1
|
Tang L, Liu J, Xiang C, Gao W, Chen Z, Jiang J, Guo J, Xue S. Colloid mobilization and transport in response to freeze-thaw cycles: Insights into the heavy metal(loid)s migration at a smelting site. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135959. [PMID: 39341196 DOI: 10.1016/j.jhazmat.2024.135959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Smelting sites often exhibit significant heavy metal(loid)s (HMs) contamination in the soil and groundwater, which are inevitably subjected to environmental disturbances. However, there is limited information available regarding the migration behaviors of HMs in a disturbed scenario. Thus, this work explored the migration of HMs-bearing colloids in response to freeze-thaw treatments by laboratory simulation and pore-scale study. Ultrafiltration results of soil effluents revealed that 61.5 %, 47.6 %, 68.0 %, and 59.2 % of Zn, Cd, Pb, and As were present in colloidal phase, and co-transported during treatments. Nanoparticle tracking analysis (NTA) further confirmed that freeze-thaw cycles were conducive to the generation of colloidal particles and showed the heteroagglomeration among different particles. Pore-network model (PNM) was used to quantify the soil macropore characteristics (macropore diameter, macropore number, coordination number, and Euler value) after treatments. It is evident that freeze-thaw cycles induced the formation of larger macropores while simultaneously enhancing macropore connectivity, thereby establishing an optimal pathway for colloid migration. These findings underscored the importance of environmental disturbances as a trigger for the release and migration of HMs in the smelting site, offering valuable insights for controlling HMs pollution. ENVIRONMENTAL IMPLICATION: The contaminated site has been subjected to prolonged environmental disturbances, causing the exacerbation of pollutants leaching and frequent occurrences of unstable pollution situations. This work explored the migration of HMs-bearing colloids in response to freeze-thaw treatments by laboratory simulation and pore-scale study. The distinct effects of freeze-thaw treatment on colloidal particle number concentration and macropore characteristics may explain the generation and migration of colloid-associated HMs driven by environmental disturbances. This work revealed the underlying mechanisms driving the redistribution of HMs under freeze-thaw cycles, offering valuable insights for risk assessment of soil and groundwater associated with HMs migration.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Chao Xiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Zhengshan Chen
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
2
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of nitrogenous and phosphorous in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177142. [PMID: 39486534 DOI: 10.1016/j.scitotenv.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Lots of studies on eutrophication, but there is a lack of comprehensive research on the repair of multiple forms of nitrogen and phosphorus under combined heavy metals (HMs) pollution. This work investigated the various forms of nitrogen and phosphorus in the water-sediment systems of eutrophic lakes with the application of biochar, Effective Microorganisms (EMs) and microplastics, aiming to deliberate the repair behavior of multiple forms of nitrogen/phosphorus and the integrated repairment of these nutrients and HMs in different remediations. For amended-groups, the application of biochar-supported EMs (BE) achieved the most desirable remediation for removing nitrogen, phosphorus and HMs in water and improved their stability in sediment due to the improved microbial activity and the developed biofilm system created by biochar. The addition of aging microplastics (MP) obviously reduced the systematic levels of nitrogen, phosphorus and HMs due to the stimulation of microbial activity and the adsorption of biofilm/EPS, but its high movability also increased the Fe(II) and S(-II) levels and the pollutants' ecological risks in sediment. The co-application of BE and MP (MBE) destroyed the ecosystem and decreased the removal of nitrogen and phosphorus, while greatly removing HMs by the superfluous biofilms/EPS. The application of biochar (BC) preferentially adsorbed and degraded dissolved nitrogen and phosphorus, releasing HMs into water. From these amended-groups, it's also knew that the removal of nitrogen and phosphorus mainly came from the degradation/assimilation of NH3-N, SRP and dissolved matters, particularly those molecular weight below 3 kDa; the higher removal of phosphorus than nitrogen was attributed to the coprecipitation of Fe-S-P hydroxides and the adsorption of particulates; however, the colloidal (3-100 kDa) nitrogen and phosphorus had low accessibility and bioavailability, and it also showed the competitive adsorption with colloidal HMs, causing their relatively low removal in water. This study provides insight into the comprehensive repair of nitrogen, phosphorus and HMs in various forms by biochar-immobilized microbes and the influence of microplastics on nutrients and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| |
