1
|
Al-Jamal WT, Reboredo C, Abdi U, Curci P, Qadadeh R, Alotaibi H, Casettari L, Hatahet T. Biodegradable lipid bilayer-assisted indocyanine green J- aggregates for photothermal therapy: Formulation, in vitro toxicity and in vivo clearance. Int J Pharm 2025; 668:124963. [PMID: 39557180 DOI: 10.1016/j.ijpharm.2024.124963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/08/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Indocyanine green (ICG) J-aggregates (IJA) are a unique form of aggregation that exhibits superior properties to monomeric ICG. Despite their higher photoacoustic (PA) signals for imaging and heating stability during photothermal therapy (PTT), they exhibit low stability under a biological milieu. Our group previously proposed a simple procedure for in-situ preparation of IJA into liposomes, accelerating their formation and optical properties. To comprehend their potential applications, we systematically investigated the effect of the lipid bilayer composition on ICG J-aggregation and stability. Moreover, their in vitro compatibility and photothermal toxicity in monolayers and cancer spheroids, besides their in vivo biodistribution and clearance were evaluated. Our findings revealed the importance of high cholesterol and PEG-lipid content and low charged lipids (∼ 5 mol %) in liposomes to promote a high IJA/ICG ratio and, thus, high heating stability. More importantly, IJA-liposomes revealed high biocompatibility in monolayer and cancer spheroids with efficient photothermal toxicity. Finally, IJA-liposomes were cleared from the body without toxicity. Interestingly, IJA-liposomes mainly showed lower affinity to the liver than monomeric ICG, resulting in higher renal clearance. Overall, our biodegradable IJA-liposomes could be an excellent alternative to gold-based agents suitable for PA imaging and cancer PTT.
Collapse
Affiliation(s)
- Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom.
| | - Cristian Reboredo
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom
| | - Ubah Abdi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom
| | - Pia Curci
- School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n°06, 61029 Urbino, PU, Italy
| | - Raghed Qadadeh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom
| | - Hamoud Alotaibi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; Department of Pharmaceutics, College of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Luca Casettari
- School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n°06, 61029 Urbino, PU, Italy
| | - Taher Hatahet
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; China Medical University and Queen's University Joint College, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Shabanpour Y, Hajipour-Verdom B, Abdolmaleki P, Alipour M. Protein-free domains in native and ferroptosis-driven oxidized cell membranes: a molecular dynamics study of biophysical properties and doxorubicin uptake. Front Mol Biosci 2024; 11:1494257. [PMID: 39611002 PMCID: PMC11602475 DOI: 10.3389/fmolb.2024.1494257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Ferroptosis is a regulated form of cell death characterized by iron-dependent lipid peroxidation of polyunsaturated fatty acids (PUFAs). Despite its significance, the precise molecular mechanisms underlying ferroptosis remain elusive, particularly concerning their impact on membrane properties. This study aimed to investigate the biophysical changes in plasma membranes due to lipid peroxidation during ferroptosis and their impact on the uptake of doxorubicin (DOX), a potent anticancer agent linked to ferroptosis. Using all-atom molecular dynamics simulations, we compared native red blood cell membranes (protein-free domains) with a ferroptosis model, in which PUFAs were replaced with hydroperoxide derivatives. Our findings reveal that the ferroptotic membrane exhibits decreased thickness and increased lipid area while maintaining overall integrity. The hydroperoxide groups localized in the disordered tail regions, enhancing tail mobility and facilitating hydrogen bonding. Lipid lateral diffusion was significantly altered, both layers of the ferroptotic membrane exhibited slower diffusion rates compared to the native membrane. Furthermore, lipid oxidation affected diffusion activation energies. Importantly, we found that DOX could penetrate the oxidized ferroptosis membrane with a lower free-energy barrier (∆GPB) of approximately 38 kJ.mol-1. Consequently, DOX's permeability was approximately seven orders of magnitude higher than that of the native membrane. In summary, lipid peroxidation during ferroptosis induces extensive structural and dynamic changes, influencing membrane behavior and potentially offering insights that could inform future therapeutic strategies.
