1
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
2
|
Sinahroy A, Kim SH, Chung CM. Predicting membrane fouling in membrane bioreactor systems using viscosity: Impacts of environmental conditions and antifouling agents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122868. [PMID: 39418706 DOI: 10.1016/j.jenvman.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
This study attempted to establish a viscosity-based prediction of membrane fouling. Various factors, including pH, temperature, MLSS concentration, and the addition of NaOCl and citric acid were identified, and their effect on sludge properties such as EPS concentration and wastewater viscosity were estimated. There was a very good correlation between these parameters with EPS concentration and viscosity. The increase in EPS concentration and viscosity significantly affected the membrane flux and filtration time for all the different experimental conditions. However, there were fluctuations in results obtained from experiments related to change in pH, including the addition of antifouling agents NaOCl and citric acid. Such variations accompanied by low correlation in these experiments indicated the influence of pH that may pose difficulty in a viscosity-based estimation of membrane fouling. However, if such large variations in operating conditions could be avoided and the reactor could be operated under optimal conditions, a much better correlation could be obtained between viscosity and membrane fouling. Data from continuously operated MBR systems support this observation, where even a linear equation defining relation between viscosity and transmembrane pressure (TMP) could be obtained. Overall, findings from this study provide a great insight into membrane fouling prediction using viscosity-based methods.
Collapse
Affiliation(s)
- Arindam Sinahroy
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Seung Hui Kim
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Chong Min Chung
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea.
| |
Collapse
|
3
|
Usman M, Vahedi S, Glass S, Filiz V, Ernst M. Elucidating the Mechanism of Electro-Adsorption on Electrically Conductive Ultrafiltration Membranes via Modified Poisson-Boltzmann Equation. MEMBRANES 2024; 14:175. [PMID: 39195427 DOI: 10.3390/membranes14080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Electrically conductive membranes (ECMs) were prepared by coating porous ethylenediamine-modified polyacrylonitrile (PAN-EDA) UF membranes with an ultrathin layer of platinum (Pt) nanoparticles through magnetron sputtering. These ECMs were used in electrofiltration to study the removal of brilliant blue dye from an aqueous solution under positive electrical potentials (0-2.5 V). Negative electrical potentials (-1.0--2.5 V) were also investigated to regenerate the membrane by desorbing the dye from the ECM surface. At +0 V, the EC PAN-EDA membrane adsorbed the dye due to its intrinsic positive charge. Application of -2.0 V resulted in a maximum of 39% desorption of the dye. A modified Poisson-Boltzmann (MPB) model showed that -2.0 V created a repulsive force within the first 24 nm of the membrane matrix, which had a minimal effect on dye ions adsorbed deeper within the membrane, thus limiting the electro-desorption efficiency to 39%. Moreover, increasing positive potentials from +0.5 V to +2.5 V led to increased dye electro-adsorption by 9.5 times, from 132 mg/m2 to 1112 mg/m2 at pH 8 (equivalent to the membrane's isoelectric point). The MBP simulations demonstrated that increasing electro-adsorption loadings are related to increasing attractive force, indicating electro-adsorption induced by attractive force is the dominant mechanism and the role of other mechanisms (e.g., electrochemical oxidation) is excluded. At pH 5, electro-adsorption further increased to 1390 mg/m2, likely due to the additional positive charge of the membrane (zeta potential = 9.2 mV) compared to pH 8. At pH 8, complete desorption of the dye from the ECM surface was achieved with a significant repulsive force at -2.0 V. However, as pH decreased from 8 to 5, the desorption efficiency decreased by 3.9% due to the membrane's positive charge. These findings help elucidate the mechanisms of electro-adsorption and desorption on ECMs using dye as a model for organic compounds like humic acids.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| | - Shahrokh Vahedi
- Institute of Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| | - Sarah Glass
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Mathias Ernst
- Institute of Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| |
Collapse
|
4
|
Yang Q, Wei J, Chen Y, Xu Z, Ma D, Zheng M, Li J. Continuous operation of nano-catalytic ozonation using membrane separation coupling system: Influence factors and mechanism. CHEMOSPHERE 2024; 362:142117. [PMID: 38670501 DOI: 10.1016/j.chemosphere.2024.142117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT = 4 h and nano-MgO dosage = 0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.
