1
|
Bui VKH, Nguyen TP, Tran TCP, Nguyen TTN, Duong TN, Nguyen VT, Liu C, Nguyen DD, Nguyen XC. Biochar-based fixed filter columns for water treatment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176199. [PMID: 39278474 DOI: 10.1016/j.scitotenv.2024.176199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Biochar used in fixed filter columns (BFCs) has garnered significant attention for its capabilities in material immobilization and recovery, filtration mechanisms, and potential for scale-up, surpassing the limitations of batch experiments. This review examines the efficacy of biochar in BFCs, either as the primary filtering material or in combination with other media, across various wastewater treatment scenarios. BFCs show high treatment efficiency, with an average COD removal of 80 % ±15.3 % (95 % confidence interval: 72 %, 86 %). Nutrient removal varies, with nitrogen-ammonium and phosphorus-phosphate removal averaging 71 ± 17.1 % (60 %, 80 %) and 57 % ± 25.6 % (41 %, 74 %), respectively. Pathogen reduction is notable, averaging 2.4 ± 1.12 log10 units (1.9, 2.9). Biochemical characteristics, pollutant concentrations, and operational conditions, including hydraulic loading rate and retention time, are critical to treatment efficiency. The pyrolysis temperature (typically 300 to 800 °C) and duration (1.0 to 4.0 h) influence biochar's specific surface area (SSA), with higher temperatures generally increasing SSA. This review supports the biochar application in wastewater treatment and guides the design and operation of BFCs, bridging laboratory research and field applications. Further investigation is needed into biochar reuse as a fertilizer or energy source, along with research on BFC models under real-world conditions to fully assess their efficacy, service life, and costs for practical implementation.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - T Phuong Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam.
| | - T C Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam
| | - T T Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam
| | - T Nghi Duong
- Institute of Marine Environment and Resources, Vietnam Academic Science and Technology, 246 Danang, Haiphong 100000, Viet Nam; Faculty of Marine Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - V-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam
| | - Chong Liu
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China; Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Luo X, Wang D, Liu Y, Qiu Y, Zheng J, Xia G, Elbeltagi A, Chi D. Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching. FRONTIERS IN PLANT SCIENCE 2024; 15:1459751. [PMID: 39502925 PMCID: PMC11535512 DOI: 10.3389/fpls.2024.1459751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Introduction Peanut production is being increasingly threatened by water stress with the context of global climate change. Film mulching have been reported to alleviate the adverse impact of drought on peanut. Lower phosphorus use efficiency is another key factor limiting peanut yield. Application of iron-modified and phosphorus-loaded biochar (BIP) has been validated to enhance phosphorus utilization efficiency in crops. However, whether combined effect of film mulching and BIP could increase water use efficiency and enhance peanut production through regulating soil properties and root morphologies needs further investigation. Methods A two-year (2021-2022) pot experiment using a split-plot design was conducted to investigate the effects of phosphorus fertilizer substitution using BIP on soil properties, root morphology, pod yield, and water use of peanut under film mulching. The main plots were two mulching methods, including no mulching (M0) and film mulching (M1). The subplots were four combined applications of phosphorus fertilizer with BIP, including conventional phosphorus fertilizer rates (PCR) without BIP, P1C0; 3/4 PCR with 7.5 t ha-1 BIP, P2C1; 3/4 PCR with 15 t ha-1 BIP, P2C2; 2/3 PCR with 7.5 t ha-1 BIP, P3C1; 2/3 PCR with 15 t ha-1 BIP, P3C2. Results and discussion The results indicated that regardless of biochar amendments, compared with M0, M1 increased soil organic matter and root morphology of peanut at different growth stages in both years. In addition, M1 increased peanut yield and water use efficiency (WUE) by 18.8% and 51.6%, respectively, but decreased water consumption by 25.0%, compared to M0 (two-year average). Irrespective of film mulching, P2C1 increased length, surface area, and volume of peanut root at seedling by 16.7%, 17.7%, and 18.6%, at flowering by 6.6%, 19.9%, and 29.5%, at pod setting by 22.9%, 33.8%, and 37.3%, and at pod filling by 48.3%, 9.5%, and 38.2%, respectively (two-year average), increased soil pH and organic matter content during peanut growing season, and increased soil CEC at harvest. In general, the M1P2C1 treatment obtained the optimal root morphology, soil chemical properties, WUE, and peanut yield, which increased peanut yield by 33.2% compared to M0P1C0. In conclusion, the combination of film mulching with 7.5 t ha-1 BIP (M1P2C1) effectively improved soil chemical properties, enhanced root morphology of peanut, and ultimately increased peanut yield and WUE.