Collapse
Affiliation(s)
- Yaser Shabanpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhgan Alipour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Uren RT, Ritchie ME, Wong AW, Ludeman JP, Uno E, Narayana VK, De Souza DP, Sviridov D, Kluck RM. A lipid signature of BAK-driven apoptotic pore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618570. [PMID: 39463966 PMCID: PMC11507859 DOI: 10.1101/2024.10.16.618570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Apoptotic cell death is regulated by the BCL-2 protein family, with clusters of BAK or BAX homodimers driving pore formation in the mitochondrial outer membrane via a poorly understood process. There is growing evidence that, in addition to BAK and BAX, lipids play an important role in pore formation. Towards a better understanding of the lipidic drivers of apoptotic pore formation in isolated mitochondria, two complementary approaches were taken. Firstly, the lipids released during BAK-mediated pore formation were measured with targeted lipidomics, revealing enrichment of long chain polyunsaturated lysophospholipids (LPLs) in the released fraction. In contrast, the BAK protein was not released suggesting that BAK and LPLs locate to distinct microdomains. Secondly, added cholesterol not only prevented pore formation but prevented the clustering of BAK homodimers. Our data lead us to a model in which BAK clustering triggers formation of a separate microdomain rich in LPLs that can progress to lipid shedding and the opening of a lipid-lined pore. Pore stabilisation and growth may be due to BAK dimers then moving to the pore edge. Our BAK-lipid microdomain model supports the heterogeneity of BAK assemblies, and the observed lipid-release signature gives new insight into the genesis of the apoptotic pore.
Collapse
|
4
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Keshavarzi A, Asi Shirazi A, Korfanta R, Královič N, Klacsová M, Martínez JC, Teixeira J, Combet S, Uhríková D. Thermodynamic and Structural Study of Budesonide-Exogenous Lung Surfactant System. Int J Mol Sci 2024; 25:2990. [PMID: 38474237 PMCID: PMC10931555 DOI: 10.3390/ijms25052990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant's lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide-enriched Curosurf®.
Collapse
Affiliation(s)
- Atoosa Keshavarzi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Ali Asi Shirazi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Rastislav Korfanta
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Nina Královič
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | | | - José Teixeira
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| |
Collapse
|
6
|
Okayama A, Hoshino T, Wada K, Takahashi H. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers. Chem Phys Lipids 2024; 259:105376. [PMID: 38325710 DOI: 10.1016/j.chemphyslip.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Membrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H2O and D2O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/cholesterol bilayer has a better barrier property than the other two systems. Compared to cholesterol, the effects of lanosterol and 7β-hydroxycholesterol on lipid bilayer properties can be interpreted as suboptimal for the function of mammalian biomembranes.
Collapse
Affiliation(s)
- Ayumi Okayama
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuya Hoshino
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Kohei Wada
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan.
| |
Collapse
|
7
|
Paba C, Dorigo V, Senigagliesi B, Tormena N, Parisse P, Voitchovsky K, Casalis L. Lipid bilayer fluidity and degree of order regulates small EVs adsorption on model cell membrane. J Colloid Interface Sci 2023; 652:1937-1943. [PMID: 37690301 DOI: 10.1016/j.jcis.2023.08.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
Small extracellular vesicles (sEVs) are known to play an important role in the communication between distant cells and to deliver biological information throughout the body. To date, many studies have focused on the role of sEVs characteristics such as cell origin, surface composition, and molecular cargo on the resulting uptake by the recipient cell. Yet, a full understanding of the sEV fusion process with recipient cells and in particular the role of cell membrane physical properties on the uptake are still lacking. Here we explore this problem using sEVs from a cellular model of triple-negative breast cancer fusing to a range of synthetic planar lipid bilayers both with and without cholesterol, and designed to mimic the formation of 'raft'-like nanodomains in cell membranes. Using time-resolved Atomic Force Microscopy we were able to track the sEVs interaction with the different model membranes, showing the process to be strongly dependent on the local membrane fluidity. The strongest interaction and fusion is observed over the less fluid regions, with sEVs even able to disrupt ordered domains at sufficiently high cholesterol concentration. Our findings suggest the biophysical characteristics of recipient cell membranes to be crucial for sEVs uptake regulation.