Collapse
|
3
|
Wang Y, Zhao Q, Guo Y, Hu S, Tian G, Zhang M, Cao X, Liu H, Zhang J. Interfacial interactions of nanoscale zero-valent iron particles with clay minerals in the aquatic environments: Experimental and theoretical calculation study. WATER RESEARCH 2024; 264:122220. [PMID: 39116613 DOI: 10.1016/j.watres.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The environmental transport and fate of nanoscale zero-valent iron particles (nZVI) in soil and groundwater can be altered by their hetero-aggregation with clay mineral particles (CMP). This study examines the interactions between bare or carboxymethyl cellulose (CMC)-coated nZVI with typical CMP, specifically kaolinite and montmorillonite. Methods include co-settling experiments, aggregation kinetic studies, electron microscopy, Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (EDLVO) energy analysis, and density functional theory calculations, focusing on the pH dependency of these interactions. The EDLVO theory effectively described the interactions between nZVI and CMP in aquatic environments. Under acidic conditions (pH 3.5), the interfacial interaction between bare nZVI and kaolinite is regulated by van der Waals forces, while complexation, van der Waals forces, and electrostatic attraction govern the interaction of bare nZVI with montmorillonite, primarily depositing on the SiO face. In contrast, the positively charged AlO face and edge of CMP are the main deposition sites for CMC-coated nZVI through hydrogen bonding, van der Waals forces, and electrostatic attraction. At neutral (pH 6.5) and alkaline (pH 9.5) conditions, both bare and CMC-coated nZVI predominantly attach to the AlO face and edge, facilitated by complexation or hydrogen bonding, alongside van der Waals forces. The attachment of CMC-coated nZVI to CMP surfaces shows reversible aggregation or deposition due to the steric repulsion from the CMC coating. These findings hold significant implications for the environmental applications and risk of nZVI.
Collapse
Affiliation(s)
- Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qinghui Zhao
- Center for Soil Pollution Control of Shandong, Department of Ecological Environment Shandong Province, Jinan 250101, China
| | - Yuanfeng Guo
- Qingdao Huayi Environmental Protection Science & Technology CO., LTD, Qingdao 266000, China
| | - Shugang Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Guoqing Tian
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mengcheng Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
4
|
Zeng D, Chen C, Huang Z, Gu J, Zhang Z, Cai T, Peng J, Huang W, Dang Z, Yang C. Influence of macromolecules and electrolytes on heteroaggregation kinetics of polystyrene nanoplastics and goethite nanoparticles in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135257. [PMID: 39047557 DOI: 10.1016/j.jhazmat.2024.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Fate and transport of nanoplastics in aquatic environments are affected by their heteroaggregation with minerals in the presence of macromolecules. This study investigated the heteroaggregation of polystyrene nanoplastics (PSNPs) with goethite nanoparticles (GNPs) under the influence of macromolecules [humic acid (HA), bovine serum albumin (BSA), and DNA] and electrolytes. Under 1 mg C/L macromolecule, raising electrolyte concentration promoted heteroaggregation via charge screening, except that calcium bridging with HA also enhanced heteroaggregation at CaCl2 concentration above 5 mM. At all NaCl concentrations and CaCl2 concentration below 5 mM, 1 mg C/L macromolecules strongly retarded heteroaggregation, ranking BSA > DNA > HA. Raising macromolecule concentration strengthened such stabilization effect of all macromolecules in NaCl solution and that of DNA and BSA in CaCl2 solution by enhancing steric hindrance. However, 0.1 mg C/L BSA slightly promoted heteroaggregation in CaCl2 solution due to stronger electrostatic attraction than steric hindrance. In CaCl2 solution, raising HA concentration strengthened its destabilization effect via calcium bridging. Macromolecules having more compact globular structure and higher molecular weight may exert greater steric hindrance to inhibit heteroaggregation more effectively. This study provides new insights on the effects of macromolecules and electrolytes on heteroaggregation between nanoplastics and iron minerals in aquatic environments.
