1
|
Ying Y, Shang M, Wang X, Cui X, Huang R, Song Z, Han Y. Soil heavy metals assessment of the Zhoukou riparian zone base of Shaying river basin, China: spatial distribution, source analysis and ecological risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:77. [PMID: 39960526 DOI: 10.1007/s10653-025-02391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
The riparian zone serves as an ecological transition area between aquatic and terrestrial environments. Understanding the spatial distribution and origins of heavy metals within this zone is crucial for studying riverine ecosystems. In this research, we assessed the occurrence forms and spatial patterns of heavy metals in the riparian zone of the Shaying River Basin in Zhoukou City. Environmental risks were preliminarily evaluated using indices such as Igeo, RI, and PLI, and the sources of heavy metals were identified through PMF. The results revealed that the overall ecological risk associated with eight analyzed heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in this region was low. However, Cd is marked enriched and represents a significant factor contributing to the potential ecological risk within the riparian zone of the basin. The high bioavailability of Cd and Mn in the soils of nine more contaminated sites showed moderate to very high ecological risk. The PMF model identified four pollution primary sources in this region: agricultural and industrial activities (29.4%), upstream water pollution (21.1%), natural sources (26.5%), and transport-related source (23.1%). These findings establish a scientific foundation for the conservation and management of the ecological environment in the riparian zone of the Shaying River Basin in Zhoukou City. Additionally, they will serve as a reference for future research on soil heavy metal migration and sources within the Huaihe River Basin, China.
Collapse
Affiliation(s)
- Yimei Ying
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Meng Shang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
| | - Xu Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xinrui Cui
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Ruijie Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Yunjiao Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Yang X, An N, Luo H, Zheng J, Wu J, Yang D. Phragmites australis elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China. Heliyon 2025; 11:e41528. [PMID: 39866504 PMCID: PMC11758123 DOI: 10.1016/j.heliyon.2024.e41528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species Phragmites australis (P. australis), native species Juncus effuses and Schoenoplectus tabernaemontan in a typical urban plateau Lake wetland, Caohai lake, China. Low-frequency mass magnetic susceptibility (χLF), anhysteretic remanent susceptibility (χARM), isothermal remanent magnetization, Cd, Cr, Cu, Sb, Ni and Zn were determined. Compared with Juncus effuses and Schoenoplectus tabernaemontani, P. australis habitat had the higher values of HMs, χLF, χARM, and isothermal remanent magnetization in top-soils. Frequency-dependent magnetic susceptibility ranged from 4.84 % to 10.87 % in top-soils and 6.82 %-9.95 % in sub-soils, lithogenic/pedogenic factors mainly masked the contribution of anthropogenic factors to magnetic signal enhancement. The correlation between variations of Cu and Sb with χARM and isothermal remanent magnetization was found to be significant in top-soils, but not in sub-soils. P. australis tended to promote the enrichment of HMs and enhancement of magnetic signal, the impact of P. australis expansion on the distribution of soil HMs and magnetic particles in Caohai riparian wetland should be not disregarded.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Na An
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Huipeng Luo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Building Material Product Quality Inspection and Testing Institute, Guiyang, 550014, China
| | - Jiao Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Jianlan Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Dan Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Hu B, He X, Zhou J, Zhang H, Dai Y, Wang Z, Jiang Y, Zhang Y, Zhang P, Shi Z. Spatial pattern, source apportionment, and source-oriented health risk quantifying of heavy metals in farmland soils of southern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1119. [PMID: 39470897 DOI: 10.1007/s10661-024-13273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
The contamination of heavy metal has permeated many parts of China, especially in densely populated and industrialized southern China. This study focused on the degree of pollution in farmland soil heavy metals (HMs), and its spatial distribution characteristics and source apportionment. Meanwhile, we conducted an evaluation of the health risks attributed to soil HMs and analyzed the factors that impact them. We found that the distribution of five heavy metals is mainly concentrated in the east-central and southern parts of the study area. Specifically, Cd and Hg have high levels of pollution and present potential ecological risks. The pollution sources of five HMs were analyzed utilizing positive matrix factorization. The results revealed that the contribution of different sources keeps the following order: natural source (42.42%), agricultural activities (29.93%), industrial pollution source (20.49%), and atmospheric deposition pollution (7.16%). The non-carcinogenic risks to residents were acceptable, whereas the carcinogenic risks were relatively high. Children and the elderly are more vulnerable to the negative effects of Cr, As. Using structural equation modeling, we found soil property is a vital factor affecting soil contamination, with the soil organic matter and cation exchange capacity having a relatively greater impact on heavy metals pollution. Our study provides some data reference and guidance for soil ecological protection and restoration.
