1
|
Qureshi F, Asif M, Khan A, Aldawsari H, Yusuf M, Khan MY. Green Hydrogen Production From Non-Traditional Water Sources: A Sustainable Energy Solution With Hydrogen Storage and Distribution. CHEM REC 2024; 24:e202400080. [PMID: 39313980 DOI: 10.1002/tcr.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/20/2024] [Indexed: 09/25/2024]
Abstract
Green hydrogen development plays an essential role in creating a sustainable and environmentally conscious society while reducing reliance on traditional fossil fuels. Proton Exchange Membrane Water Electrolysers (PEMWEs), are sensitive to water quality, with various impurities impacting their efficiency, the quality of the hydrogen produced, and the device's lifespan. High-purity water is required for PEM electrolyzers; Type II water, which is required for commercial electrolyzers, must have a resistivity greater than 1 MΩ cm, sodium, and chloride concentrations less than 5 μg/L, and total organic carbon (TOC) content less than 50 parts per billion. The majority of electrolyzers operate on freshwater, or total dissolved solids (TDS) <0.5 g/kg, whereas brackish, rainwater, wastewater, and seawater have TDSs of 1-35 g/kg, 0.01-0.15 g/kg, 0.5-2 g/kg, and 35-45 g/kg, respectively. This critical review offers, for the first time, a comprehensive overview of relevant impurities in operating electrolyzers and their impact. The findings of this study indicate that electrolysis-based H2 processes are promising options that contribute to the H2 production capacity but require improvements to produce larger competitive volumes. In addition, the main challenges and opportunities for generating, storing, transporting, and distributing hydrogen, as well as large-scale adoption are discussed.
Collapse
Affiliation(s)
- Fazil Qureshi
- Chemical and Petroleum Engineering Department, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mohammad Asif
- Department of Finance College of Administrative and Financial Science, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hamad Aldawsari
- Department of Finance College of Administrative and Financial Science, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute, Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0 A2, Canada
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Ullah MH, Rahman MJ. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Heliyon 2024; 10:e36869. [PMID: 39281482 PMCID: PMC11400981 DOI: 10.1016/j.heliyon.2024.e36869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Heavy metal contamination in aquatic ecosystems worsens due to rapid industrial expansion. Biochar, an efficient and economical adsorbent, has attracted much interest in environmental science, particularly in removing heavy metals (HMs). The paper covers basic details on biochar, its preparation, and potential chemical and inorganic modifications. Possible adsorption mechanisms of HMs on biochar, which include electrostatic attraction, ion exchange, surface complexation, chemical precipitation, and hydrogen bonding, are also discussed. These mechanisms are affected by the type of biochar used and the species of HMs present. Research findings suggest that while biochar effectively removes HMs, modifications to the carbon-rich hybrid can enhance surface properties such as surface area, pore size, functional groups, etc., and magnetic properties in a few cases, making them more efficient in HM removal. The choice of feedstock materials is one of the key parameters influencing the sorption capacity of biochars. This review aims to investigate the use of various forms of water hyacinth (WH), including aquatic plants, biomass, biochar, and modified biochar, as effective adsorbents for removing HMs from aqueous solutions and industrial effluents through a comparative analysis of their adsorption processes. However, further studies on the diverse effects of functional groups of modified biochar on HMs adsorption are necessary for future research.