Collapse
Affiliation(s)
- Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiamin Peng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
5
|
Ruan J, Yang J, Wang X, Liang C, Li L, Zeng Y, Wang J, Li Y, Huang W, Chen C. Heteroaggregation kinetics of oppositely charged nanoplastics in aquatic environments: Effects of particle ratio, solution chemistry, and interaction sequence. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134857. [PMID: 38876017 DOI: 10.1016/j.jhazmat.2024.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Interactions between positively charged amino-modified (APS) and negatively charged bare (BPS) polystyrene nanoplastics may cause heteroaggregation in aquatic environments. This study investigated the effects of particle concentration ratio, solution chemistry [electrolytes, pH, and natural organic matter (NOM)], and interaction sequence on their heteroaggregation kinetics. In the absence of electrolytes and NOM, the APS/BPS ratio for attaining maximum heteroaggregation rate (khetero) increased from APS/BPS= 3/7 to APS/BPS= 1/1 as pH increased from 4 to 10, indicating that electrostatic interactions dominated heteroaggregation. In the absence of NOM, khetero ranked APS/BPS= 2/3 > APS/BPS= 1/1 > APS/BPS= 3/2. Colloidal stability decreased linearly as pH increased from 4 to 8 at APS/BPS= 1/1, while diffusion-limited heteroaggregation persisted at pH 10. In NaCl solution, humic acid (HA) retarded heteroaggregation more effectively than sodium alginate (SA) via steric hindrance and weakening electrostatic interactions, following the modified Derjaguin-Landau-Verwey-Overbeek (MDLVO) theory. Compared with simultaneous interactions among APS, BPS, NaCl, and NOM, the NOM retardation effects on heteroaggregation weakened if delaying its interaction with others. In CaCl2 solution, the effects of NOM on heteroaggregation depended on counterbalance among charge screening, steric hindrance, and calcium bridging. These findings highlight the important role of heteroaggregation between oppositely charged nanoplastics on their fate and transport in aquatic environments.
Collapse
Affiliation(s)
- Jiahui Ruan
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiahui Yang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingyan Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Cuihua Liang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lihua Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yaqi Zeng
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Junhua Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Tang L, Gao W, Lu Y, Tabelin CB, Liu J, Li H, Yang W, Tang C, Feng X, Jiang J, Xue S. The formation of multi-metal(loid)s contaminated groundwater at smelting site: Critical role of natural colloids. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134408. [PMID: 38678716 DOI: 10.1016/j.jhazmat.2024.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Yongping Lu
- China Railway Seventh Bureau Group Nanjing Engineering Co. Ltd., Nanjing 210012, China
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Haifeng Li
- China Railway Seventh Bureau Group Nanjing Engineering Co. Ltd., Nanjing 210012, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Xiang Feng
- Henan Academy of Geology, Henan 450001, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Hunan 410083, China.
| |
Collapse
|
7
|
Tang N, Guo Y, Zhu Z, Jiang L, Li N, Hu T, Lu L, Zhang J, Li X, Liang J. New Insights into Aggregation Behaviors of the UV-Irradiated Dissolved Biochars (DBioCs) in Aqueous Environments: Effects of Water Chemistries and Variation in the Hamaker Constant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8053-8064. [PMID: 38662987 DOI: 10.1021/acs.est.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The aggregation behavior of ubiquitous dissolved black carbon (DBC) largely affects the fate and transport of its own contaminants and the attached contaminants. However, the photoaging processes and resulting effects on its colloidal stability remain yet unknown. Herein, dissolved biochars (DBioCs) were extracted from common wheat straw biochar as a proxy for an anthropogenic DBC. The influences of UV radiation on their aggregation kinetics were systematically investigated under various water chemistries (pH, electrolytes, and protein). The environmental stability of the DBioCs before and after radiation was further verified in two natural water samples. Hamaker constants of pristine and photoaged DBioCs were derived according to Derjaguin-Landau-Verwey-Overbeek (DLVO) prediction, and its attenuation (3.19 ± 0.15 × 10-21 J to 1.55 ± 0.07 × 10-21 J after 7 days of radiation) was described with decay kinetic models. Pearson correlation analysis revealed that the surface properties and aggregation behaviors of DBioCs were significantly correlated with radiation time (p < 0.05), indicating its profound effects. Based on characterization and experimental results, we proposed a three-stage mechanism (contended by photodecarboxylation, photo-oxidation, and mineral exposure) that DBioCs might experience under UV radiation. These findings would provide an important reference for potential phototransformation processes and relevant behavioral changes that DBC may encounter.