Collapse
Affiliation(s)
- Qiong Yang
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianjian Wei
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; , Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co. Ltd, Nanjing, 210036, Jiangsu Province, China
| | - Yili Chen
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhourui Xu
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Dehua Ma
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Min Zheng
- , Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jiansheng Li
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Tehrani MF, Skandari S, Bidhendi GN. Enhancing adsorption capacity of carbon nanotubes through sand filters for the removal of organic pollutants: a column investigation. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39090069 DOI: 10.1080/09593330.2024.2375004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/14/2024] [Indexed: 08/04/2024]
Abstract
Dissolved organic pollutants caused by paints, detergents, herbicides, and toxins cannot be removed by conventional water treatment processes such as filtration. Different figures of activated carbon such as carbon nanotubes (CNTs) are substances to obliterate these contaminants. Although these CNTs have higher ability to decompose organic contaminants, using the slurry form of CNTs is not suitable due to the removal requirement at the end of the treatment procedure. In this study, upgraded CNTs attached to particles of sand filters (CNTsand) were synthesised and applied to remove dissolved organic pollutants. The results revealed the high capacity of the CNTsand to extract organic contaminants. The column test with natural water compared to the distilled water had a more extended breakpoint, higher adsorption capacity, and consequently, further removal efficiency, such that for the surface area loading rate of 4.8 ml/min, the breakpoint increased from 739 minutes to 936 minutes as well as the volume of passed water grew from 3546 ml to 4493 ml; Therefore, the maximum adsorption capacity was enhanced from 67.3 mg/g to 89.5 mg/g. In conclusion, the adequacy and efficiency of the upgraded nanotube coating on sand grains to remove organic pollutants were confirmed.
Collapse
Affiliation(s)
| | - Saeed Skandari
- Department of Environment, University of Tehran, Tehran, Iran
| | | |
Collapse
|
6
|
Mahato P, Arshad F, Palmisano G, Zou L. Immobilized enzymatic membrane surfaces for biocatalytic organics removal and fouling resistance. CHEMOSPHERE 2024; 358:142145. [PMID: 38670514 DOI: 10.1016/j.chemosphere.2024.142145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
This research reported on the immobilization of environmentally friendly enzymes, such as horseradish peroxidase (HRP) and laccase (L), along with the hydrophilic zwitterionic compound l-DOPA on nano-filtration (NF) membranes. This approach introduced biocatalytic membranes, leveraging combined effects between membranes and enzymes. The aim was to systematically assess the efficacy of the enzymatic modified membrane (HRP-NF) in degrading colors in the wastewater, as well as enhancing the membrane resistance toward organic fouling. The enzymatic immobilized membrane demonstrated 96.3 ± 1.8% to 96.6 ± 1.9% removal of colors, and 65.2 ± 1.3% to 67.2 ± 1.3% removal of TOC. This result was underpinned by the insights obtained from the radical scavenger coumarin, which was employed to trap and confirm the formation of PRs through the reaction of enzymes and H2O2. Furthermore, membranes modified with enzymes exhibited significantly improved antifouling properties. The HRP-NF membrane experienced an 8% decline in flux, while the co-immobilized HRP-L-NF membrane demonstrated as low as 6% flux decline, contributed by the synergistic effect of increased hydrophilicity and biocatalytic effects. These findings confirmed that the immobilized enzymatic surface has added function of degrading contaminants in addition to separation function of nanofiltration membrane. These l-DOPA-immobilized enzymatic membranes offered a promising hybrid biocatalytic membrane to eliminate dyes and mitigate membrane fouling, which can be applied in many industrial and domestic water and wastewater treatment.
Collapse
Affiliation(s)
- Prativa Mahato
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fathima Arshad
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical and Petroleum Engineering and Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Linda Zou
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
He Y, Jarvis P, Huang X, Shi B. Unraveling the characteristics of dissolved organic matter removed by aluminum species based on FT-ICR MS analysis. WATER RESEARCH 2024; 255:121429. [PMID: 38503184 DOI: 10.1016/j.watres.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Given the complexity of dissolved organic matter (DOM) and its interactions with coagulant chemicals, the mechanisms of DOM removal by aluminum (Al) coagulants remains a significant unknown. In this study, six test waters containing DOM with molecular weight (MW, <1 kDa, 1-10 kDa and >10 kDa) and hydrophobicity (hydrophilic, transphilic and hydrophobic) were prepared and coagulated with Al0, Al13 and Al30. The molecular-level characteristics of DOM molecules that were removed or resistant to removal by Al species were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that at the molecular level, saturated and reduced tannins and lignin-like compounds containing abundant carboxyl groups exhibited higher coagulation efficiency. Unsaturated and oxidized lipids, protein-like, and carbohydrates compounds were relatively resistant to Al coagulation due to their higher polarity and lower content of carboxyl groups. Al13 removed molecules across a wider range of molecular weights than Al0 and Al30, thus the DOC removal efficiency of Al13 was the highest. This study furthers the understanding of interactions between Al species and DOM, and provides scientific insights on the operation of water treatment plants to improve control of DOM.