Collapse
Affiliation(s)
- M Hedayet Ullah
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Mohammad Jellur Rahman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Aly ST, Saed A, Mahmoud A, Badr M, Garas SS, Yahya S, Hamad KH. Preparation of magnetite nanoparticles and their application in the removal of methylene blue dye from wastewater. Sci Rep 2024; 14:20100. [PMID: 39209936 PMCID: PMC11362509 DOI: 10.1038/s41598-024-69790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Wastewater is discharged in large amounts from different industries; thus, wastewater treatment is currently one of the main concerns, advanced oxidation is a promising technique for wastewater treatment. This research aims to synthesize magnetite nanoparticles and study their application in wastewater treatment via adsorption and advanced oxidation processes. Magnetite nanoparticles were synthesized via coprecipitation technique between ferric and ferrous sulfate at a molar ratio of 2:1. The prepared sample was characterized using FTIR, XRD, TEM, BET surface area, zeta potential, VSM, and UV‒visible spectroscopy. XRD confirmed the formation of a single face-centered cubic (FCC) spinel structure of Fe3O4. TEM revealed an average particle size of 29.2 nm and a BET surface area of 70.1 m2 g-1. UV‒visible spectroscopy revealed that the UV-visible peak of the sample was obtained at 410 nm. VSM confirmed the attraction of the sample to a magnet with a magnetization of 60 (emu/g). The removal efficiency of methylene blue was studied using adsorption and advanced oxidation methods. For adsorption, the studied parameters were dye concentration 2-10 ppm, 3-10 pH, and 50:300 mg Fe3O4/L. For advanced oxidation, peroxide was used with nanomagnetite as a catalyst, and the studied parameters were pH 2-11, magnetite dose 20-200 PPM, and peroxide dose 500-2000 PPM. The removal efficiency by adsorption reached 95.11% by adding 50 mg of Fe3O4/L and 10 ppm dye conc at 6.5 pH; on the other hand, in advanced oxidation, it reached 98.5% by adding 110 PPM magnetite and 2000 ppm H2O2 at pH 11. The magnetite nanoparticles were reused for ten cycles of advanced oxidation, for a 10% reduction in removal efficiency at the tenth cycle.
Collapse
Affiliation(s)
- Sohair T Aly
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt.
| | - Amgad Saed
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt
| | - Alaa Mahmoud
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt
| | - Mahmoud Badr
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt
| | - Shady S Garas
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt
| | - Shehab Yahya
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt
| | - Kareem H Hamad
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology, Cairo, 3056, Egypt
| |
Collapse
|
4
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
5
|
Ahuja V, Singh PK, Mahata C, Jeon JM, Kumar G, Yang YH, Bhatia SK. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater. Microb Cell Fact 2024; 23:187. [PMID: 38951813 PMCID: PMC11218116 DOI: 10.1186/s12934-024-02430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Chandan Mahata
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana- Champaign, 1304 W. Pennsylvania Avenue, Urbana, 61801, USA
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam, 331-825, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600, Forus, Stavanger, 4036, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Mondal P, Brahma BK, Vali DK, Ray J, Kasu JVN, Gangopadhyay A, Laha S, Adhikari U. Calcium-Based Metal-Organic Framework: Detection and Idiosyncratic Removal of Copper by Nano-Particle Deposition. Chemistry 2024; 30:e202400587. [PMID: 38639718 DOI: 10.1002/chem.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
A novel calcium-based metal-organic framework (CaMOF@LSB) was designed and synthesized, exhibiting dual functionality for both selective detection and removal of Cu2+ ions from aqueous solutions. The framework's stability, including solvent and pH variations, was established with notable thermal resilience. Colorimetric Cu2+ detection (≥5 ppm) with a high capture capacity of 484.2 mg g-1 by CaMOF@LSB places this material among the few that ensure efficient colorimetric detection and high removal capabilities of Cu2+ ions. Batch adsorption experiments revealed pH-dependent behavior and competitive interactions. Langmuir and pseudo-second-order kinetics models aptly described adsorption isotherms and kinetics, respectively. Thermodynamic assessments confirmed spontaneous and endothermic adsorption. Mechanistically, nanoparticle deposition contributes to the Cu2+ uptake. CaMOF@LSB also exhibited one of the best removal behaviour of Cu2+ by means of oxide formation on the surface. Regeneration of CaMOF@LSB was achieved by simple sonication in 0.1 M aqueous NaOH solution. The recyclability was also tested up to 5 cycles, and it exhibited a small decrease in adsorption capacity observed across the cycles. This research presents a promising avenue for addressing heavy metal pollution using metal-organic frameworks, thereby offering potential applications in water purification and environmental pollution monitoring and remediation.