Collapse
Affiliation(s)
- Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Jingyi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
8
|
Baron D, Pluháček T, Petr J. Characterization of Nanoparticles in Mixtures by Taylor Dispersion Analysis Hyphenated to Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2024; 96:5658-5663. [PMID: 38529586 PMCID: PMC11007675 DOI: 10.1021/acs.analchem.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
A novel methodology for investigating the behavior of nanoparticles in their mixtures in aqueous high-ionic strength conditions is presented in this work. Our approach utilizes Taylor dispersion analysis in capillaries connected to inductively coupled plasma mass spectrometry (ICP-MS) to probe metal-derived nanoparticles. This methodology simultaneously distinguishes between different kinds of nanoparticles and accurately determines their essential parameters, such as hydrodynamic size, diffusion coefficient, and elemental composition. Moreover, the isotope-specific ICP-MS detection allows for unique targeting of the fate of isotopically enriched nanoparticles. The complexity of our methodology opens the way for studying barely explored areas of interparticle interactions or unequivocal characterization of one type of nanoparticle in complex mixtures without any need for calibration as well as labor-consuming sample preparation.
Collapse
Affiliation(s)
- Daniel Baron
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jan Petr
- Department of Analytical Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
9
|
Singletary T, Drazer G, Marschilok AC, Takeuchi ES, Takeuchi KJ, Colosqui CE. Kinetic trapping of nanoparticles by solvent-induced interactions. NANOSCALE 2024; 16:5374-5382. [PMID: 38375739 DOI: 10.1039/d3nr06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model that is applicable to arbitrary materials and simple solvents to determine the conditions for direct particle-surface contact or kinetic trapping at finite separations, by using experimentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters. Analytical predictions of the proposed model are verified by molecular dynamics simulations and numerical solution of the Smoluchowski diffusion equation.
Collapse
Affiliation(s)
- Troy Singletary
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - German Drazer
- Mechanical and Aerospace Engineering Department, Rutgers University, NJ 08854, USA
| | - Amy C Marschilok
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Esther S Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Carlos E Colosqui
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| |
Collapse
|
10
|
Tang S, Gong J, Song B, Cao W, Li J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of heavy metals in eutrophic lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133098. [PMID: 38064949 DOI: 10.1016/j.jhazmat.2023.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/08/2024]
Abstract
In mineral-rich areas, eutrophic lakes are at risk of HMs pollution. However, few papers focused on the repair of HMs in eutrophic environment. Our study analyzed multiple forms of HMs, pore structure and microbial responses in the water-sediment system of eutrophic lake treated with biochar, Effective Microorganisms (EMs) or/and microplastics (MPs). As biochar provided an ideal carrier for EMs, the remediation of biochar-supported EMs (BE) achieved the greatest repairment that improved the bacterial indexes and greatly decreased the most HMs in various forms across the water-sediment system, and it also reduced metal mobility, bioavailability and ecological risk. The addition of aged MPs (MP) stimulated the microbial activity and significantly reduced the HMs levels in different forms due to the adsorption of biofilms/EPS adhered on MPs, but it increased metals mobility and ecological risks. The strong adsorption and high mobility of aged MPs would increase enrichment of HMs and cause serious ecological hazards. The incorporation of BE and MP (MBE) also greatly reduced the HMs in full forms, which was primarily ascribed to the adsorption of superfluous biofilms/EPS, but it distinctly depressed the microbial activity. The single addition of biochar and EMs resulted in the inability of HMs to be adsorbed due to the preferentially adsorption of dissolved nutrients and the absence of effective carrier, respectively. In the remediation cases, the remarkable removal of HMs was principally accomplished by the adsorption of HMs with molecular weight below 100 kDa, especially 3 kDa ∼100 kDa, which had higher specific surfaces and abundant active matters, resulting in higher adsorption onto biofilms/EPS.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
