1
|
Salim EI, Elbassuny MI, Mahfouz ME, El Nashar EM, Alghamdi MA, El-Nablaway M, Selim HM. Promoting effect of sunset yellow on N-methyl N-nitrosourea-induced rat mammary carcinogenesis: Implications of molecular mechanisms. Toxicol Lett 2024; 401:13-23. [PMID: 39197506 DOI: 10.1016/j.toxlet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Nowadays, the use of food additives, such as Sunset Yellow (SY), is growing, which attracted attention to the potential relationship between some diseases and food additives. AIM The study aimed to investigate the role of Sunset Yellow during chemically-induced mammary gland carcinogenesis in Sprague-Dawley rats. MATERIAL AND METHODS Three groups of female rats were intraperitoneally administered with N-methyl-N-nitrosourea (MNU). Group 1 was set on a basal diet. Group 2 was treated with 161.4 mg\kg\day Sunset Yellow (SY). Group 3 was given SY at 80.7 mg\kg\day. Groups 4-6 were not administered MNU; Group 4 received vehicles only. Groups 5 and 6 were administered SY similarly to groups 2 and 3 respectively. RESULTS Sunset Yellow at both doses exerted a significant dose-dependent increase in tumor incidences, multiplicities, volumes, and decreased tumor latency as compared with control. Immunolabeling indexes of the proliferating cell nuclear antigen, estrogen receptor alpha, and progesterone receptor were significantly increased after SY treatment. Oxidative stress markers, serum estrogen, progesterone, and prolactin levels were significantly modified by SY treatment. The mRNA expression of estrogen receptor alpha and epidermal growth factor was up-regulated in SY groups versus control. CONCLUSION Collectively, SY has significantly promoted MNU-induced mammary tumors in rats with underlying mechanisms correlating SY consumption with estrogen disruption and subsequent antioxidative stress discrepancy.
Collapse
Affiliation(s)
- Elsayed I Salim
- Tanta University, Faculty of Science, Department of Zoology, Research Lab. of Molecular Carcinogenesis, Tanta 31527, Egypt.
| | - Malak I Elbassuny
- Tanta University, Faculty of Science, Department of Zoology, Research Lab. of Molecular Carcinogenesis, Tanta 31527, Egypt
| | - Magdy E Mahfouz
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Eman M El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62524, Saudi Arabia
| | - Maha A Alghamdi
- Department of General Surgery -breast oncology and endocrine surgery College of Medicine, King Khalid University, Abha 62524, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Box 71666, Riyadh 11597, Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hend M Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Bautista-Pinzón F, Fonseca-Ordoñez J, Falla-Obando M, Gonzales-Tuta J, Diaz-Barrera L. Streptomyces as a Novel Biotool for Azo Pigments Remediation in Contaminated Scenarios. Front Biosci (Elite Ed) 2024; 16:29. [PMID: 39344382 DOI: 10.31083/j.fbe1603029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Azo pigments are widely used in the textile and leather industry, and they generate diverse contaminants (mainly in wastewater effluents) that affect biological systems, the rhizosphere community, and the natural activities of certain species. METHODS This review was performed according to the Systematic Reviews and Meta Analyses (PRISMA) methodology. RESULTS In the last decade, the use of Streptomyces species as biological azo-degraders has increased, and these bacteria are mainly isolated from mangroves, dye-contaminated soil, and marine sediments. Azo pigments such as acid orange, indigo carmine, Congo red, and Evans blue are the most studied compounds for degradation, and Streptomyces produces extracellular enzymes such as peroxidase, laccase, and azo reductase. These enzymes cleave the molecule through asymmetric cleavage, followed by oxidative cleavage, desulfonation, deamination, and demethylation. Typically, some lignin-derived and phenolic compounds are used as mediators to improve enzyme activity. The degradation process generates diverse compounds, the majority of which are toxic to human cells and, in some cases, can improve the germination process in some horticulture plants. CONCLUSIONS Future research should include analytical methods to detect all of the molecules that are generated in degradation processes to determine the involved reactions. Moreover, future studies should delve into consortium studies to improve degradation efficiency and observe the relationship between microorganisms to generate scale-up biotechnological applications in the wastewater treatment industry.