Collapse
Affiliation(s)
- Pallav Mondal
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Bhaskar K Brahma
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Dudekula Khasim Vali
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Joydeep Ray
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Jyothirlatha V N Kasu
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Avishek Gangopadhyay
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Sourav Laha
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| |
Collapse
|
7
|
Shen Y, Zhou B, Puig-Bargués J, Xiao Y, Liu W, Si B, Li Y. A comprehensive and molecular level evaluation of treated wastewater reusing via drip systems: Interactions of dissolved ions and hydraulic shear stresses on calcium carbonate scaling. CHEMOSPHERE 2024; 357:142071. [PMID: 38641290 DOI: 10.1016/j.chemosphere.2024.142071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
To overcome the global water shortage, the treated wastewater is increasingly utilized in agricultural irrigation, and thus reducing freshwater consumption and increasing the water sustainability. Drip irrigation technology is the most appropriate irrigation method to utilize these water sources. However, its operating performance is negatively affected by calcium carbonate (CaCO3) scaling, which is one of the most dominant precipitations and also closely related to dissolved ions and the hydraulic characteristics inside irrigation systems. Thus, the effects of eight common dissolved ions (K+, Mg2+, Mn2+, Zn2+, Fe3+, NO3-, SO42-, and PO43-) in these water sources and four hydraulic shear stresses (0, 0.2, 0.4, and 0.6 Pa) on CaCO3 scaling formation were assessed in this study. Results showed that CaCO3 scaling was primarily formed of calcite and aragonite. Fe3+ would significantly accelerate the CaCO3 scaling accumulation, as it reduced the unit cell volume and chemical bonds of calcite, enhancing calcite adhesion and stability. On the other hand, Mg2+, Mn2+, NO3-, SO42-, and PO43- significantly inhibited CaCO3 scaling. Among them, Mg2+, Mn2+, and PO43- followed the typical water chemical precipitation rule, while NO3- increased water molecule diffusion rate and thus decreased the possibility that Ca2+ and CO32- to precipitate. SO42- grabbed the binding point belonging to CO32- and was adsorbed on the calcite crystal, which inhibited crystal growth. However, those treatments under K+ and Zn2+ did not reach a significant level due to their solubleness. During the precipitation of CaCO3, there were significant (p < 0.01) interactions between dissolved ions and hydraulic shear stresses. When hydraulic shear stresses varied, the effects of Fe3+ and SO42- on the CaCO3 scaling were relatively weakened, while that of Mg2+ was relatively strengthened. In return, dissolved ions affected the effect of hydraulic shear stresses on CaCO3 scaling. Overall, the results obtained could provide theoretical reference for high-efficiency utilization of treated wastewater for agricultural irrigation through the management of CaCO3 scaling.
Collapse
Affiliation(s)
- Yan Shen
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China.
| | - Jaume Puig-Bargués
- Department of Chemical and Agricultural Engineering and Technology, University of Girona, Girona, 17003, Spain
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China
| | - Wenchao Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Buchun Si
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
8
|
Mishra V, Singh D, Singh RS, Singh D, Rene ER, Giri BS, Sharma S, Mishra A, Shukla H. Potable water production through a low-cost single chamber solar still in north India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33364-0. [PMID: 38702482 DOI: 10.1007/s11356-024-33364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The main aim of this study is to evaluate the performance of a single slope solar still and to assess the effect of nanofluid on its performance. A single basin single slope solar still was designed and fabricated at the Department of Chemical Engineering, IET Lucknow. Its performance was assessed in terms of the yield of potable water. The effect of various climatic parameters was also studied. Al2O3 nanofluid was used to enhance the yield of the solar still. In the presence of nanofluid, the total yield of the solar still improved by 16.6%. Its economic feasibility was analyzed and reported. The portability of the small size of solar stills, its better economics, easy fabrication, and good performance make them very useful for industrial as well as household purposes.
Collapse
Affiliation(s)
- Vinay Mishra
- Department of Chemical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Dhananjay Singh
- Department of Chemical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, 226021, India.