Collapse
Affiliation(s)
- Bifeng Hu
- Department of Land Resource Management, School of Public Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang, 330013, China
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu He
- Department of Land Resource Management, School of Public Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Jiumao Zhou
- The Ninth Brigade of Jiangxi Geological Bureau, Nanchang, 330027, China
| | - Hong Zhang
- The Ninth Brigade of Jiangxi Geological Bureau, Nanchang, 330027, China
| | - Yeming Dai
- The Ninth Brigade of Jiangxi Geological Bureau, Nanchang, 330027, China
| | - Zhige Wang
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Yefeng Jiang
- Academy of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yangzhu Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Pengbo Zhang
- Hunan University of Finance and Economics, Changsha, 410205, China.
| | - Zhou Shi
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Ozoani HA, Orisakwe OE, Parisi C, Assisi L, Ezejiofor AN, Okolo KO, Orish CN, Vangone R, Sivieri EM, Guerriero G. Role of Anonychium africanum (Plantae, Fabaceae) in Metal Oxido-Inflammatory Response: Protection Evidence in Gonad of Male Albino Rat. Antioxidants (Basel) 2024; 13:1028. [PMID: 39334687 PMCID: PMC11429019 DOI: 10.3390/antiox13091028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Male fertility is strongly affected by the overexpression of free radicals induced by heavy metals. The aim of this study was to evaluate the potential antioxidant, anti-inflammatory, and gonado-protective effects of natural compounds. Biochemical and morphological assays were performed on male albino rats divided into five groups: a control group (water only), a group orally exposed to a metal mixture of Pb-Cd-Hg-As alone and three groups co-administered the metal mixture and an aqueous extract of the Nigerian medicinal plant, Anonychium africanum (Prosopis africana, PA), at three different concentrations (500, 1000, and 1500 mg/kg) for 60 days. The metal mixture induced a significant rise in testicular weight, metal bioaccumulation, oxidative stress, and pro-inflammatory and apoptotic markers, while the semen analysis indicated a lower viability and a decrease in normal sperm count, and plasma reproductive hormones showed a significant variation. Parallel phytochemical investigations showed that PA has bioactive compounds like phlobatannins, flavonoids, polyphenols, tannins, saponins, steroids, and alkaloids, which are protective against oxidative injury in neural tissues. Indeed, the presence of PA co-administered with the metal mixture mitigated the toxic metals' impact, which was determined by observing the oxido-inflammatory response via nuclear factor erythroid 2-related factor 2, thus boosting male reproductive health.
Collapse
Affiliation(s)
- Harrison A. Ozoani
- Word Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; (H.A.O.); (O.E.O.)
| | - Orish Ebere Orisakwe
- Word Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; (H.A.O.); (O.E.O.)
- Advanced Research Centre, European University of Lefke, Northern Cypus, Lefke, TR-10, Mersin 99101, Turkey
| | - Costantino Parisi
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples, 80126 Naples, Italy; (C.P.); (L.A.); (R.V.); (E.M.S.)
| | - Loredana Assisi
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples, 80126 Naples, Italy; (C.P.); (L.A.); (R.V.); (E.M.S.)
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; (A.N.E.); (K.O.O.)
| | - Kenneth O. Okolo
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; (A.N.E.); (K.O.O.)
| | - Chinna N. Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria;
| | - Rubina Vangone
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples, 80126 Naples, Italy; (C.P.); (L.A.); (R.V.); (E.M.S.)
| | - Emidio M. Sivieri
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples, 80126 Naples, Italy; (C.P.); (L.A.); (R.V.); (E.M.S.)
| | - Giulia Guerriero
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples, 80126 Naples, Italy; (C.P.); (L.A.); (R.V.); (E.M.S.)