Collapse
Affiliation(s)
- Fernando Bautista-Pinzón
- Master Program in Process Design and Management, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Juan Fonseca-Ordoñez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Chemical Engineering Program, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Mayerlen Falla-Obando
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Chemical Engineering Program, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Jairo Gonzales-Tuta
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Chemical Engineering Program, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Luis Diaz-Barrera
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| |
Collapse
|
3
|
Ścigaczewska A, Boruta T, Grzesiak W, Bizukojć M. Analysis of secondary metabolites and morphology in Streptomyces rimosus microparticle-enhanced cultivation (MPEC) at various initial organic nitrogen concentrations. Microb Cell Fact 2024; 23:243. [PMID: 39251992 PMCID: PMC11382385 DOI: 10.1186/s12934-024-02514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
The influence of talc microparticles on metabolism and morphology of S. rimosus at various initial organic nitrogen concentrations was investigated. The shake flask cultivations were conducted in the media with yeast extract (nitrogen source) concentration equal to 1 g YE L- 1 and 20 g YE L- 1. Two talc microparticle concentrations of 5 g TALC L- 1 and 10 g TALC L- 1 were tested in microparticle-enhanced cultivation (MPEC) runs. A high nitrogen concentration of 20 g YE L- 1 promoted the development of small agglomerates (pellets) of projected area lower than 105 µm2 and dispersed pseudohyphae. A low nitrogen concentration of 1 g YE L- 1 led to the limitation of S. rimosus growth and, in consequence, the development of the smaller number of large pseudohyphal agglomerates (pellets) of projected area higher than 105 µm2 compared to the culture containing a high amount of nitrogen source. In both cases talc microparticles were embedded into pellets and caused the decrease in their sizes. The lower amount of talc (5 g TALC L- 1) usually caused the weaker effect on S. rimosus morphology and metabolite production than the higher one. This correlation between the microparticles effect on morphology and metabolism of S. rimosus was especially noticeable in the biosynthesis of oxytetracycline, 2-acetyl-2-dicarboxamide oxytetracycline (ADOTC) and spinoxazine A. Compared to the control run, in MPEC their levels increased 4-fold, 5-fold and 1.6-fold respectively. The addition of talc also improved the production of 2-methylthio-cis-zeatin, lorneic acid J and milbemycin A3.
Collapse
Affiliation(s)
- Anna Ścigaczewska
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland.
| | - Tomasz Boruta
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| | - Weronika Grzesiak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| | - Marcin Bizukojć
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| |
Collapse
|
4
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
5
|
Rathour RK, Rana N, Sharma V, Sharma N, Bhatt AK, Bhatia RK. Combatting synthetic dye toxicity through exploring the potential of lignin peroxidase from Pseudomonas fluorescence LiP RL5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34400-9. [PMID: 39103577 DOI: 10.1007/s11356-024-34400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Untreated release of toxic synthetic and colorful dyes is a serious threat to the environment. Every year, several thousand gallons of dyes are being disposed into the water resources without any sustainable detoxification. The accumulation of hazardous dyes in the environment poses a severe threat to the human health, flora, fauna, and microflora. Therefore, in the present study, a lignin peroxidase enzyme from Pseudomonas fluorescence LiP-RL5 has been employed for the maximal detoxification of selected commercially used dyes. The enzyme production from the microorganism was enhanced ~ 20 folds using statistical optimization tool, response surface methodology. Four different combinations (pH, production time, seed age, and inoculum size) were found to be crucial for the higher production of LiP. The crude enzyme showed decolorization action on commonly used commercial dyes such as Crystal violet, Congo red, Malachite green, and Coomassie brilliant blue. Successful toxicity mitigation of these dyes culminated in the improved seed germination in three plant species, Vigna radiate (20-60%), Cicer arietinum (20-40%), and Phaseolus vulgaris (10-25%). The LiP treated dyes also exhibit reduced bactericidal effects against four common resident microbial species, Escherichia coli (2-10 mm), Bacillus sp. (4-8 mm), Pseudomonas sp. (2-8 mm), and Lactobacillus sp. (2-10 mm). Therefore, apart from the tremendous industrial applications, the LiP from Pseudomonas fluorescence LiP-RL5 could be a potential biocatalyst for the detoxification of synthetic dyes.
Collapse
Affiliation(s)
- Ranju Kumari Rathour
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Nidhi Rana
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Vaishali Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India.
| |
Collapse
|
6
|
Preethi PS, Hariharan NM, Kumar SD, Rameshpathy M, Subbaiya R, Karmegam N. Actinobacterial peroxidase-mediated biodeterioration of hazardous explosive, 2, 4, 6, trinitrophenol by in silico and in vitro approaches. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:102. [PMID: 38433158 DOI: 10.1007/s10653-024-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.