| | - Ram Sharan Singh
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Singh
- Department of Chemical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, The Netherlands
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Sarthik Sharma
- Department of Chemical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Anurag Mishra
- Department of Chemical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Harishchandra Shukla
- Department of Chemical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, 226021, India
| |
Collapse
|
9
|
Lykos C, Tsalpatouros K, Fragkos G, Konstantinou I. Synthesis, characterization, and application of Cu-substituted LaNiO 3 perovskites as photocatalysts and/or catalysts for persulfate activation towards pollutant removal. CHEMOSPHERE 2024; 352:141477. [PMID: 38387662 DOI: 10.1016/j.chemosphere.2024.141477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The presence of emerging contaminants in environmental aqueous matrices is an ever-growing problem, since conventional wastewater treatment methods fail to adequately remove them. Therefore, the application of non-conventional methodologies such as advanced oxidation processes is of great importance to tackle this modern problem. Photocatalysis as well as catalytic activation of persulfates are promising techniques in this field as they are capable of eliminating various emerging contaminants, and current research aims to develop new materials that can be utilized for both processes. In this light, the present study focused on the use of a simple sol-gel-combustion methodology to synthesize Cu-substituted LaNiO3 perovskite materials in an attempt to improve the photocatalytic and catalytic performance of pure LaNiO3, using molar ratios of Cu:Ni that have not been previously reported in the literature. The morphological, structural, and optical features of the synthesized materials were characterized by a series of analytical techniques (e.g., X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, diffuse reflectance spectroscopy, etc.). Also, their performance as photocatalysts, persulfate anion activators and simultaneously as photocatalysts/persulfate anion activators (hybrid) was evaluated by conducting laboratory-scale experiments using phenol (phenolics) as a model emerging contaminant. Interestingly, the results revealed that LaCu0.25Ni0.75O3 exhibited the best efficiency in all the applied processes, which was mainly attributed to the introduction of oxygen vacancies in the structure of the substituted material. The contribution of selected reactive species in the hybrid photocatalytic/catalytic experiments utilizing LaCu0.25Ni0.75O3 as a (photo)catalyst was investigated using appropriate scavengers, and the results suggested that singlet oxygen is the most dominant. Additionally, the stability of all synthesized perovskites was assessed by monitoring the concentration of the leached Cu and/or Ni cations at the end of every applied process. Finally, the reusability of LaCu0.25Ni0.75O3 was evaluated in three consecutive catalytic cycles using the hybrid experiment methodology, as this process demonstrated the best efficiency in terms of phenolics removal, and the results were rather promising.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | | | - Georgios Fragkos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece.
| |
Collapse
|
10
|
Yan H, Chen Z, Hao Ngo H, Wang QP, Hu HY. Nitrogen and phosphorus removal performance of sequential batch operation for algal cultivation through suspended-solid phase photobioreactor. BIORESOURCE TECHNOLOGY 2024; 393:130143. [PMID: 38042434 DOI: 10.1016/j.biortech.2023.130143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Nitrogen (N) and phosphorus (P) absorbed by algae in the suspended-solid phase photobioreactor (ssPBR) have emerged as an efficient pathway to purify the effluent of wastewater treatment plants (WWTPs). However, the key operational parameters of the ssPBR need to be optimized. In this study, the stability of the system after sequential batch operations and the efficiency under various influent P concentrations were evaluated. The results demonstrated that the ssPBR maintained a high N/P removal efficiency of 96 % and 98 %, respectively, after 5 cycles. When N was kept at 15 mg/L and P ranged from 1.5 to 3.0 mg/L, the system yielded plenty of algae products and guaranteed the effluent quality that met the discharge standards. Notably, the carriers were a key contributor to the high metabolism of algae and high performance. This work provided theoretical ideas and technical guidance for effluent quality improvement in WWTPs.
