1
|
Li W, Zou H, Zheng Y, Zhang G, Xiang Y, Zhi D, Zhou Y. Microplastics in aquatic environments: detection, abundance, characteristics, and toxicological studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:150. [PMID: 39779524 DOI: 10.1007/s10661-024-13605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Microplastics (MPs) are fragments with a diameter of less than 5 mm that have been directly manufactured or formed by the degradation of plastic waste. MPs are not only prone to bioaccumulation in the environment, but they also lead to the spread of micropollutants in the environment, thereby threatening human health ecological environment. The useful detection method of MPs and understanding their abundance, characteristics and toxicity are great essential for MPs removal and control. This work presented the current methods of MPs' detection, compared the abundance and characteristics of MPs in water, and reviewed MPs' toxicity to organisms. Furthermore, detailed policies intervention for plastics and MPs' mitigation have been focused which delineate for application of science and policy together with scientific evidence. Lastly, this study suggests more attention should be paid to the content of MPs in freshwater and organisms closely related to human life, as well as the toxicological toxicity of MPs in mammals.
Collapse
Affiliation(s)
- Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Huanwei Zou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuguo Zheng
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Guiqiang Zhang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Yujia Xiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Dan Zhi
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Shen M, Li Y, Qin L, Chen X, Ao T, Liang X, Jin K, Dou Y, Li J, Duan X. Distribution and risk assessment of microplastics in a source water reservoir, Central China. Sci Rep 2025; 15:468. [PMID: 39747382 PMCID: PMC11695635 DOI: 10.1038/s41598-024-84894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The current researches on microplastics in different water layers of reservoirs remains limited. This study aims to investigate the microplastics in different water layers within a source water reservoir. Results revealed that the abundance of microplastics ranged from 2.07 n/L to 14.28 n/L (reservoir, water) and 3 to 7.02 n/L (river, water), while varied from 350 to 714 n/kg(dw) (reservoir, sediment) and 299 to 1360 n/kg(dw) (river, sediment). The average abundance in surface, middle, and bottom water were 6.83 n/L, 6.30 n/L, and 6.91 n/L respectively. Transparent fibrous smaller than < 0.5 mm were identified as the predominant fraction with Polypropylene and Polyethylene being the prevalent polymer types. Additionally, the pollution load index, hazard index, and pollution risk index were calculated for different layers and sediments. Results showed that surface water exhibited a moderate level of risk while the sediments posed a low level of risk. Both the middle and bottom water showed elevated levels of risk due to higher concentrations of polymers with significant toxicity indices. This study presents novel findings on the distribution of microplastics in different water layers, providing crucial data support for understanding the migration patterns of microplastics in source water reservoirs and facilitating pollution prevention efforts.
Collapse
Affiliation(s)
- Minghui Shen
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yang Li
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Liwen Qin
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xudong Chen
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Tianyu Ao
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xishu Liang
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Kaibo Jin
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yanyan Dou
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Juexiu Li
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xuejun Duan
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
3
|
Kandaiah R, Ravindran A, Panneerselvan L, Manivannan AC, Kulanthaisamy M, Sobhani Z, Bhagwat-Russell G, Palanisami T. A comprehensive analysis and risk evaluation of microplastics contamination in Australian commercial plant growth substrates: Unveiling the invisible threat. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136310. [PMID: 39486335 DOI: 10.1016/j.jhazmat.2024.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In Australia, quality standards for composts and potting mixes are defined by AS4454-2012 and AS3743-2012. These standards outline key parameters, including physicochemical properties, nutrient content, and plant toxicity. However, they do not address emerging pollutants like microplastics (< 1 mm). This study investigates the prevalence and characteristics of MPs in commercial plant growth substrates (PGS), including nineteen potting mixes and five composts, revealing a significant occurrence of MPs, with concentrations ranging from 233 to 7367 particles Kg-1 and an average of 1869 ± 109 particles Kg-1. MPs categorized by shape, size, and color, with fragments (491 ± 34 particles Kg-1), white colour (3700 ± 917 particles Kg-1), and size 500 µm being predominant. The polymer composition was diverse, with polyethylene being the most prevalent, followed by polypropylene and others. Polyterpene, Polyalkene, Pentaerythritol, and Propylene glycol were identified in PGS for the first time. The structural equation model showed that physicochemical properties like pH, EC, TOC, and heavy metals influence MPs abundance and characteristics. The Polymer Risk Index and Pollution Load Index indicated varying risk levels among the samples. These findings highlight the need to address MPs contamination in PGS to ensure ecosystem safety and human health.