Collapse
Affiliation(s)
- Yitian He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Jarvis
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Wang Y, Huang J, Zhang Y, Zhang S, Li L, Pang X. The Design of PAN-Based Janus Membrane with Adjustable Asymmetric Wettability in Wastewater Purification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:417. [PMID: 38255585 PMCID: PMC10817498 DOI: 10.3390/ma17020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
In this paper, an environmentally friendly polyacrylonitrile-based (PAN-based) composite membrane with a Janus structure for wastewater treatment was successfully fabricated. To achieve the optimum adsorption of PAN-based Janus composite membrane, the asymmetric wettability was regulated through electrospinning, resulting in TiO2 modifying PAN as the hydrophilic substrate layer, and PCL gaining a different thickness as the hydrophobic layer. The prepared Janus composite membrane (PAN/TiO2-PCL20) showed excellent oil/water separation performance for diverse surfactant-stabilized oil-in-water emulsions. For n-hexane-in-water emulsion, the permeate flux and separation efficiency reached 1344 L m-2 h-1 and 99.52%, respectively. Even after 20 cycles of separation, it still had outstanding reusability and the separation efficiency remained above 99.15%. Meanwhile, the PAN/TiO2-PCL20 also exhibited an excellent photocatalytic activity, and the removal rate for RhB reached 93.2%. In addition, the research revealed that PAN/TiO2-PCL20 possessed good mechanical property and unidirectional water transfer capability. All results indicated that PAN/TiO2-PCL20 with photocatalysis and oil/water separation performance could be used for practical complex wastewater purification.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Jun Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Ye Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Shiwen Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
9
|
Mallya DS, Yang G, Lei W, Muthukumaran S, Baskaran K. Tuning nanofiltration membrane performance: OH-MoS 2 nanosheet engineering and divalent cation influence on fouling and organic removal. DISCOVER NANO 2023; 18:131. [PMID: 37870641 PMCID: PMC10593713 DOI: 10.1186/s11671-023-03909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Natural organic matter (NOM) present in surface water causes severe organic fouling of nanofiltration (NF) membranes employed for the production of potable water. Calcium (Ca2+) and magnesium (Mg2+) are alkaline earth metals present in natural surface water and severely exacerbate organic fouling owing to their ability to cause charge neutralization, complexation, and bridging of NOM and the membrane surface. Hence, it is of practical significance to engineer membranes with properties suitable for addressing organic fouling in the presence of these cations. This study employed OH-functionalized molybdenum disulphide (OH-MoS2) nanosheets as nanofillers via the interfacial polymerization reaction to engineer NF membranes for enhanced removal of NOM and fouling mitigation performance. At an optimized concentration of 0.010 wt.% of OH-MoS2 nanosheet, the membrane was endowed with higher hydrophilicity, negative charge and rougher membrane morphology which enhanced the pure water permeance by 46.33% from 11.2 to 16.39 L m-2 h-1 bar-1 while bridging the trade-off between permeance and salt selectivity. The fouling performance was evaluated using humic acid (HA) and sodium alginate (SA), which represent the hydrophobic and hydrophilic components of NOM in the presence of 0, 0.5, and 1 mM Ca2+ and Mg2+, respectively, and the performance was benchmarked with control and commercial membranes. The modified membrane exhibited normalized fluxes of 95.09% and 93.26% for HA and SA, respectively, at the end of the 6 h filtration experiments, compared to the control membrane at 89.71% and 74.25%, respectively. This study also revealed that Ca2+ has a more detrimental effect than Mg2+ on organic fouling and NOM removal. The engineered membrane outperformed the commercial and the pristine membranes during fouling tests in the presence of 1 mM Ca2+ and Mg2+ in the feed solution. In summary, this study has shown that incorporating OH-MoS2 nanosheets into membranes is a promising strategy for producing potable water from alternative water sources with high salt and NOM contents.