- Interdepartmental Research Center for Environmental (IRCEnv, CIRAm), Via Tarsia 31, 80135 Napoli, Italy
| |
Collapse
|
5
|
Nakagawa K, Islam MS, Shah SSH, Li Z, Takao Y, Berndtsson R. Relationship between nitrate, heavy metal, and sterols contents in Japanese agricultural soils with risk of groundwater pollution. CHEMOSPHERE 2024; 361:142335. [PMID: 38754494 DOI: 10.1016/j.chemosphere.2024.142335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In Japanese agricultural lands, nitrate-nitrogen contamination of soil and groundwater often occurs due to the application of livestock excrements and compost. Therefore, rural soils in Japan were sampled and analyzed for nitrate-nitrogen leaching, heavy metal content, and sterols associated with livestock excrement and compost to calculate contamination risk indicators. The results were analyzed using self-organizing maps and cluster analysis. Nitrate-nitrogen content using water extraction was detected in most of the sampled soils. In addition, many samples from areas that were already severely contaminated with nitrate-nitrogen showed particularly high concentrations. Coprostanol, an indicator of fecal contamination, was detected in more than half of the samples. The main source of nitrate-nitrogen contamination in these areas is livestock excrement and compost. Self-organization maps showed that areas with high nitrate-nitrogen contamination also corresponded to areas with high copper and zinc soil contents. The self-organization maps and cluster analysis resulted in five clusters: a nitrate-contaminated group mainly originating from livestock excrement and compost, a heavy metal-contaminated group, a general group, a nitrate-contaminated group mainly originating from chemical fertilizers, and a contaminated group with potentially hazardous substances requiring attention. Authorities and decision-makers can use the results to prioritize areas requiring remediation.
Collapse
Affiliation(s)
- Kei Nakagawa
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - M Shahidul Islam
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Syed Shabbar Hussain Shah
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Zhuolin Li
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yuji Takao
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Ronny Berndtsson
- Division of Water Resources Engineering & Centre for Advanced Middle Eastern Studies, Lund University, Box 118, SE-221 00, Lund, Sweden
| |
Collapse
|
6
|
Le Gal AS, Georges JY, Sotin C, Charrière B, Verneau O. Morphological variations and demographic responses of the Mediterranean pond turtle Mauremys leprosa to heterogeneous aquatic habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172077. [PMID: 38569955 DOI: 10.1016/j.scitotenv.2024.172077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Human activities affect terrestrial and aquatic habitats leading to changes at both individual and population levels in wild animal species. In this study, we investigated the phenotype and demographics of the Mediterranean pond turtle Mauremys leprosa (Schweigger, 1812) in contrasted environments of Southern France: two peri-urban rivers receiving effluents from wastewater treatment plants (WWTP), and another one without sewage treatment plant. Our findings revealed the presence of pesticides and pharmaceuticals in the three rivers of investigation, the highest diversities and concentrations of pollutants being found in the river subsections impacted by WWTP effluents. Principal component analysis and hierarchical clustering identified three levels of habitat quality, with different pollutant concentrations, thermal conditions, nutrient, and organic matter levels. The highest turtle densities, growth rates, and body sizes were estimated in the most disturbed habitats, suggesting potential adult benefits derived from harsh environmental conditions induced by pollution and eutrophication. Conversely, juveniles were the most abundant in the least polluted habitats, suggesting adverse effects of pollution on juvenile survival or adult reproduction. This study suggests that turtles living in polluted habitats may benefit from enhanced growth and body size, at the expense of reproductive success.