Collapse
Affiliation(s)
- Carolina Paba
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | | | | | - Nicolò Tormena
- Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom
| | - Pietro Parisse
- Elettra Sincrotrone Trieste, 34149 Basovizza TS, Italy; IOM-CNR, 34149 Basovizza TS, Italy.
| | - Kislon Voitchovsky
- Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
8
|
Borges-Araújo L, Borges-Araújo AC, Ozturk TN, Ramirez-Echemendia DP, Fábián B, Carpenter TS, Thallmair S, Barnoud J, Ingólfsson HI, Hummer G, Tieleman DP, Marrink SJ, Souza PCT, Melo MN. Martini 3 Coarse-Grained Force Field for Cholesterol. J Chem Theory Comput 2023; 19:7387-7404. [PMID: 37796943 DOI: 10.1021/acs.jctc.3c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Cholesterol plays a crucial role in biomembranes by regulating various properties, such as fluidity, rigidity, permeability, and organization of lipid bilayers. The latest version of the Martini model, Martini 3, offers significant improvements in interaction balance, molecular packing, and inclusion of new bead types and sizes. However, the release of the new model resulted in the need to reparameterize many core molecules, including cholesterol. Here, we describe the development and validation of a Martini 3 cholesterol model, addressing issues related to its bonded setup, shape, volume, and hydrophobicity. The proposed model mitigates some limitations of its Martini 2 predecessor while maintaining or improving the overall behavior.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tugba Nur Ozturk
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Daniel P Ramirez-Echemendia
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Balázs Fábián
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Timothy S Carpenter
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jonathan Barnoud
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- CiTIUS Intelligent Technologies Research Centre, University of Santiago de Compostela, Rúa de Jenaro de la Fuente, 15705 Santiago de Compostela, Spain
| | - Helgi I Ingólfsson
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
Wang X, Xu S, Cohen FS, Zhang J, Cai Y. Mimicking effects of cholesterol in lipid bilayer membranes by self-assembled amphiphilic block copolymers. SOFT MATTER 2023; 19:5487-5501. [PMID: 37434554 PMCID: PMC11239197 DOI: 10.1039/d3sm00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The effect of cholesterol on biological membranes is important in biochemistry. In this study, a polymer system is used to simulate the consequences of varying cholesterol content in membranes. The system consists of an AB-diblock copolymer, a hydrophilic homopolymer hA, and a hydrophobic rigid homopolymer C, corresponding to phospholipid, water, and cholesterol, respectively. The effect of the C-polymer content on the membrane is studied within the framework of a self-consistent field model. The results show that the liquid-crystal behavior of B and C has a great influence on the chemical potential of cholesterol in bilayer membranes. The effects of the interaction strength between components, characterized by the Flory-Huggins parameters and the Maier-Saupe parameter, were studied. Some consequences of adding a coil headgroup to the C-rod are presented. Results of our model are compared to experimental findings for cholesterol-containing lipid bilayer membranes.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences (CMCS), Global Health Research Center (GHRC), Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu, China
| | - Fredric S Cohen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Jiwei Zhang
- School of Mathematics and Statistics, and Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China.
| | - Yongqiang Cai
- School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal University, 100875 Beijing, China.