Collapse
Affiliation(s)
- Xiulan Luo
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Dewei Wang
- College of Mechanical and Electrical Engineering, Tarim University, Alar, China
| | - Yuting Liu
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Yuanze Qiu
- Shenyang No.2 High School, Shenyang, China
| | - Junlin Zheng
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Guimin Xia
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Ahmed Elbeltagi
- Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Chu L, Song Z, Zou S, Wang D. Effect of carbonaceous materials on phosphorus removal in flow-through packed column systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60555-60567. [PMID: 39384671 DOI: 10.1007/s11356-024-35268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Phosphorus (P) overloading in aquatic environments has long-been recognized as the leading cause of water quality deterioration, harmful algal bloom, and eutrophication. This study investigated P removal performance by five cost-effective carbonaceous materials (CMs) in flow-through packed column systems. These CMs include biochars pyrolyzed from feedstocks of Eucalyptus (E-biochar) and Douglas fir (D-biochar), commercial biochar (C-biochar), iron oxide-coated biochar (Fe-biochar), and commercial activated carbon (AC). The physicochemical properties of CMs, such as specific surface area (SSA), pore volume, pore diameter, elemental composition, and surface charge, were characterized. The packed column experimental results showed that P removal performance followed the order: E-biochar < D-biochar < C-biochar < Fe-biochar < AC. Specifically, the sorption capacity of 1 mg/L of P in packed columns was 0.0036 mg P/g E-biochar, 0.0111 mg P/g D-biochar, 0.0369 mg P/g D-biochar, 0.077 mg P/g Fe-biochar, and 0.088 mg P/g AC, respectively. The largest SSA (1012 m2/g) and pore volume (0.57 cm3/g) of AC accounted for the most outstanding P removal efficiency mainly by physical sorption, while electrostatic interaction explained the high P removal by Fe-biochar (SSA as low as 32.4 m2/g). Our findings provide direct practical implications for effectively removing P in water by cost-effective CMs.
Collapse
Affiliation(s)
- Lingyang Chu
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Ziteng Song
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shiqiang Zou
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Cui X, Zhong Z, Xie X, Jiang P. Sorptive removal of cadmium using the attapulgite modified by the combination of calcination and iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120820-120831. [PMID: 37943435 DOI: 10.1007/s11356-023-30323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023]
Abstract
Sorptive removal of cadmium (Cd) from the aqueous solutions using the easily available natural materials is an attractive method. However, the adsorption efficiencies of these materials, such as clays, are typically low. Besides, they are generally in relatively low stability and renewability, which restrict their application. Thus, modification of these materials to enhance their performance on Cd removal has gained growing attentions. Herein, the integration of calcination and ferric chloride (FeCl3) was used to modify a typical clay, i.e., attapulgite, to increase the adsorption sites, and thus to develop a robust adsorbent for Cd. Under the optimum conditions for attapulgite modification (i.e., the mass ratio of FeCl3 to attapulgite was 1:2, calcination temperature was 350 °C, and calcination time was 1.5 h) and Cd adsorption (i.e., initial pH of 6.0, adsorption temperature of 25 °C, and adsorbent dosage of 1.0 g/L), the maximum adsorption capacity of the modified attapulgite toward Cd was 149.9 mg/g. Mechanisms of surface complexation and electrostatic attraction were involved in the efficient removal of Cd. The adsorption of Cd increased with pH due to the increased electrostatic attraction. Metal cations inhibited the Cd adsorption through competing with the adsorption sites. The changes of Gibbs-free energy during the adsorption of Cd were lower than zero and decreased with temperature, suggesting the process was spontaneous and endothermic. The removal efficiency of Cd after 5 times of recycle maintained at 82% of that of the raw modified attapulgite demonstrated the stability of the adsorbent. These results suggested that the modified attapulgite is robust for Cd removal and is promising for land application.