Collapse
Affiliation(s)
- Anne-Sophie Le Gal
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Jean-Yves Georges
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Christine Sotin
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France
| | - Bruno Charrière
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France
| | - Olivier Verneau
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; Unit for Environmental Sciences and Management, North-West University, Potchefstroom campus, Private Bag X6001, 20520 Potchefstroom, South Africa
| |
Collapse
|
7
|
Tang F, Xiao S, Chen X, Huang J, Xue J, Ali I, Zhu W, Chen H, Huang M. Preliminary construction of a microecological evaluation model for uranium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28775-28788. [PMID: 38558338 DOI: 10.1007/s11356-024-33044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
With the extensive development of nuclear energy, soil uranium contamination has become an increasingly prominent problem. The development of evaluation systems for various uranium contamination levels and soil microhabitats is critical. In this study, the effects of uranium contamination on the carbon source metabolic capacity and microbial community structure of soil microbial communities were investigated using Biolog microplate technology and high-throughput sequencing, and the responses of soil biochemical properties to uranium were also analyzed. Then, ten key biological indicators as reliable input variables, including arylsulfatase, biomass nitrogen, metabolic entropy, microbial entropy, Simpson, Shannon, McIntosh, Nocardioides, Lysobacter, and Mycoleptodisus, were screened by random forest (RF), Boruta, and grey relational analysis (GRA). The optimal uranium-contaminated soil microbiological evaluation model was obtained by comparing the performance of three evaluation methods: partial least squares regression (PLS), support vector regression (SVR), and improved particle algorithm (IPSO-SVR). Consequently, partial least squares regression (PLS) has a higher R2 (0.932) and a lower RMSE value (0.214) compared to the other. This research provides a new evaluation method to describe the relationship between soil ecological effects and biological indicators under nuclear contamination.
Collapse
Affiliation(s)
- Fanzhou Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, 621010, Sichuan, China
| | - Shiqi Xiao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, 621010, Sichuan, China.
| | - Jiali Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, 621010, Sichuan, China
| | - Jiahao Xue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, 621010, Sichuan, China
| | - Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, 621010, Sichuan, China
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54590, Pakistan
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu, 610100, China
| | - Min Huang
- Sichuan Institute of Atomic Energy, Chengdu, 610100, China
| |
Collapse
|
8
|
Rahmonov O, Sobala M, Środek D, Karkosz D, Pytel S, Rahmonov M. The spatial distribution of potentially toxic elements in the mountain forest topsoils (the Silesian Beskids, southern Poland). Sci Rep 2024; 14:338. [PMID: 38172231 PMCID: PMC10764751 DOI: 10.1038/s41598-023-50817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Progressive industrialisation and urbanisation in recent decades have dramatically affected the soil cover and led to significant changes in its properties, which inevitably affect the functioning of other components of the forest ecosystems. The total content of Pb, Cd, Zn, Fe, Cr, Cu, Ni, As, and Hg was studied in twenty-five plots at different heights in the topsoil (organic and humus horizons) formed from the Carpathian flysch in the area of the Silesian Beskids (Western Carpathians). The aim of this article is to analyse the spatial distribution of potentially toxic elements in the mountain forest topsoil in different types of plant communities and to determine the relationship between altitude and potentially toxic elements contamination. The soils studied are acidic or very acidic, with an average range of 3.8 (H2O) and 2.9 (KCl). Concentrations of the metals Cd, Zn, Fe, Cr, Cu, Ni, and Hg on the plots that were analysed are within the range of permissible standards for forest ecosystems in Poland, while Pb and As exceed the permissible standards for this type of ecosystem. Spearman's rank correlation coefficient showed a high correlation between Fe-Cr (r(32) = 0.879, Pb-Hg r(32) = 0.772, Ni-Cr r(32) = 0.738, Zn-Cd r(32) = 0.734, and Cu-Hg r(32) = 0.743, and a moderate statistically significant positive correlation between Cu-Pb r(32) = 0.667 and As-Pb r(32) = 0.557. No correlation was found between altitude and the occurrence of potentially toxic elements. The geo-accumulation index (Igeo) index, on the other hand, indicates that Pb, As, and Cd have the highest impact on soil contamination in all study plots: it classifies soils from moderately to strongly polluted. The enrichment factor (EF) obtained for As and Hg indicates significant-to-very high enrichment in all areas studied. The potential ecological risk index (PLI) calculated for the sites indicates the existence of pollution in all areas examined. The highest risk categories (considerable to very high) are associated with cadmium and mercury.