Collapse
Affiliation(s)
- Han Yan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Qiu-Ping Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215163, China
| |
Collapse
|
11
|
Salahshoori I, Namayandeh Jorabchi M, Baghban A, Khonakdar HA. Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment. CHEMOSPHERE 2024; 350:141010. [PMID: 38154677 DOI: 10.1016/j.chemosphere.2023.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs. Sensitivity analysis revealed that the illumination duration is the primary influencer of TC photodegradation with MOF photocatalysts, while the MOFs' surface area is the second crucial parameter shaping the efficiency and dynamics of the TC-MOF photocatalytic system. The developed LSSVM models display impressive predictive capabilities, effectively forecasting the experimental degradation of TC with high accuracy. Among these models, the GAPSO-LSSVM model excels as the top performer, achieving notable evaluation metrics, including STD, RMSE, MSE, MRE, and R2 at values of 3.09, 3.42, 11.71, 5.95, and 0.986, respectively. In comparison, the PSO-LSSVM, ICA-LSSVM, and GA-LSSVM models yield mean relative errors of 6.18%, 7.57%, and 11.37%, respectively. These outcomes highlight the exceptional predictive capabilities of the GAPSO-LSSVM model, solidifying its position as the most accurate and dependable model for predicting TC photodegradation in this study. This study contributes to advancing photocatalytic research and effectively reinforces the importance of leveraging machine learning methodologies for tackling environmental challenges.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Baghban
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| |
Collapse
|
12
|
Kunwar S, Pandey N, Bhatnagar P, Chadha G, Rawat N, Joshi NC, Tomar MS, Eyvaz M, Gururani P. A concise review on wastewater treatment through microbial fuel cell: sustainable and holistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6723-6737. [PMID: 38158529 DOI: 10.1007/s11356-023-31696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Research for alternative sources for producing renewable energy is rising exponentially, and consequently, microbial fuel cells (MFCs) can be seen as a promising approach for sustainable energy production and wastewater purification. In recent years, MFC is widely utilized for wastewater treatment in which the removal efficiency of heavy metal ranges from 75-95%. They are considered as green and sustainable technology that contributes to environmental safety by reducing the demand for fossil fuels, diminishes carbon emissions, and reverses the trend of global warming. Moreover, significant reduction potential can be seen for other parameters such as total carbon oxygen demand (TCOD), soluble carbon oxygen demand (SCOD), total suspended solids (TSS), and total nitrogen (TN). Furthermore, certain problems like economic aspects, model and design of MFCs, type of electrode material, electrode cost, and concept of electro-microbiology limit the commercialization of MFC technology. As a result, MFC has never been accepted as an appreciable competitor in the area of treating wastewater or renewable energy. Therefore, more efforts are still required to develop a useful model for generating safe, clean, and CO2 emission-free renewable energy along with wastewater treatment. The purpose of this review is to provide a deep understanding of the working mechanism and design of MFC technology responsible for the removal of different pollutants from wastewater and generate power density. Existing studies related to the implementation of MFC technology in the wastewater treatment process along with the factors affecting its functioning and power outcomes have also been highlighted.
Collapse
Affiliation(s)
- Saloni Kunwar
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science & Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Gurasees Chadha
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Rawat
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Murat Eyvaz
- Department of Environmental Engineering, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
13
|
Luo W, Tang J, Wang B, Wu D, Wang J, Cheng L, Geng F. The potential mechanism of low-power water bath ultrasound to enhance the effectiveness of low-concentration chlorine dioxide in inhibiting Salmonella Typhimurium. Food Chem X 2023; 20:100901. [PMID: 38144795 PMCID: PMC10740011 DOI: 10.1016/j.fochx.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 12/26/2023] Open
Abstract
This chapter presents a systematic study of the inhibition effect of chlorine dioxide treatment alone and in combination with ultrasound treatment of Salmonella and the physiological metabolic processes within the treated cells. The low-power ultrasound (0.03 W/mL) significantly enhanced the effectiveness (110.00 %) of low concentrations of chlorine dioxide (0.25 mg/L) in inhibiting Salmonella, which, in turn, would significantly reduce the potential environmental impact. In addition, further studies found that low-power ultrasound may enhance the structural and functional damage of chlorine dioxide on Salmonella cell membranes (significant increase in permeability of the outer and inner cell membranes) and disrupt intracellular substance metabolism (small molecule and nucleotide metabolism) and energy metabolism (significant reduction in ATP content and ATPase activity) balance to improve the bacterial inhibitory effect of chlorine dioxide. The results of the study will provide a theoretical basis and methodological guidance for the implementation of "cleaner production" in the food industry.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