Collapse
Affiliation(s)
- Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Akila Ravindran
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Arun Chandra Manivannan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Mohanrasu Kulanthaisamy
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Zahra Sobhani
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia.
| |
Collapse
|
4
|
Xia W, Rao Q, Liu J, Chen J, Xie P. Occurrence and characteristics of microplastics across the watershed of the world's third-largest river. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135998. [PMID: 39357362 DOI: 10.1016/j.jhazmat.2024.135998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
While rivers as primary conduits for land-based plastic particles transferring to their "ultimate" destination, the ocean, have garnered increasing attention, research on microplastic pollution at the scale of whole large river basins remains limited. Here we conducted a large-scale investigation of microplastic contamination in water and sediment of the world's third-largest river, the Yangtze River. We found concentrations of microplastics in water and sediment to be 5.13 items/L and 113.9 items/kg (dry weight), respectively. Moreover, microplastic pollution levels exhibited a clear decreasing trend from upstream to downstream. The detected microplastics were predominantly transparent in color, with fibrous shapes predominating, sizes mainly concentrated below 1 mm and composed primarily of PP and PE polymers. Our analysis results indicated that compared to geographical and water quality parameters, anthropogenic factors primarily determined the spatial distribution pattern of microplastics. Moreover, the microplastic abundance in sediment upstream of the dam was significantly higher than that in the downstream sediment, while the trend of microplastic concentrations in water was opposite. Therefore, more effort is needed to monitor microplastic contamination and their ecological environmental effects of sediment before dams in future research.
Collapse
Affiliation(s)
- Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qingyang Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
5
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
6
|
Guo Q, Ding C, Meng Q, Shen X, Yang K, Li Z, Chen X, Wang C, Wu J, Yu J, Li X, Liang F. Abundance, characteristics and ecological risks of microplastics from South Yellow Sea Mudflat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175374. [PMID: 39122046 DOI: 10.1016/j.scitotenv.2024.175374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Microplastic (MP) pollution in global marine environments has been extensively reported and attracted significant concerns, but MP distribution in mudflat has rarely been studied. In this paper, the abundance, features and ecological risk of MP in South Yellow Sea Mudflat were investigated comprehensively. MP were both detected in waters (5.4 ± 0.38-11.3 ± 0.78 items/L) and sediments (5.1 ± 0.36-10.1 ± 0.69 items/g) from South Yellow Sea Mudflat. There existed different MP abundance tendencies from sampling Group I (coastal estuary or port) and II (purely coastal mudflat), while MP abundance in water from Group II was lower than that from Group I generally, but MP abundance in sediment from Group I was lower than that from Group II generally. This suggested that MP abundance in mudflat water could be associated with frequent human activities significantly, and disturbance might not be beneficial to MP accumulation in sediments. Fragments, transparent, polyethylene (PE), polypropylene (PP) and polystyrene (PS) were major MP features in mudflat water and sediment, and maximum proportion of size of MP was 0.001-0.25 mm in both water and sediment. Furthermore, the primary risk assessment indicated that MP pollution load for mudflat was low level. However, potential MP ecological risk for mudflat could reach dangerous level to very dangerous level by calculating and evaluating polymer risk index (PRI) and potential ecological risk index (PERI), which could be caused by high proportions of polyvinyl chloride (PVC) and polyacrylonitrile (PAN) with high hazard score. For the first time, reference data about MP pollution from South Yellow Sea Mudflat were supplied in this paper, which would be helpful for management and control of MP in mudflat.
