1
|
Hou Y, Wang Y, Zhang Y, Lu Z, Zhang Z, Dong Z, Qiu Y. Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. J Environ Sci (China) 2025; 148:541-552. [PMID: 39095187 DOI: 10.1016/j.jes.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 08/04/2024]
Abstract
The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.
Collapse
Affiliation(s)
- Yuanzhang Hou
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yange Wang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yidi Zhang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhibo Lu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenbo Zhang
- School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhiqiang Dong
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China; China Railway Engineering Group Co., Beijing 100039, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Liang Y, Yang J, Zhang Z, Xiao Y, Gu H. Combined toxic effects of yessotoxin and polystyrene on the survival, reproduction, and population growth of rotifer Brachionus plicatilis at different temperatures. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02819-y. [PMID: 39446177 DOI: 10.1007/s10646-024-02819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Yessotoxin (YTX) is a disulfated toxin produced by harmful dinoflagellates and causes risks to aquatic animals. Polystyrene (PS) microplastics could absorb toxins in seawaters but pose threats to organism growth. In this study, the combined toxic effects of YTX (0, 20, 50, and 100 µg L-1) and PS (0, 5, and 10 µg mL-1) on the survival, reproduction, and population growth of marine rotifer Brachionus plicatilis at 20 °C, 25 °C, and 30 °C were evaluated. Results indicated that the survival time (S), time to first batch of eggs (Ft), total offspring per rotifer (Ot), generational time (T0), net reproduction rate (R0), intrinsic growth rate (rm), and population growth rate (r) of rotifers were inhibited by YTX and PS at 25 °C and 30 °C. Low temperature (20 °C) improved the life-table parameters T0, R0, and rm at YTX concentrations less than 100 µg L-1. Temperature, YTX, and PS had interactive effects on rotifers' S, Ft, Ot, T0, R0, rm, and r. The combined negative effects of YTX and PS on rotifers' survival, reproduction, and population growth were significantly enhanced at 30 °C. These findings emphasized the importance of environmental temperature in studying the interactive effects of microplastics and toxins on the population growth of zooplankton in eutrophic seawaters.
Collapse
Affiliation(s)
- Ye Liang
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, PR China.
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, No. 178 Daxue Road, Xiamen, 361005, PR China.
| | - Jun Yang
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, PR China
| | - Zongyan Zhang
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, PR China
| | - Yujing Xiao
- School of Marine Science and Engineering, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210023, PR China
| | - Haifeng Gu
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, PR China
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, No. 178 Daxue Road, Xiamen, 361005, PR China
- Third Institute of Oceanography, Ministry of Natural Resources, No. 178 Daxue Road, Xiamen, 361005, PR China
| |
Collapse
|
3
|
Ma Y, Wu M, Jin J, Qin S, Liu Q, Sun Y, Yang Z. Photoperiod-dependent effects of zinc oxide nanoparticles on the growth and reproduction of Daphnia pulex. CHEMOSPHERE 2024; 365:143394. [PMID: 39307469 DOI: 10.1016/j.chemosphere.2024.143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
The discharge of metal nanoparticles into the water inevitably poses a threat to aquatic organisms and the balance of the aquatic ecosystem. Photoperiod is one of the most important ecological factors for the development of cladocerans. In addition, different light conditions can also affect the toxicity of metal nanoparticles. In this study, we studied the effects of four photoperiods (8L/16D, 10L/14D, 14L/10D, and 16L/8D) combined with three concentrations of ZnO NPs (0 mg L-1, 0.05 mg L-1, and 0.10 mg L-1) on the growth and reproduction of Daphnia pulex. With the increase of photoperiod, the maternal body size and growth rate increased first and then decreased; the first time to reproduction was advanced, and broods and the total offspring also increased. Under the influence of ZnO NPs, growth rate and reproductive capacity were inhibited. The photoperiod 8L/16D and 16L/8D interacted with ZnO NPs on the growth of D. pulex, which significantly decreased the growth rate. Besides, the interaction between photoperiod 8L/16D and ZnO NPs decreased the reproduction ability of D. pulex. These results suggest that the effects of zinc oxide nanoparticles on the growth and reproduction of D. pulex is photoperiod dependent, which is useful for assessing the risk of pollutants to cladoceras under different light conditions.
Collapse
Affiliation(s)
- Yiqing Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Mengfan Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jin Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
4
|
Lian H, Zhang Y, Han C, Yang J. Reproductive toxicity of hexabromocyclododecane in rotifer Brachionus plicatilis: Involvement of reactive oxygen species and calcium signaling pathways. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106689. [PMID: 39154542 DOI: 10.1016/j.marenvres.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
To assess the toxicity of Hexabromocyclododecane (HBCD), the population, individual, and cellular biochemical parameters of the rotifer Brachionus plicatilis exposed to different concentrations of HBCD were investigated. The results showed that the population growth rate, reproductive period, and offspring number in B. plicatilis significantly decreased under 324 μg/L and 648 μg/L HBCD. Antioxidant enzyme activity and mRNA expression of CAT and Mn-SOD were promoted at low concentrations (32 μg/L and 64 μg/L) and inhibited at high concentrations (324 μg/L and 648 μg/L), while MDA content accumulated continuously with increasing HBCD concentrations, indicating that HBCD induced oxidation imbalance in rotifers. Further evidence was provided by the correlation between DNA fragmentation and physiological changes. The increased intercellular concentration of Ca2+ and the expression of CaM mRNA suggested that HBCD activated pathways related to calcium signaling. In summary, the excessive production of ROS induced by HBCD was considered to be the main cause of reproductive toxicity.