| |
Collapse
|
10
|
Aghaaminiha M, Farnoud AM, Sharma S. Interdependence of cholesterol distribution and conformational order in lipid bilayers. Biointerphases 2023; 18:2887740. [PMID: 37125848 DOI: 10.1116/6.0002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
We show, via molecular simulations, that not only does cholesterol induce a lipid order, but the lipid order also enhances cholesterol localization within the lipid leaflets. Therefore, there is a strong interdependence between these two phenomena. In the ordered phase, cholesterol molecules are predominantly present in the bilayer leaflets and orient themselves parallel to the bilayer normal. In the disordered phase, cholesterol molecules are mainly present near the center of the bilayer at the midplane region and are oriented orthogonal to the bilayer normal. At the melting temperature of the lipid bilayers, cholesterol concentration in the leaflets and the bilayer midplane is equal. This result suggests that the localization of cholesterol in the lipid bilayers is mainly dictated by the degree of ordering of the lipid bilayer. We validate our findings on 18 different lipid bilayer systems, obtained from three different phospholipid bilayers with varying concentrations of cholesterol. To cover a large temperature range in simulations, we employ the Dry Martini force field. We demonstrate that the Dry and the Wet Martini (with polarizable water) force fields produce comparable results.
Collapse
Affiliation(s)
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| |
Collapse
|
11
|
Sveeggen TM, Abbey CA, Smith RL, Salinas ML, Chapkin RS, Bayless KJ. Annexin A2 modulates phospholipid membrane composition upstream of Arp2 to control angiogenic sprout initiation. FASEB J 2023; 37:e22715. [PMID: 36527391 PMCID: PMC10586062 DOI: 10.1096/fj.202201088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.
Collapse
Affiliation(s)
- Timothy M. Sveeggen
- Texas A&M Health Science Center, Texas, Bryan, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
12
|
Braithwaite IM, Davis JH. Orientation of Cholesterol in Polyunsaturated Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15804-15816. [PMID: 36480923 DOI: 10.1021/acs.langmuir.2c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The local normal to the fluid liquid crystalline phase of the lipid membrane is an axis of motional symmetry for the molecules that make up the bilayer. The presence of cholesterol in the membrane increases not only the lipid hydrocarbon chain order but also the strength of the membrane's orienting potential. Cholesterol undergoes rapid reorientation about a diffusion axis that is roughly aligned with the long molecular axis, but there is also a slower reorientation of the diffusion axis, or "wobble", relative to the local bilayer normal. The extent of this second, slower motion depends on the degree of order of the lipids that make up the bilayer. We use 2H nuclear magnetic resonance of deuterium-labeled cholesterol to investigate quantitatively the effect of lipid chain unsaturation on cholesterol orientation in a series of phospholipid bilayers. We find that the hydrocarbon chains in membranes composed of polyunsaturated lipids are much more highly disordered than those in membranes composed of saturated lipids but that cholesterol remains aligned roughly along the bilayer normal.
Collapse
Affiliation(s)
| | - James H Davis
- Department of Physics, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
13
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
14
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
15
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
16
|
Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res 2022; 87:101166. [PMID: 35513161 PMCID: PMC9059347 DOI: 10.1016/j.plipres.2022.101166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023]
Abstract
The role of cholesterol in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronavirus-host cell interactions is currently being discussed in the context of two main scenarios: i) the presence of the neutral lipid in cholesterol-rich lipid domains involved in different steps of the viral infection and ii) the alteration of metabolic pathways by the virus over the course of infection. Cholesterol-enriched lipid domains have been reported to occur in the lipid envelope membrane of the virus, in the host-cell plasma membrane, as well as in endosomal and other intracellular membrane cellular compartments. These membrane subdomains, whose chemical and physical properties distinguish them from the bulk lipid bilayer, have been purported to participate in diverse phenomena, from virus-host cell fusion to intracellular trafficking and exit of the virions from the infected cell. SARS-CoV-2 recruits many key proteins that participate under physiological conditions in cholesterol and lipid metabolism in general. This review analyses the status of cholesterol and lipidome proteins in SARS-CoV-2 infection and the new horizons they open for therapeutic intervention.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
17
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
18
|