Collapse
Affiliation(s)
- Xiaochuan Cui
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenyu Zhong
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Xiande Xie
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Pinghong Jiang
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| |
Collapse
|
5
|
Jellali S, Hadroug S, Al-Wardy M, Al-Nadabi H, Nassr N, Jeguirim M. Recent developments in metallic-nanoparticles-loaded biochars synthesis and use for phosphorus recovery from aqueous solutions. A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118307. [PMID: 37269723 DOI: 10.1016/j.jenvman.2023.118307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) represents a major pollutant of water resources and at the same time a vital element for human and plants. P recovery from wastewaters and its reuse is a necessity in order to compensate the current important depletion of P natural reserves. The use of biochars for P recovery from wastewaters and their subsequent valorization in agriculture, instead of synthetic industrial fertilizers, promotes circular economy and sustainability concepts. However, P retention by pristine biochars is usually low and a modification step is always required to improve their P recovery efficiency. The pre- or post-treatment of biochars with metal salts seems to be one of the most efficient approaches. This review aims to summarize and discuss the most recent developments (from 2020- up to now) in: i) the role of the feedstock nature, the metal salt type, the pyrolysis conditions, and the experimental adsorption parameters on metallic-nanoparticles-loaded biochars properties and effectiveness in recovering P from aqueous solutions, as well as the dominant involved mechanisms, ii) the effect of the eluent solutions nature on the regeneration ability of P-loaded biochars, and iii) the practical challenges facing the upscaling of P-loaded biochars production and valorization in agriculture. This review shows that the synthesized biochars through slow pyrolysis at relatively high temperatures (up to 700-800 °C) of mixed biomasses with Ca- Mg-rich materials or impregnated biomasses with specific metals in order to from layered double hydroxides (LDHs) biochars composites exhibit interesting structural, textural and surface chemistry properties allowing high P recovery efficiency. Depending on the pyrolysis's and adsorption's experimental conditions, these modified biochars may recover P through combined mechanisms including mainly electrostatic attraction, ligand exchange, surface complexation, hydrogen bonding, and precipitation. Moreover, the P-loaded biochars can be used directly in agriculture or efficiently regenerated with alkaline solutions. Finally, this review emphasizes the challenges concerning the production and use of P-loaded biochars in a context of circular economy. They concern the optimization of P recovery process from wastewater in real-time scenarios, the reduction of energy-related biochars production costs and the intensification of communication/dissemination campaigns to all the concerned actors (i.e., farmers, consumers, stakeholders, and policymakers) on the benefits of P-loaded biochars reuse. We believe that this review is beneficial for new breakthroughs on the synthesis and green application of metallic-nanoparticles-loaded biochars.
Collapse
Affiliation(s)
- Salah Jellali
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Samar Hadroug
- Wastewaters and Environment Laboratory, Water Research and Technologies Centre, Carthage University, Soliman, 2050, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Hamed Al-Nadabi
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Najat Nassr
- Rittmo Agroenvironnement, ZA Biopôle, 37 Rue de Herrlisheim, CS 80023, F-68025 Colmar Cedex, France.
| | - Mejdi Jeguirim
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, UMR, 7361, F-68100, Mulhouse, France; Institut de Science des Matériaux de Mulhouse (IS2M), Université de Strasbourg, CNRS, UMR, 7361, F-67081, Strasbourg, France.
| |
Collapse
|