Collapse
Affiliation(s)
- Qingyuan Guo
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| | - Cheng Ding
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| | - Qingqin Meng
- Yancheng Luming Road Junior High School, Yancheng, Jiangsu Province 224051, China
| | - Xiaomei Shen
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Kai Yang
- China MCC5 Group Limited Corporation, Chengdu 610023, China
| | - Zhaoxia Li
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Xiao Chen
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinling Wu
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Li
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Feng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Themba NN, Dondofema F, Cuthbert RN, Munyai LF, Dalu T. Abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2256-2270. [PMID: 39016676 DOI: 10.1002/ieam.4977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Pollution of the natural environment by microplastics has become a global issue in ecosystems as it poses a potential long-term threat to biota. Microplastics can accrue in high abundances in sediments of aquatic ecosystems while also contaminating pelagic filter feeders, which could transfer pollutants up trophic webs. We assess the abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir using a combination of geospatial techniques, physicochemical analyses, diversity indices, and multivariate statistics between two seasons (i.e., hot-wet and cool-dry). We found particularly high densities of microplastics during the cool-dry season for both sediments (mean 224.1 vs. 189 particles kg-1 dry weight) and Cladocera taxa (0.3 particles per individual). Cladocera microplastic shapes were dominated by fibers with high densities of the transparent color scheme. Pearson correlation results indicated that sediment microplastic abundances were negatively correlated with chlorophyll-a concentration, temperature, and resistivity, whereas they were positively correlated with pH and salinity during the hot-wet season, with no variables significant in the cool-dry season. Cladocera microplastic abundances were positively correlated with conductivity and salinity during the cool-dry season, but no variables in the hot-wet season. These findings provide insights into the role of reservoirs as microplastic retention sites and the potential for uptake and transfer from lower trophic groups. These insights can be used to strengthen future monitoring and intervention strategies. Integr Environ Assess Manag 2024;20:2256-2270. © 2024 SETAC.
Collapse
Affiliation(s)
- Nombuso N Themba
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Farai Dondofema
- Aquatic Systems Research Group, Department of Geography and Environmental Science, University of Venda, Thohoyandou, South Africa
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Linton F Munyai
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
8
|
Zhou T, Min R, Yang S, Zhang H, Zhang J, Song S, Zhang G. Distribution of microplastics in Lanzhou section of the Yellow River: Characteristics, ecological risk assessment, and factors analysis. MARINE POLLUTION BULLETIN 2024; 207:116900. [PMID: 39241367 DOI: 10.1016/j.marpolbul.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) is an emerging pollutant that has attracted attention in the environmental field, and the research of MPs in freshwater systems needs to be strengthened. To characterize the MPs in surface water and sediments of the western urban river network, water and sediment samples were collected. The results showed that the abundance of MPs in the water body of the river network ranged from 7 to 172 n/L, whereas the abundance of MPs in the sediments ranged from 7 to 144 n/kg, and the average abundance in the dry season was significantly higher than that in the rainy season. The majority of MPs (83.67 %) were < 1 mm and fibrous. The most commonly identified types of MPs were PET and PP, while the color blue was frequently observed. MPs have the potential to vertically migrate in sediments, with size, shape, density, and hydrodynamic forces being the main factors that contribute to this process. Correlation analysis results revealed that anthropogenic and meteorological factors, including precipitation, atmospheric conditions, and population density, had a discernible impact on the abundance, size, and shape of MPs. The ecological risk of MPs was assessed using the Polymer Hazardous Index (PHI), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI) methods, and the results showed that the overall ecological risk of the Lanzhou section of the Yellow River was low. This study can provide a scientific basis for monitoring and risk assessment of emerging contaminants such as MPs in the river environment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Siyi Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaqian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
9
|
Aydin S, Ulvi A, Aydin ME. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57989-58009. [PMID: 39305415 DOI: 10.1007/s11356-024-35029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
10
|
Li F, Gong Y, Yang X, Jiang Y, Cen Y, Zhang Z. Distribution characteristics and integrated ecological risks evaluation modelling of microplastics and heavy metals in geological high background soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173602. [PMID: 38848909 DOI: 10.1016/j.scitotenv.2024.173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/11/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