Collapse
Affiliation(s)
- Oimahmad Rahmonov
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200, Sosnowiec, Poland
| | - Michał Sobala
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200, Sosnowiec, Poland.
| | - Dorota Środek
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200, Sosnowiec, Poland
| | - Dominik Karkosz
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200, Sosnowiec, Poland
| | - Sławomir Pytel
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200, Sosnowiec, Poland
| | - Małgorzata Rahmonov
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200, Sosnowiec, Poland
| |
Collapse
|
9
|
Zhang T, Wang P, Wang M, Liu J, Gong L, Xia S. Spatial distribution, source identification, and risk assessment of heavy metals in riparian soils of the Tibetan plateau. ENVIRONMENTAL RESEARCH 2023; 237:116977. [PMID: 37625542 DOI: 10.1016/j.envres.2023.116977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Riparian soils in the lower sections of the Lhasa River were chosen as the research focus, to examine the characteristics and sources of heavy metals in riparian soils of high-cold regions. To investigate the influence of various factors on the geographical distribution of heavy metals, three horizontal and one vertical profiles were considered. The geoaccumulation index, prospective ecological risk index, and enrichment factor were used to evaluate the extent of soil contamination. Correlation analysis and the positive-matrix-analysis receptor model were used to quantitatively examine the sources of the elements. According to the soil-evaluation, the topsoil was more polluted than the deep soil. Overall, the soil was slightly degraded and posed minor ecological concern. Cd was the primary contributor to the overall contamination, with moderate and considerable risk levels at certain locations. Five sources were identified for the six heavy metals. Transportation and agricultural production were the principal sources of Cd. Ni and Cr were mostly connected to agricultural practices and weathering of parent-soil materials. Pb and Zn were mostly related to geological history, geothermal development, and traffic pollution. Mineral resource development has had a major impact on Cu. Non-carcinogenic risk index of each heavy metal and their total value were <1, indicating they are not harmful to human health. The riparian soil of the Lhasa River Basin contains heavy metals from various sources; therefore, it is important to monitor these heavy metals. This study provides a scientific foundation for the safe utilization and classification of soils in high cold regions.
Collapse
Affiliation(s)
- Tao Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding, 071051, China
| | - Pei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mingguo Wang
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding, 071051, China
| | - Jinwei Liu
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding, 071051, China
| | - Lei Gong
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding, 071051, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
10
|
AbuQamar SF, Abd El-Fattah HI, Nader MM, Zaghloul RA, Abd El-Mageed TA, Selim S, Omar BA, Mosa WF, Saad AM, El-Tarabily KA, El-Saadony MT. Exploiting fungi in bioremediation for cleaning-up emerging pollutants in aquatic ecosystems. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106068. [PMID: 37421706 DOI: 10.1016/j.marenvres.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Aquatic pollution negatively affects water bodies, marine ecosystems, public health, and economy. Restoration of contaminated habitats has attracted global interest since protecting the health of marine ecosystems is crucial. Bioremediation is a cost-effective and eco-friendly way of transforming hazardous, resistant contaminants into environmentally benign products using diverse biological treatments. Because of their robust morphology and broad metabolic capabilities, fungi play an important role in bioremediation. This review summarizes the features employed by aquatic fungi for detoxification and subsequent bioremediation of different toxic and recalcitrant compounds in aquatic ecosystems. It also details how mycoremediation may convert chemically-suspended matters, microbial, nutritional, and oxygen-depleting aquatic contaminants into ecologically less hazardous products using multiple modes of action. Mycoremediation can also be considered in future research studies on aquatic, including marine, ecosystems as a possible tool for sustainable management, providing a foundation for selecting and utilizing fungi either independently or in microbial consortia.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Hassan I Abd El-Fattah
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Maha M Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Rashed A Zaghloul
- Department of Agricultural Microbiology, Faculty of Agriculture, Moshtohor, Benha University, Benha, 13511, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Belal A Omar
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Walid F Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
11
|