11
|
Guo Y, Tang N, Lu L, Li N, Hu T, Guo J, Zhang J, Zeng Z, Liang J. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation. CHEMOSPHERE 2024; 350:140998. [PMID: 38142881 DOI: 10.1016/j.chemosphere.2023.140998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Aggregation kinetics of plastics are affected by the surface functional groups and exposure orders (electrolyte and protein) with kinds of mechanisms in aquatic environment. This study investigates the aggregation of polystyrene nanoplastics (PSNPs) with varying surface functional groups in the presence of common electrolytes (NaCl, CaCl2, Na2SO4) and bovine serum albumin (BSA). It also examines the impact of different exposure orders, namely BSA + NaCl (adding them together), BSA → NaCl (adding BSA firstly and then NaCl), and NaCl → BSA (adding NaCl firstly and then BSA), on PSNPs aggregation. The presence of BSA decreased the critical coagulation concentration in NaCl (CCCNa+) of the non-modified PS-Bare from 222.17 to 142.81 mM (35.72%), but increased that of the carboxyl-modified PS-COOH from 157.34 to 160.03 mM (1.71%). This might be ascribed to the thicker absorbed layer of BSA onto the PS-Bare surface, known from Ohshima's soft particle theory. Their aggregation in CaCl2 was both increased because of Ca2+ bridging. Different from the monotonous effects of BSA on PS-Bare and PS-COOH, BSA initially facilitated PS-NH2 aggregation via patch-charge attraction, then inhibited it at higher salt levels through steric repulsion. Furthermore, exposure orders had no significant effect on PS-Bare and PS-COOH, but had a NaCl concentration-dependent impact on PS-NH2. At the low NaCl concentrations (10 and 100 mM), no obvious influence could be observed. While, at 300 mM NaCl, the high concentrations of BSA could not totally stabilize the salt-induced aggregates in NaCl → BSA, but could achieve it in the other two orders. These might be attributed to the electrical double layer compression by NaCl, "patch-charge" force and steric hindrance by BSA. These experimental findings shed light on the potential fate and transport of nanoparticles in aquatic environments.
Collapse
Affiliation(s)
- Yihui Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Na Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Jingyi Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuotong Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
12
|
Rodriguez-Loya J, Lerma M, Gardea-Torresdey JL. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. MICROMACHINES 2023; 15:24. [PMID: 38258143 PMCID: PMC10819909 DOI: 10.3390/mi15010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
Colloidal systems and their control play an essential role in daily human activities, but several drawbacks lead to an avoidance of their extensive application in some more productive areas. Some roadblocks are a lack of knowledge regarding how to influence and address colloidal forces, as well as a lack of practical devices to understand these systems. This review focuses on applying dynamic light scattering (DLS) as a powerful tool for monitoring and characterizing nanoparticle aggregation dynamics. We started by outlining the core ideas behind DLS and how it may be used to examine colloidal particle size distribution and aggregation dynamics; then, in the last section, we included the options to control aggregation in the chemically processed toner. In addition, we pinpointed knowledge gaps and difficulties that obstruct the use of DLS in real-world situations. Although widely used, DLS has limits when dealing with complicated systems, including combinations of nanoparticles, high concentrations, and non-spherical particles. We discussed these issues and offered possible solutions and the incorporation of supplementary characterization approaches. Finally, we emphasized how critical it is to close the gap between fundamental studies of nanoparticle aggregation and their translation into real-world applications, recognizing challenges in colloidal science.