The microplastics (MPs), a novel pollutant, and heavy metals (HMs) significantly affect soil ecology. The study investigated HMs and MPs in Qianxi's high geological background soil, established a model for risk evaluation with MPs types and shapes, and proposed a two-dimensional comprehensive index model for MPs-HMs combined pollution and risk evaluation criterion. The results revealed a high soil Cd concentration, with a mean value of 0.38 mg·kg-1. Additionally, soils from soybean-wheat intercropping-potato-corn rotation (SWI-PCR) exhibited significantly higher concentrations of Hg, As, and Pb compared with those from soybean-wheat intercropping-corn rotation (SWI-CR). Moreover, the soil exhibited a high abundance of MPs (8667.66 ± 3864.26 items·kg-1), mainly characterized by PS and fiber. The mean of adjusted ecological risk index (ARI) for MPs in soil was 525.27, indicating a grade 3 risk. The two-dimensional combined index (TPI) was used to assess the ecological risk of MPs-HMs combined pollution, exhibiting an exceedance rate of 56 % with a mean of 445.07. The risk level of the combined pollution was graded as 6, indicating high risk. The microplastic risk evaluation model and the comprehensive evaluation method of combined pollution established in this study provide a reference for the future risk evaluation of multi-pollutant combined pollution.
Collapse
Affiliation(s)
- Fupeng Li
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yufeng Gong
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Xiuyuan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yongcheng Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yunlei Cen
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhenming Zhang
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
11
|
Feng S, Lu H, Xue Y, Liu Y, Li H, Zhou C, Zhang X, Yan P. Occurrence of microplastics in the headwaters of Yellow River on the Tibetan Plateau: Source analysis and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135327. [PMID: 39111180 DOI: 10.1016/j.jhazmat.2024.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
The widespread occurrence of Microplastics (MPs) has aroused increasing concerns. However, the fate of MPs in remote areas remains poorly understood. Here, the spatial distribution, potential sources, and environmental risks of MPs were analyzed in the headstream of the Yellow River on the eastern Tibetan Plateau. The average MP abundances are (464.3 ± 200.9) items /m3 and (63.6 ± 34.7) items /kg in the water and sediment, respectively, with both majority polymer is polypropylene (PP) (water: 28.7 %; sediment: 25.2 %). The structural equation modeling and conditional fragmentation model were used in this study to analyze the source and impact factors of riverine MPs. According to the models, MPs were influenced by water quality parameters and anthropogenic activities. Furthermore, the source analysis through MP characteristics and statistical analysis showed that the main sources of MPs include domestic sewage, plastic waste disposal, and the use of agricultural plastic film. Moreover, the differences in MP sources along the river were distinguished by the conditional fragmentation model. The potential ecological risks of MPs were evaluated, resulting in relatively medium-to-low levels. Our findings will serve as important references for improving the understanding of the plateau environmental impacts of MP distribution in the headwaters of large rivers.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yunlong Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Chaodong Zhou
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Zhang F, Deng Z, Ma L, Gui X, Yang Y, Wang L, Zhao C, Li H. Pollution characteristics and prospective risk of microplastics in the Zhengzhou section of Yellow River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172717. [PMID: 38670371 DOI: 10.1016/j.scitotenv.2024.172717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The ubiquitous occurrence of microplastics (MPs) in the freshwater has attracted widespread attention. The Zhengzhou section of the Yellow River was the most prosperous region in ancient China, and the rapid urbanization, industrialization, and agricultural practices contributed to MPs pollution in aquatic systems recently, whereas the contamination status of MPs in the area is still not available. In this study, a total of fourteen sampling cross-sections were selected in the region to collect water samples systematically for the analysis of MPs pollution characteristics and potential risks. Results showed that abundance of MPs in the water were ranged from 2.33 to 15.50 n/L, with an average value of 6.40 ± 3.40 n/L, which was higher than it in other inland rivers from China. Moreover, the MPs of 0.5-2 mm were the dominant sizes in Yellow River of Zhengzhou region, and most of them were black fibres. The top three polymers were Polyethylene terephthalate (PET), Polyamide (PA) and Polypropylene (PP). High diversity indices of MPs observed at S3, S4, S5, S6, S7, and S8 for size, colour, polymer and shape indicated diverse and complex sources of MPs in those cross-sections. The MPs in water from Zhengzhou area of Yellow River probably degraded from textiles, fishing net, plastic bags, mulching film, packaging bags, and tire wear. The chemical risk assessment revealed a level III risk for study area, while S8 and S11 in which PVA or PAN with higher hazard score detected were categorised as class V risk. Coincidentally, probabilistic risk assessment showed a considerable ecological risk of MPs from Yellow River in Zhengzhou City, with possibility of 99.48 and 98.01 % adverse effect for food dilution and translocation-mediated mechanism, respectively. The results are expected to assistance for development of policies and ultimately combating MPs pollution.