Hu NW, Yu HW, Deng BL, Hu B, Zhu GP, Yang XT, Wang TY, Zeng Y, Wang QY. Levels of heavy metal in soil and vegetable and associated health risk in peri-urban areas across China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115037. [PMID: 37210996 DOI: 10.1016/j.ecoenv.2023.115037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Peri-urban vegetable field plays an essential role in providing vegetables for local residents. Because of its particularity, it is affected by both industrial and agricultural activities which have led to the accumulations of heavy metal in soil. So far, information on heavy metal pollution status, spatial features, and human health risks in peri-urban vegetable areas across China is still scarce. To fill this gap, we systematically compiled soil and vegetable data collected from 123 articles published between 2010 and 2022 at a national level. The pollution status of heavy metals (i.e., cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn)) in peri-urban vegetable soils and vegetables were investigated. To evaluate the levels of heavy metal pollution in soil and human health risks, the geoaccumulation index (Igeo) and target hazard quotient (HQ) were calculated. The results showed that mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn in peri-urban vegetable soils were 0.50, 0.53, 12.03, 41.97, 55.56, 37.69, 28.55, and 75.38 mg kg-1, respectively. The main pollutants in peri-urban vegetable soil were Cd and Hg, and 85.25% and 92.86% of the soil samples had Igeo > 1, respectively. The mean Igeo values of this regions followed the order of northwest > central > south > north > east > southwest > northeast for Cd and northeast > northwest > north > southwest > east > central > south for Hg. The mean Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn concentrations in vegetables were 0.30, 0.26, 0.37, 0.54, 1.17, 6.17, 1.96, and 18.56 mg kg-1, respectively. Approximately 87.01% (Cd), 71.43% (Hg), 20% (As), 65.15% (Pb), 27.08% (Cr) of the vegetable samples exceeded the safety requirement values. The vegetables grown in central, northwest, and northern China accumulated much more heavy metals than those grown in other regions. As the HQ values for adults, 53.25% (Cd), 71.43% (Hg), 84.00% (As), and 58.33% (Cr) of the sampled vegetables were higher than 1. For children, the HQ values were higher than 1 for 66.23% (Cd), 73.81% (Hg), 86.00% (As), and 87.50% (Cr) of the sampled vegetables. The findings of this study demonstrate that the situation of heavy metal pollution in peri-urban vegetable areas across China are not optimistic and residents who consume the vegetables are at high risk of health issues. To ensure soil quality and human health, strategies should be taken to guide vegetable production and remedy soil pollution in peri-urban areas with the rapidly urbanizing China.
Collapse
Affiliation(s)
- Nai-Wen Hu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Wen Yu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Bo-Ling Deng
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Hu
- Agricultural Technology and Extension Center of Jilin Province, Changchun 130033, China
| | - Guo-Peng Zhu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Tao Yang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tian-Ye Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ying Zeng
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quan-Ying Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
12
|
Rouhani A, Shadloo S, Naqibzadeh A, Hejcman M, derakhsh M. Pollution and Health Risk Assessment of Heavy Metals in the Soil Around an Open Landfill Site in a Developing Country (Kazerun, Iran). CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Qi M, Wu Y, Zhang S, Li G, An T. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1004. [PMID: 36673760 PMCID: PMC9858899 DOI: 10.3390/ijerph20021004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution related to non-ferrous metal smelting may pose a significant threat to human health. This study analyzed 58 surface soils collected from a representative non-ferrous metal smelting area to screen potentially hazardous heavy metals and evaluate their health risk in the studied area. The findings demonstrated that human activity had contributed to the pollution degrees of Cu, Cd, As, Zn, and Pb in the surrounding area of a non-ferrous metal smelting plant (NMSP). Cu, Cd, As, Zn, Pb, Ni, and Co pollution within the NMSP was serious. Combining the spatial distribution and Spearman correlations with principal component analysis (PCA), the primary sources of Cd, As, Pb, and Zn in surrounding areas were related to non-ferrous metal smelting and transportation activities. High non-cancer (THI = 4.76) and cancer risks (TCR = 2.99 × 10-4) were found for adults in the NMSP. Moreover, heavy metals in the surrounding areas posed a potential cancer risk to children (TCR = 3.62 × 10-6) and adults (TCR = 1.27 × 10-5). The significant contributions of As, Pb, and Cd to health risks requires special attention. The construction of a heavy metal pollution management system will benefit from the current study for the non-ferrous metal smelting industry.
Collapse
Affiliation(s)
- Mengdie Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|