Collapse
Affiliation(s)
- Prasath Sai Preethi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India
| | - Shanmugam Dilip Kumar
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
| | - Manian Rameshpathy
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India.
| |
Collapse
|
7
|
Zhang S, Feng L, Han Y, Xu Z, Xu L, An X, Zhang Q. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking. CHEMOSPHERE 2024; 351:141173. [PMID: 38232904 DOI: 10.1016/j.chemosphere.2024.141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/β structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
8
|
Amaro Bittencourt G, Vandenberghe LPDS, Martínez-Burgos WJ, Valladares-Diestra KK, Murawski de Mello AF, Maske BL, Brar SK, Varjani S, de Melo Pereira GV, Soccol CR. Emerging contaminants bioremediation by enzyme and nanozyme-based processes - A review. iScience 2023; 26:106785. [PMID: 37250780 PMCID: PMC10209495 DOI: 10.1016/j.isci.2023.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Due to their widespread occurrence and the inadequate removal efficiencies by conventional wastewater treatment plants, emerging contaminants (ECs) have recently become an issue of great concern. Current ongoing studies have focused on different physical, chemical, and biological methods as strategies to avoid exposing ecosystems to significant long-term risks. Among the different proposed technologies, the enzyme-based processes rise as green biocatalysts with higher efficiency yields and lower generation of toxic by-products. Oxidoreductases and hydrolases are among the most prominent enzymes applied for bioremediation processes. The present work overviews the state of the art of recent advances in enzymatic processes during wastewater treatment of EC, focusing on recent innovations in terms of applied immobilization techniques, genetic engineering tools, and the advent of nanozymes. Future trends in the enzymes immobilization techniques for EC removal were highlighted. Research gaps and recommendations on methods and utility of enzymatic treatment incorporation in conventional wastewater treatment plants were also discussed.
Collapse
Affiliation(s)
- Gustavo Amaro Bittencourt
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Walter José Martínez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Ariane Fátima Murawski de Mello
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Bruna Leal Maske
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | | | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248 007, India
| | - Gilberto Vinicius de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| |
Collapse
|
9
|
Murugadoss G, Rajesh Kumar M, Murugan D, Koutavarapu R, M Al-Ansari M, Aldawsari M. Ultra-fast photocatalytic degradation and seed germination of band gap tunable nickel doping ceria nanoparticles. CHEMOSPHERE 2023; 333:138934. [PMID: 37182707 DOI: 10.1016/j.chemosphere.2023.138934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Doping transition metal ions into cerium oxide (CeO2) results in interesting modifications to the material, including an increase in surface area, a high isoelectric point, biocompatibility, greater ionic conductivity, and catalytic activity. Herein, various concentrations (1-5%, 10% and 20%) of nickel (Ni) doped CeO2 nanoparticle have been made by a facile chemical process. Using a variety of cutting-edge analytical techniques, the structural, optical, and photocatalytic properties of undoped and varied concentrations (1-5%, 10%, and 20%) of Ni doped CeO2 nanoparticles have been investigated. Pure cubic fluorite structure with average crystallite sizes in the region of 12-15 nm was determined by X-ray diffraction (XRD) investigation. High resolution electron microscopy (HR-TEM), which revealed highly homogeneous hexagonal shape of the particles with average size of 15 nm, was also used to determine microstructural information. According to the optical absorption, the band gaps of Ni doped and undoped CeO2 nanoparticles were found to be 2.96 eV and 1.95 eV, respectively. When exposed to sunlight, the narrow band gap Ni doped CeO2 nanoparticles worked as an active visible light catalyst to remove the dyes Rose Bengal (RB) and Direct Yellow (DY). The best photodegradation efficiencies for RB and DY dyes were found about 93% and 97%, respectively, using the 5% Ni-doped CeO2 catalyst. The apparent rate constant values of 0.039 for RB and 0.040 min-1 were attained for DY. As well, the treated, untreated dye solution and control solutions were utilized to assess the toxicity of commercially accessible Vigna Radiata seeds. In this study exhibits percentages of length and germination increased by 30-35% when compared to dye pollutant solution. The Ni doped CeO2 can provide a substantial alternative for current industrial waste management because of its quick photocatalytic activity and remarkable seed germination results.
Collapse
Affiliation(s)
- Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - Manavalan Rajesh Kumar
- Institute of Natural Science and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
| | - Dakshana Murugan
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|