Collapse
Affiliation(s)
- Jesus Rodriguez-Loya
- Environmental Science and Engineering Ph. D. Program, University of Texas at El Paso, El Paso, TX 79968, USA; (J.R.-L.); (M.L.)
| | - Maricarmen Lerma
- Environmental Science and Engineering Ph. D. Program, University of Texas at El Paso, El Paso, TX 79968, USA; (J.R.-L.); (M.L.)
| | - Jorge L. Gardea-Torresdey
- Environmental Science and Engineering Ph. D. Program, University of Texas at El Paso, El Paso, TX 79968, USA; (J.R.-L.); (M.L.)
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
13
|
Ouyang S, Zhou Q, Yuan P, Gao Y, Sun J, Zou W, Hu X. Natural nanocolloids regulate the fate and phytotoxicity of hematite particles in water. WATER RESEARCH 2023; 232:119678. [PMID: 36738560 DOI: 10.1016/j.watres.2023.119678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Hematite (the most abundant iron oxide polymorph) is widely detected in the water environment and has attracted considerable attention. Natural nanocolloids (Ncs) exist ubiquitously in surface waters and play critical roles in biogeochemical processes. However, the influences of Ncs on the fate and phytotoxicity of hematite remain unknown. In this study, the infrared absorption spectra coupled with two-dimensional correlation spectroscopy analysis reveal that the specific binding interactions between Ncs and hematite primarily occur via hydrophilic effects and π-π interactions with an increase in the Ncs contact time. Moreover, binding with Ncs slightly promoted the aggregation rates of hematite particles in the BG-11 medium. Interestingly, Ncs remarkably mitigate the phytotoxicity (e.g., growth inhibition, oxidative stress, and mitochondrial toxicity) of nanosized and submicrosized hematite particles to Chlorella vulgaris after a 96 h exposure. The integrating metabolomic and transcriptomic analysis reveals that the regulated urea cycle, amino acids, and fatty acid-related metabolites (e.g., urea, serine, glutamate, and hexadecenoic acid) and genes (e.g., ACY1, CysC, and GLA) contribute to persistent phytotoxicity. This study provides new insights into the roles and mechanisms of natural Ncs in regulating the environmental risk of iron oxide minerals in aqueous media.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Ding W, Wang Y, Zeng W, Xu H, Chen B. Preparation of Heavy Metal Trapping Flocculant Polyacrylamide-Glutathione and Its Application for Cadmium Removal from Water. Polymers (Basel) 2023; 15:polym15030500. [PMID: 36771804 PMCID: PMC9921386 DOI: 10.3390/polym15030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In this study, a heavy metal trapping gel with multiple ligand groups was prepared for the first time using response surface methodology. The gel was produced by condensing and grafting glutathione as a grafting monomer onto the main polyacrylamide chain, based on the Mannich reaction mechanism with formaldehyde. FTIR, SEM, TG-DSC, and zeta potentials were used to characterize the gel. The results demonstrated that the gel was morphologically folded and porous, with a net-like structure, which enhanced its net trapping and sweeping abilities, and that glutathione was used to provide sulfhydryl groups to boost the metal trapping ability of polyacrylamide. Coagulation experiments showed that the highest efficiency of the removal of Cd ions from water samples was achieved when the concentration of polyacrylamide-glutathione was 84.48 mgL-1, the concentration of Cd was 10.0 mgL-1, the initial turbidity was 10.40 NTU, and the initial pH was 9.0. Furthermore, the presence of two cations, Cu and Zn, had an inhibitory effect on the removal of Cd ions. In addition, analysis of the zeta potential revealed the flocculation of polyacrylamide-glutathione. The flocculation mechanism of glutathione is mainly chelation, adsorption bridging, and netting sweeping.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- Correspondence: (Y.W.); (W.Z.)
| | - Weizhi Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Correspondence: (Y.W.); (W.Z.)
| | - Hui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bingxin Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|