Collapse
Affiliation(s)
- Fawen Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhengyun Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Ma
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xin Gui
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuan Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 4100128, China.
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Changmin Zhao
- Zhengzhou Ecological Environment Monitoring Center of Henan Province, Zhengzhou 450007, China
| | - Hetong Li
- Zhengzhou Ecological Environment Monitoring Center of Henan Province, Zhengzhou 450007, China
| |
Collapse
|
13
|
Shi J, Zhang B, Tang Y, Kong F. Undisclosed contribution of microbial assemblages selectively enriched by microplastics to the sulfur cycle in the large deep-water reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134342. [PMID: 38678705 DOI: 10.1016/j.jhazmat.2024.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.
Collapse
Affiliation(s)
- Jiaxin Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Yang Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China
| |
Collapse
|
14
|
Wan S, Xu G, Xiong P, Qiao H, Chen X, Gu L, Xiong H, Wang B, Gu F. Microplastic pollution characteristics and ecological risk assessment in the Wuding River Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124228. [PMID: 38801879 DOI: 10.1016/j.envpol.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Microplastics (MPs), as a new type of environmental pollutant, have attracted extensive attention in recent years. However, there has been relatively little research specifically focusing on MPs in the Yellow River Basin, China, particularly regarding MP migration patterns. Based on surface water and sediment samples from 19 sampling sites in the Wuding River (WDR), the abundances and characteristic distributions of MPs were analyzed, and the environmental factors affecting their distribution and potential ecological risks were evaluated. The results showed that the MP abundances in surface water and sediments of the WDR were significantly different (P < 0.05), with mean values of 2.98 ± 0.69 items/L and 419.47 ± 75.61 items/kg, respectively. In terms of MP characteristics, the most common size class was 0.1-0.5 mm in surface water. Polyethylene (PE, 32.50%) and polypropylene (PP, 27.50%) were the main polymer types of MPs in surface water. Although similar MP characteristics were observed in sediments, there were significantly more particles in the <0.1 mm particle size (P < 0.05), which was 15.0% higher than in surface water. Also, more high-density MP fragments were observed in sediment samples. The retention of MPs in sediments was influenced by the MP characteristics (density, shape, particle size) and sediment particle size. In contrast, the MP abundance in surface water was more closely related to the presence of other environmental pollutants, such as total phosphorus (WTP) and ammonia nitrogen (WAN). Temperature (T), agricultural land (AGR), and residential land (RES) only had significant effects on the distribution of MPs in surface water (P < 0.05). Potential ecological risk assessments revealed that MP pollution in sediments was more serious than in surface water, especially in the middle and lower reaches. The results of this study are important for understanding MP transport in a sandy river and for eliminating potential sources of MPs.