de Santis A, Scoppola E, Ottaviani MF, Koutsioubas A, Barnsley LC, Paduano L, D’Errico G, Russo Krauss I. Order vs. Disorder: Cholesterol and Omega-3 Phospholipids Determine Biomembrane Organization. Int J Mol Sci 2022; 23:5322. [PMID: 35628128 PMCID: PMC9140907 DOI: 10.3390/ijms23105322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid structural diversity strongly affects biomembrane chemico-physical and structural properties in addition to membrane-associated events. At high concentrations, cholesterol increases membrane order and rigidity, while polyunsaturated lipids are reported to increase disorder and flexibility. How these different tendencies balance in composite bilayers is still controversial. In this study, electron paramagnetic resonance spectroscopy, small angle neutron scattering, and neutron reflectivity were used to investigate the structural properties of cholesterol-containing lipid bilayers in the fluid state with increasing amounts of polyunsaturated omega-3 lipids. Either the hybrid 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine or the symmetric 1,2-docosahexaenoyl-sn-glycero-3-phosphocholine were added to the mixture of the naturally abundant 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and cholesterol. Our results indicate that the hybrid and the symmetric omega-3 phospholipids affect the microscopic organization of lipid bilayers differently. Cholesterol does not segregate from polyunsaturated phospholipids and, through interactions with them, is able to suppress the formation of non-lamellar structures induced by the symmetric polyunsaturated lipid. However, this order/disorder balance leads to a bilayer whose structural organization cannot be ascribed to either a liquid ordered or to a canonical liquid disordered phase, in that it displays a very loose packing of the intermediate segments of lipid chains.
Collapse
Affiliation(s)
- Augusta de Santis
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Ernesto Scoppola
- Max Planck Institut für Kolloid und Grenzflächenforschung, 14476 Potsdam, Germany;
| | | | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
| | - Lester C. Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| |
Collapse
|
19
|
Coleman PS, Parlo RA. Cancer’s Camouflage — Microvesicle Shedding from Cholesterol-Rich Tumor Plasma Membranes Might Blindfold First-Responder Immunosurveillance Strategies. Eur J Cell Biol 2022; 101:151219. [DOI: 10.1016/j.ejcb.2022.151219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022] Open
|
20
|
Abstract
![]()
We extend the modular AMBER lipid
force field to include anionic
lipids, polyunsaturated fatty acid (PUFA) lipids, and sphingomyelin,
allowing the simulation of realistic cell membrane lipid compositions,
including raft-like domains. Head group torsion parameters are revised,
resulting in improved agreement with NMR order parameters, and hydrocarbon
chain parameters are updated, providing a better match with phase
transition temperature. Extensive validation runs (0.9 μs per
lipid type) show good agreement with experimental measurements. Furthermore,
the simulation of raft-like bilayers demonstrates the perturbing effect
of increasing PUFA concentrations on cholesterol molecules. The force
field derivation is consistent with the AMBER philosophy, meaning
it can be easily mixed with protein, small molecule, nucleic acid,
and carbohydrate force fields.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ross C Walker
- GlaxoSmithKline PLC, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ian R Gould
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| |
Collapse
|
21
|
Song ES, Oh Y, Sung BJ. Interdomain exchange and the flip-flop of cholesterol in ternary component lipid membranes and their effects on heterogeneous cholesterol diffusion. Phys Rev E 2021; 104:044402. [PMID: 34781553 DOI: 10.1103/physreve.104.044402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Cell membranes are heterogeneous with a variety of lipids, cholesterol, and proteins and are composed of domains of different compositions. Such heterogeneous environments make the transport of cholesterol complicated: cholesterol not only diffuses within a particular domain but also travels between domains. Cholesterol also flip-flops between upper and lower leaflets such that cholesterol may reside both within leaflets and in the central region between two leaflets. How the presence of multiple domains and the interdomain exchange of cholesterol would affect the cholesterol transport, however, remains elusive. In this study, therefore, we perform molecular dynamics simulations up to 100μs for ternary component lipid membranes, which consist of saturated lipids (dipalmitoylphosphatidylcholine, DPPC), unsaturated lipids (dilinoleylphosphatidylcholine, DIPC), and cholesterol. The ternary component membranes in our simulations form two domains readily: DPPC and DIPC domains. We find that the diffusion of cholesterol molecules is much more heterogeneous and non-Gaussian than expected for binary component lipid membranes of lipids and cholesterol. The non-Gaussian parameter of the cholesterol molecules is about four times larger in the ternary component lipid membranes than in the binary component lipid membranes. Such non-Gaussian and heterogeneous transport of cholesterol arises from the interplay among the interdomain kinetics, the different diffusivity of cholesterol in different domains, and the flip-flop of cholesterol. This suggests that in cell membranes that consist of various domains and proteins, the cholesterol transport can be very heterogeneous. We also find that the mechanism of the interdomain exchange differs for different domains: cholesterol tends to exit the DIPC domain along the central region of the membrane for the DIPC-to-DPPC transition, while the cholesterol is likely to exit the DPPC domain within the membrane leaflet for the DPPC-to-DIPC transition. Also, the interdomain exchange kinetics of cholesterol for the DPPC-to-DIPC transition is up to 7.9 times slower than the DIPC-to-DPPC transition.
