm) interaction with the antidepressant amitriptyline (AMI) and its toxicity to Danio rerio embryos. A similar toxicological profile for NPls + AMI exposure was found for most of the evaluated endpoints, comparing with AMI single exposure, showing that the presence of NPls did not modulate the AMI toxicity. However, the behavioral assessment showed a different pattern with hypoactivity for the NPls + AMI exposure (NPls - hyperactivity; AMI - no effect). Interaction effects between NPls and AMI were also found in the protein contents (antagonism) and in the total glutathione content (synergism). This study highlights the complexity and unpredictability of NPls interaction with pharmaceuticals, important for an accurate environmental risk assessment and for the developing of effective strategies and interventions against plastic pollution.
Collapse
Affiliation(s)
- Joana Santos
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angela Barreto
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Coelho
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Edna Carvalho
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Pereira
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L Maria
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
de Almeida EA, Bebianno MJ, Soto M, de Souza Abessa DM. CICTA2021 conference: Advances in environmental toxicology in the face of emerging challenges from global contamination. CHEMOSPHERE 2023; 320:138051. [PMID: 36758813 DOI: 10.1016/j.chemosphere.2023.138051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Eduardo Alves de Almeida
- Department of Natural Sciences, University of Blumenau, Rua São Paulo 3366, Blumenau, SC, CEP 89030-000, Brazil.
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Manuel Soto
- Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), Areatza Pasealekua, 48620, Plentzia, Basque Country, Spain.
| | - Denis Modelo de Souza Abessa
- Institute of Biosciences, São Paulo State University, Praça Infante Dom Henrique, s/n - Parque Bitaru, SP, 11330-900, Brazil.
| |
Collapse
|
9
|
An Insight into the Combined Toxicity of 3,4-Dichloroaniline with Two-Dimensional Nanomaterials: From Classical Mixture Theory to Structure-Activity Relationship. Int J Mol Sci 2023; 24:ijms24043723. [PMID: 36835146 PMCID: PMC9959308 DOI: 10.3390/ijms24043723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The assessment and prediction of the toxicity of engineered nanomaterials (NMs) present in mixtures is a challenging research issue. Herein, the toxicity of three advanced two-dimensional nanomaterials (TDNMs), in combination with an organic chemical (3,4-dichloroaniline, DCA) to two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa), was assessed and predicted not only from classical mixture theory but also from structure-activity relationships. The TDNMs included two layered double hydroxides (Mg-Al-LDH and Zn-Al-LDH) and a graphene nanoplatelet (GNP). The toxicity of DCA varied with the type and concentration of TDNMs, as well as the species. The combination of DCA and TDNMs exhibited additive, antagonistic, and synergistic effects. There is a linear relationship between the different levels (10, 50, and 90%) of effect concentrations and a Freundlich adsorption coefficient (KF) calculated by isotherm models and adsorption energy (Ea) obtained in molecular simulations, respectively. The prediction model incorporating both parameters KF and Ea had a higher predictive power for the combined toxicity than the classical mixture model. Our findings provide new insights for the development of strategies aimed at evaluating the ecotoxicological risk of NMs towards combined pollution situations.
Collapse
|
10
|
Rios-Fuster B, Alomar C, Deudero S. Elucidating the consequences of the co-exposure of microplastics jointly to other pollutants in bivalves: A review. ENVIRONMENTAL RESEARCH 2023; 216:114560. [PMID: 36270530 DOI: 10.1016/j.envres.2022.114560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The marine environment has numerous impacts related to anthropogenic activities including pollution. Abundances of microplastics (MPs) and other pollutants are continuously increasing in the marine environment, resulting in a complex mixture of contaminants affecting biota. In order to understand the consequences, a review of studies analyzing combined effects of MPs and other types of pollutants in bivalves has been conducted as species in this group have been considered as sentinel and bioindicators. Regarding studies reviewed, histological analyses give evidence that MPs can be located in the haemolymph, gills and gonads, as well as in digestive glands in the intestinal lumen, epithelium and tubules, demonstrating that the entire body of bivalves is affected by MPs. Moreover, DNA strand breaks represent the most relevant form of damage caused by the enhanced production of reactive oxygen species in response to MPs exposure. The role of MPs as vectors of pollutants and the ability of polymers to adsorb different compounds have also been considered in this review highlighting a high variability of results. In this sense, toxic impacts associated to MPs exposure were found to significantly increase with the co-presence of antibiotics or petroleum hydrocarbons amongst other pollutants. In addition, bioaccumulation processes of pollutants (PAHs, metals and others) have been affected by the co-presence with MPs. Histological, genetic and physiological alterations are the most reported damages, and the degree of harm seems to be correlated with the concentration and size of MP and with the type of pollutant.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|