Collapse
Affiliation(s)
| | - Guoliang Yang
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC, 3220, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC, 3220, Australia
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia
- College of Sport, Health and Engineering, Victoria University, Melbourne, VIC, 3011, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| |
Collapse
|
10
|
Nguyen MD, Donaldson D, Adhikari S, Amini N, Mallya DS, Thomas M, Moon EM, Milne NA. Phosphorus adsorption and organic release from dried and thermally treated water treatment sludge. ENVIRONMENTAL RESEARCH 2023; 234:116524. [PMID: 37390952 DOI: 10.1016/j.envres.2023.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The study investigated water treatment sludge (WTS) as a phosphorus (P) adsorbent and examined the release of organic matter during the P adsorption process. Previous studies indicated that WTS is an effective adsorbent for P but also releases organic matter, which may affect the organoleptic properties of treated water, but no study has characterised organic release and conducted an in-depth study on its behaviours. This study characterised the organic release during the P adsorption process from four different WTS samples. This study also offers results from a 60-day column experiment that indicate that WTS columns effectively removed the majority of P from the 2 mg/L feed solution. The total organic carbon (TOC) release was gradually reduced from 24.9 mg/L on day 1 to stable levels of 4.4 mg/L to 4.1 mg/L from day 22 onwards. After 60 days, when the organic matter was nearly exhausted, WTS columns were still effective in P adsorption from the solution. In addition, the thermal treatment of WTS at different temperatures was investigated to reduce TOC release and increase P adsorption. The results showed that thermal treatment not only minimized TOC release but also enhanced the P adsorption capacity of the sludge. In a 24-h batch experiment, WTS treated at 600 °C showed the highest P adsorption (1.7 mg/g) with negligible TOC release when compared to sludge treated at 500 °C WTS (1.2 mg/g), 700 °C WTS (1.5 mg/g) and dried WTS (0.75 mg/g). However, the release of inorganic compounds slightly increased after thermal treatment. Future studies could focus on determining whether the thermal processing of WTS which can enhance the WTS's adsorption to emerging pollutants like per- and poly-fluoroalkyl substances and other contaminants. The findings of this study could influence the management practices of water authorities and contribute to the water sector's sustainability objectives.
Collapse
Affiliation(s)
- Minh Duc Nguyen
- School of Engineering, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David Donaldson
- School of Life and Environmental Sciences, Waurn Ponds, Victoria, 3216, Australia
| | - Sirjana Adhikari
- School of Engineering, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Negin Amini
- School of Engineering, Deakin University, Waurn Ponds, Victoria, 3216, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, School of Engineering, Deakin University, Australia
| | | | | | - Ellen M Moon
- School of Engineering, Deakin University, Waurn Ponds, Victoria, 3216, Australia; ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, School of Engineering, Deakin University, Australia
| | - Nicholas A Milne
- School of Engineering, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
11
|
Mahmoud AED, Mostafa E. Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. MEMBRANES 2023; 13:789. [PMID: 37755211 PMCID: PMC10538012 DOI: 10.3390/membranes13090789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Water shortages are one of the problems caused by global industrialization, with most wastewater discharged without proper treatment, leading to contamination and limited clean water supply. Therefore, it is important to identify alternative water sources because many concerns are directed toward sustainable water treatment processes. Nanofiltration membrane technology is a membrane integrated with nanoscale particle size and is a superior technique for heavy metal removal in the treatment of polluted water. The fabrication of nanofiltration membranes involves phase inversion and interfacial polymerization. This review provides a comprehensive outline of how nanoparticles can effectively enhance the fabrication, separation potential, and efficiency of NF membranes. Nanoparticles take the form of nanofillers, nanoembedded membranes, and nanocomposites to give multiple approaches to the enhancement of the NF membrane's performance. This could significantly improve selectivity, fouling resistance, water flux, porosity, roughness, and rejection. Nanofillers can form nanoembedded membranes and thin films through various processes such as in situ polymerization, layer-by-layer assembly, blending, coating, and embedding. We discussed the operational conditions, such as pH, temperature, concentration of the feed solution, and pressure. The mitigation strategies for fouling resistance are also highlighted. Recent developments in commercial nanofiltration membranes have also been highlighted.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Esraa Mostafa
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
12
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|