14
|
Shafiquzzaman M, Hasan MM, Haider H, Ahmed AT, Razzak SA. Comparative evaluation of low-cost ceramic membrane and polymeric micro membrane in algal membrane photobioreactor for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118894. [PMID: 37659359 DOI: 10.1016/j.jenvman.2023.118894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Algal-bacterial membrane photobioreactor (AMPBR) is proven as a highly energy-efficient process for treating domestic wastewater. This study compared the application of polymeric micro-membrane (PMM) and a low-cost ceramic membrane (LCM) to the AMPBR process for treating domestic wastewater with low and high organic pollution levels. Experiments were conducted over 57 days using two PMM-AMPBRs and two LCM-AMPBRs, operating on a 12-h dark/light cycle in a continuous mode. Simulated wastewater containing varying levels of chemical oxygen demand (COD) was fed to reactors for a consistent hydraulic residence time (HRT) of 7 d and a flux rate of 100 L/m2/d. PMM and LCM-AMPBRs demonstrated efficient wastewater treatment capabilities, achieving COD removal rates exceeding 94% and 95% for high and low COD loadings, respectively. PMM-AMPBR achieved 54.1% TN removal at low COD loading, while LCM-AMPBR achieved 57.2%. These removal efficiencies decreased to 45.6% and 47.0% under high COD loading. Total Phosphorus (TP) removal reached 29-33% for PMM-AMPBRs and 21-24% for LCM-AMPBRs, irrespective of COD loading. LCM-AMPBRs showed significantly lower fouling frequency than PMM-AMPBRs. The biomass production rate decreased with increasing COD loading and achieved 40 mg/L/d at low COD loading for both AMPBRs. Net energy return (NER) values for both AMPBRs were close to 0.87, indicating them as energy-efficient processes. Considering the cost-effectiveness and comparable performance, LCM-AMPBR could be a viable alternative to PMM-AMPBR for wastewater treatment, particularly under low COD loading conditions.
Collapse
Affiliation(s)
- Md Shafiquzzaman
- Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Md Mahmudul Hasan
- Department of Civil Engineering, Bangladesh Army University of Science and Technology, Saidpur, 5310, Bangladesh
| | - Husnain Haider
- Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Abdelkader T Ahmed
- Civil Engineering Department, Faculty of Engineering, Islamic University of Madinah, Saudi Arabia
| | - Shaikh Abdur Razzak
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
15
|
Enache AC, Cojocaru C, Samoila P, Ciornea V, Apolzan R, Predeanu G, Harabagiu V. Adsorption of Brilliant Green Dye onto a Mercerized Biosorbent: Kinetic, Thermodynamic, and Molecular Docking Studies. Molecules 2023; 28:molecules28104129. [PMID: 37241872 DOI: 10.3390/molecules28104129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This study reports the valorization of pistachio shell agricultural waste, aiming to develop an eco-friendly and cost-effective biosorbent for cationic brilliant green (BG) dye adsorption from aqueous media. Pistachio shells were mercerized in an alkaline environment, resulting in the treated adsorbent (PSNaOH). The morphological and structural features of the adsorbent were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and polarized light microscopy. The pseudo-first-order (PFO) kinetic model best described the adsorption kinetics of the BG cationic dye onto PSNaOH biosorbents. In turn, the equilibrium data were best fitted to the Sips isotherm model. The maximum adsorption capacity decreased with temperature (from 52.42 mg/g at 300 K to 46.42 mg/g at 330 K). The isotherm parameters indicated improved affinity between the biosorbent surface and BG molecules at lower temperatures (300 K). The thermodynamic parameters estimated on the basis of the two approaches indicated a spontaneous (ΔG < 0) and exothermic (ΔH < 0) adsorption process. The design of experiments (DoE) and the response surface methodology (RSM) were employed to establish optimal conditions (sorbent dose (SD) = 4.0 g/L and initial concentration (C0) = 10.1 mg/L), yielding removal efficiency of 98.78%. Molecular docking simulations were performed to disclose the intermolecular interactions between the BG dye and lignocellulose-based adsorbent.
Collapse
Affiliation(s)
- Andra-Cristina Enache
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Cojocaru
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Victor Ciornea
- Faculty of Biology and Chemistry, "Ion Creanga" State Pedagogical University, 1 Ion Creangă Street, MD-2069 Chisinau, Moldova
| | - Roxana Apolzan
- SC Cosfel Actual SRL, 95-97 Grivitei Street, 010705 Bucharest, Romania
| | - Georgeta Predeanu
- Research Center for Environmental Protection and Eco-Friendly Technologies (CPMTE), University Politehnica of Bucharest, 1 Polizu Street, 011061 Bucharest, Romania
| | - Valeria Harabagiu
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|