Collapse
Affiliation(s)
- Shun Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Guoce Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Hailiang Qiao
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Xin Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Liuyang Gu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Haijing Xiong
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Bin Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Fengyou Gu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| |
Collapse
|
15
|
Haque A, Holsen TM, Baki ABM. Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Sci Rep 2024; 14:6006. [PMID: 38472411 PMCID: PMC10933406 DOI: 10.1038/s41598-024-56730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024] Open
Abstract
Rivers are the natural drainage system, transporting anthropogenic wastes and pollution, including microplastics (plastic < 5 mm). In a riverine system, microplastics can enter from different sources, and have spatial variance in concentration, physical and chemical properties, and imposed risk to the ecosystem. This pilot study presents an examination of microplastics in water and sediment samples using a single sample collection from the rural Raquette River, NY to evaluate a hypothesis that distinct locations of the river, such as downstream of a wastewater treatment plant, upstream of a hydro-dam, and river confluence, may be locations of higher microplastics concentration. In general, our results revealed the presence of high microplastic concentrations downstream of the wastewater treatment plant (in sediments), upstream of the hydro dam (both water and sediment), and in the river confluence (water sample), compared to other study sites. Moreover, the risk assessment indicates that even in a rural river with most of its drainage basin comprising forested and agricultural land, water, and sediment samples at all three locations are polluted with microplastics (pollution load index, PLI > 1; PLIzone = 1.87 and 1.68 for water and sediment samples respectively), with risk categories between Levels I and IV ("minor" to "danger"). Overall, the river stands in a "considerable" risk category (PRIzone = 134 and 113 for water and sediment samples respectively). The overall objective of this pilot study was to evaluate our hypothesis and advance our understanding of microplastic dynamics in rural river systems, elucidating their introduction from a point source (wastewater treatment plant), transit through an impediment (hydro-dam), and release into a vital transboundary river (confluence of Raquette-St. Lawrence Rivers).
Collapse
Affiliation(s)
- Addrita Haque
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Abul B M Baki
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
16
|
Mo L, Fu H, Lu Q, Chen S, Liu R, Xiang J, Xing Q, Wang L, Sun K, Li B, Zheng J. Characteristics and ecological risks of microplastic pollution in a tropical drinking water source reservoir in Hainan province, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:451-460. [PMID: 38289156 DOI: 10.1039/d3em00528c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microplastic (<5 mm) pollution has become a pressing environmental concern in recent years. The present study investigated the occurrence characteristics and assessed the ecological risk of microplastics in the surface water and sediment of the Chitian Reservoir, a drinking water source in Hainan province (China). The results indicated that microplastics were detected in the surface water and sediment of the Chitian Reservoir and its surrounding areas. The overall abundance of microplastics in the water was 3.05 ± 1.16 items per L and in the sediment was 0.15 ± 0.06 items per g dry weight, which is relatively low compared to other reservoirs in China. The dominant components of microplastics detected in the Chitian Reservoir were polypropylene (PP), rayon, and polyester. Physical morphology analysis of microplastics showed that fibers with small particle sizes (<1 mm) and white color were the predominant characteristics in both the surface water and sediment. The domestic sewage from surrounding residents and agricultural wastewater may be the primary sources of microplastics in the reservoir. Ecological risk assessment revealed that the overall pollution load index (PLI) in the surface water (0.65) and sediment (0.51) of the Chitian Reservoir and its surrounding area is at a low level. The potential ecological hazards (RI) of microplastics (0.13 to 336.78 in water; 0.23 to 465.93 in sediment) in most sites fall within the scope of level I, but those in a few sites are at level II due to the presence of polyvinyl chloride (PVC). This study enriches the data on microplastic pollution in inland reservoir systems, providing fundamental reference information for future ecotoxicological studies and the management of microplastic pollution control.
Collapse
Affiliation(s)
- Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Hongyu Fu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Qiyuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Sifan Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ruijuan Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jun Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Kexin Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bowen Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
17
|
Li B, Song J, Guan M, Chen Z, Tang B, Long Y, Mao R, Zhao J, Xu W, Zhang Y. With spatial distribution, risk evaluation of heavy metals and microplastics to emphasize the composite mechanism in hyporheic sediments of Beiluo River. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132784. [PMID: 37866143 DOI: 10.1016/j.jhazmat.2023.132784] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
This study aimed to assess the hazardous impacts of heavy metals (HMs) enrichment on the surface of microplastics (MPs) in the hyporheic zone. The present work analyzed the spatial distribution and risk evaluation of HMs (V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb) and MPs and the mechanism of HMs enrichment on MPs in the sediments. The highest rates of contamination were for Cd, Pb, and As. The main types of MPs were fiber, blue, and a size smaller than 500 µm. The lower reaches of the Beiluo River had the most serious HMs and MPs pollution, especially BL-10 (HMs: CF-Cd, 41.91; EF-Cd, 50.87; Igeo-Cd, 4.80; RI, 1291; PN, 29.83; MPs: abundance, 890 ± 18 items/kg). Meanwhile, the principal component analysis showed that natural, industrial activities, and agricultural production and transportation were primary HMs sources in sediments, and Cd, Co, and Pb were the main enriched metals on the surface of MPs. More importantly, regarding the interaction mechanism of these composite pollutants, we concluded that electrostatic adsorption and biofilm mediation were the main mechanisms of the synergistic effect. Overall, our findings provide a theoretical basis for further research on the ecotoxicity of composite pollutants in aquatic environments.