Collapse
Affiliation(s)
- Hairong Lian
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, 241002, China
| | - Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Jiaxin Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
5
|
Yu Q, Wang G, Shao Z, Sun Y, Yang Z. Changes in life history parameters and expression of key genes of Brachionus plicatilis exposed to a combination of organic and inorganic ultraviolet filters. CHEMOSPHERE 2024; 358:142213. [PMID: 38697570 DOI: 10.1016/j.chemosphere.2024.142213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.
Collapse
Affiliation(s)
- Qingqing Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Gongyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhihao Shao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
6
|
Cui B, Rong H, Tian T, Guo D, Duan L, Nkinahamira F, Ndagijimana P, Yan W, Naidu R. Chemical methods to remove microplastics from wastewater: A review. ENVIRONMENTAL RESEARCH 2024; 249:118416. [PMID: 38316391 DOI: 10.1016/j.envres.2024.118416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.
Collapse
Affiliation(s)
- Baihui Cui
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tingting Tian
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dabin Guo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| | | | | | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Wang C, Jeong H, Lee JS, Maszczyk P, Sayed AEDH, Hwang UK, Kim HS, Lee JS, Byeon E. Physiological effects and molecular response in the marine rotifer Brachionus plicatilis after combined exposure to nanoplastics and copper. MARINE POLLUTION BULLETIN 2023; 194:115332. [PMID: 37527615 DOI: 10.1016/j.marpolbul.2023.115332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Because nanoplastics (NPs) can transport pollutants, the absorption of surrounding pollutants into NPs and their effects are important environmental issues. This study shows a combined effect of high concentrations of NPs and copper (Cu) in the marine rotifer Brachionus plicatilis. Co-exposure decreased the growth rate, reproduction, and lifespan. The highest level of NP ingestion was detected in the co-treated group, but the Cu concentration was higher in the Cu single-exposure group. ERK activation played a key role in the downstream cell signaling pathway activated by the interaction of NPs and Cu. The increased sensitivity of B. plicatilis to Cu could be due to the impairment of MXR function caused by a high concentration of NPs, which supports our in vivo experiment results. Our results show that exposure to NPs could induce the dysfunction of several critical molecular responses, weakening resistance to Cu and thereby increasing its physiological toxicity in B. plicatilis.
Collapse
Affiliation(s)
- Chuxin Wang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Un-Ki Hwang
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan 54001, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Daghighi E, Shah T, Chia RW, Lee JY, Shang J, Rodríguez-Seijo A. The forgotten impacts of plastic contamination on terrestrial micro- and mesofauna: A call for research. ENVIRONMENTAL RESEARCH 2023; 231:116227. [PMID: 37244494 DOI: 10.1016/j.envres.2023.116227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) contamination of the terrestrial environment is a growing concern worldwide and is thought to impact soil biota, particularly the micro and mesofauna community, by various processes that may contribute to global change in terrestrial systems. Soils act as a long-term sink for MP, accumulating these contaminants and increasing their adverse impacts on soil ecosystems. Consequently, the whole terrestrial ecosystem is impacted by microplastic pollution, which also threatens human health by their potential transfer to the soil food web. In general, the ingestion of MP in different concentrations by soil micro and mesofauna can adversely affect their development and reproduction, impacting terrestrial ecosystems. MP in soil moves horizontally and vertically because of the movement of soil organisms and the disturbance caused by plants. However, the effects of MP on terrestrial micro-and mesofauna are largely overlooked. Here, we give the most recent information on the forgotten impacts of MP contamination of soil on microfauna and mesofauna communities (protists, tardigrades, soil rotifers, nematodes, collembola and mites). More than 50 studies focused on the impact of MP on these organisms between 1990 and 2022 have been reviewed. In general, plastic pollution does not directly affect the survival of organisms, except under co-contaminated plastics that can increase adverse effects (e.g. tire-tread particles on springtails). Besides, they can have adverse effects at oxidative stress and reduced reproduction (protists, nematodes, potworms, springtails or mites). It was observed that micro and mesofauna could act as passive plastic transporters, as shown for springtails or mites. Finally, this review discusses how soil micro- and mesofauna play a key role in facilitating the (bio-)degradation and movement of MP and NP through soil systems and, therefore, the potential transfer to soil depths. More research should be focused on plastic mixtures, community level and long-term experiments.
Collapse
Affiliation(s)
- Elaheh Daghighi
- BetterSoil e. V., Lise-Meitner-Straße 9, D-89081, Ulm, Germany
| | - Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - R W Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/n, Ourense, 32004, Spain; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|