Collapse
Affiliation(s)
- Eun Sub Song
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Younghoon Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
22
|
Loureiro JA, Andrade S, Ramalho MJ, Oliveira N, Pereira MC. The interaction of a β2 adrenoceptor agonist drug with biomimetic cell membrane models: The case of terbutaline sulphate. Life Sci 2021; 285:119992. [PMID: 34592235 DOI: 10.1016/j.lfs.2021.119992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Terbutaline sulphate (TS) is a selective short-acting β2 adrenoceptor agonist used for asthma treatment. The pharmacological activity of TS depends on its binding to the transmembrane protein, β2 adrenoceptor. Thus, the interactions of this drug with biological membranes are expected, affecting its pharmacological activity. Using in vitro models to study the interaction of TS with biological membranes can provide important information about the activity of the drug. Here, liposomes with different lipid compositions were used as biomimetic models of cell membranes to evaluate the effect of composition, complexity, and physical state of membranes on TS-membrane interactions. For that, liposomes containing dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and liposomes containing DMPC and cholesterol (CHOL) were prepared. For the study of TS-membrane interactions, the TS lipophilicity was evaluated in terms of i) partition coefficient; ii) the preferential location of the drug within the membrane; iii) and the effect of TS on the membrane fluidity. The obtained data suggest that TS has an affinity for the lipid membrane, partitioning from the aqueous to the lipid phase. The affinity was dependent on the liposomes' compositions, showing a greater affinity for DMPC membranes than for DMPC:CHOL model. Dynamic light scattering (DLS) results revealed that this is due to the rigidizing effect caused by CHOL molecules. These findings provide valuable insights in the understanding of the complex interaction of TS with biomembrane models as well as the relevance of lipid compositions and membrane structure in such interactions, which may be related to its pharmacological activity and side effects.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Stephanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
23
|
The role of cholesterol recognition (CARC/CRAC) mirror codes in the allosterism of the human organic cation transporter 2 (OCT2, SLC22A2). Biochem Pharmacol 2021; 194:114840. [PMID: 34774844 DOI: 10.1016/j.bcp.2021.114840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022]
Abstract
The human organic cation transporter 2 (OCT2) is a multispecific transporter with cholesterol-dependent allosteric features. The present work elucidates the role of evolutionarily conserved cholesterol recognition/interaction amino acid consensus sequences (CRAC and CARC) in the allosteric binding to 1-methyl-4-phenylpyridinium (MPP+) in human embryonic kidney 293 cells stably or transiently expressing OCT2. Molecular blind simulations docked two mirroring cholesterol molecules in the 5th putative transmembrane domain, where a CARC and a CRAC sequence lie. The impact of the conserved amino acids that may constitute the CARC/CRAC mirror code was studied by alanine-scanning mutagenesis. At a saturating extracellular concentration of substrate, at which the impact of cholesterol depletion is maximal, five mutants transported MPP+ at a significantly lower rate than the wild-type OCT2 (WT), resembling the behavior of the WT upon cholesterol depletion. MPP+ influx rate as a function of the extracellular concentration of substrate was measured for the mutants R234A, R235A, L252A and R263A. R234A kinetic behavior was similar to that of the WT, whereas R235A, L252A and R263A activity shifted from allosteric to one-binding site kinetics, very much like the WT upon cholesterol depletion. The impact of cholesterol on protein thermal stability was assessed for WT, R234A and R263A. While the thermal stability of WT and R234A was improved by the supplementation with cholesterol, R263A was not sensitive to the presence of cholesterol. To conclude, the disruption of the CARC/CRAC mirror code in the 5th putative transmembrane domain is sufficient to abolish the allosteric interaction between OCT2 and MPP+.