Collapse
Affiliation(s)
- Bingjie Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Yellow River Institute of Shaanxi Province, Northwest University, Xi'an 710127, China.
| | - Mingchang Guan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zeyu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Bin Tang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yongqing Long
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ruichen Mao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiawei Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Wenjin Xu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuting Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
18
|
Yang X, Zhang Z, Zhang J. Study of soil microplastic pollution and influencing factors based on environmental fragility theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165435. [PMID: 37442481 DOI: 10.1016/j.scitotenv.2023.165435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Soil microplastics (MPs) pollution is a global concern, but the distribution of MPs and the factors affecting the distribution of MPs in different ecologically fragile karst areas remain poorly understood. Here, we investigated the spatial distribution, characteristics, and composition of MPs in different ecologically fragile karst areas of Guizhou Province and explored the relationship between ecosystem fragility and MPs. Structural equation models combined with robust random forest (RF) models were used to clarify the effects of karst soil properties on MPs and quantify their relative contributions. The abundance of soil MPs in ecologically fragile karst areas was 2949 item kg-1, and the risk of MPs contamination was highest in medium-fragile areas. The robust RF models precisely predicted the abundance of soil MPs in different fragile areas, and the mean root mean square error and R2 were 0.21 and 0.93, respectively. The contribution of karst soil properties to the abundance of MPs was estimated. Some soil chemical properties had a significant effect (p < 0.05) on MPs pollution in ecologically fragile karst areas. The results of our study suggest that the fragile ecological environment may exacerbate MPs pollution. Our study also contributes to establish a scientific theoretical foundation for the utilization of plastics and the prevention and control of microplastics pollution in karst ecosystems.
Collapse
Affiliation(s)
- Xiuyuan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550004, Guizhou, China.
| |
Collapse
|
19
|
Fatema K, Auditi TI, Biswas S, Ayesha SB, Helal Uddin M, Sumon KA, Goswami C, Bhandari RK, Rashid H. Investigations of hemato-biochemical and histopathological parameters, and growth performance of walking catfish (Clarias batrachus) exposed to PET and LDPE microplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104250. [PMID: 37595935 DOI: 10.1016/j.etap.2023.104250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Fish inhabiting various trophic levels are affected differently as the presence of microplastic (MP) in the water column and their ingestion by fish varies. Walking catfish (Clarias batrachus) inhabits the bottom of the water bodies. To understand the effects of MP, we exposed C. batrachus to two types of MP - polyethylene terephthalate (PET) and low-density polyethylene (LDPE) for 60 days. After exposure, hematological indices, mainly red blood cells and hemoglobin levels decreased, and white blood cells increased significantly compared to the control group (p < 0.05). A significant increase in the levels of blood urea and glucose was observed, and serum glutamic pyruvate transaminase and serum glutamyl oxaloacetic transaminase activity remained elevated (p < 0.05). Histopathological examination of the liver, kidney, intestine, and gills showed morphological alterations. Moreover, MP exposure caused growth retardation (p < 0.05) in C. batrachus. Widespread pollution of water bodies by MP may impose serious ecological risks to bottom-feeding fish in Bangladesh.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; Department of Fisheries Management, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Tasnia Islam Auditi
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shema Biswas
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sumaiya Binte Ayesha
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Helal Uddin
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|