Collapse
|
24
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
25
|
Smith P, Lorenz CD. LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations. J Chem Theory Comput 2021; 17:5907-5919. [PMID: 34450002 DOI: 10.1021/acs.jctc.1c00447] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations are now widely used to study emergent phenomena in lipid membranes with complex compositions. Here, we present LiPyphilic-a fast, fully tested, and easy-to-install Python package for analyzing such simulations. Analysis tools in LiPyphilic include the identification of cholesterol flip-flop events, the classification of local lipid environments, and the degree of interleaflet registration. LiPyphilic is both force field- and resolution-agnostic, and by using the powerful atom selection language of MDAnalysis, it can handle membranes with highly complex compositions. LiPyphilic also offers two on-the-fly trajectory transformations to (i) fix membranes split across periodic boundaries and (ii) perform nojump coordinate unwrapping. Our implementation of nojump unwrapping accounts for fluctuations in the box volume under the NPT ensemble-an issue that most current implementations have overlooked. The full documentation of LiPyphilic, including installation instructions and links to interactive online tutorials, is available at https://lipyphilic.readthedocs.io/en/latest.
Collapse
Affiliation(s)
- Paul Smith
- Department of Physics, King's College London, London WC2R 2LS, U.K
| | | |
Collapse
|
26
|
Interfacial hydration determines orientational and functional dimorphism of sterol-derived Raman tags in lipid-coated nanoparticles. Proc Natl Acad Sci U S A 2021; 118:2105913118. [PMID: 34389679 DOI: 10.1073/pnas.2105913118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipid-coated noble metal nanoparticles (L-NPs) combine the biomimetic surface properties of a self-assembled lipid membrane with the plasmonic properties of a nanoparticle (NP) core. In this work, we investigate derivatives of cholesterol, which can be found in high concentrations in biological membranes, and other terpenoids, as tunable, synthetic platforms to functionalize L-NPs. Side chains of different length and polarity, with a terminal alkyne group as Raman label, are introduced into cholesterol and betulin frameworks. The synthesized tags are shown to coexist in two conformations in the lipid layer of the L-NPs, identified as "head-out" and "head-in" orientations, whose relative ratio is determined by their interactions with the lipid-water hydrogen-bonding network. The orientational dimorphism of the tags introduces orthogonal functionalities into the NP surface for selective targeting and plasmon-enhanced Raman sensing, which is utilized for the identification and Raman imaging of epidermal growth factor receptor-overexpressing cancer cells.
Collapse
|
27
|
Ristovski M, Farhat D, Bancud SEM, Lee JY. Lipid Transporters Beam Signals from Cell Membranes. MEMBRANES 2021; 11:562. [PMID: 34436325 PMCID: PMC8399137 DOI: 10.3390/membranes11080562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.
Collapse
Affiliation(s)
- Miliça Ristovski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Biomedical Sciences Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Shelly Ellaine M. Bancud
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
| |
Collapse
|
28
|
Oh Y, Song ES, Sung BJ. The effects of the lipid type on the spatial arrangement and dynamics of cholesterol in binary component lipid membranes. J Chem Phys 2021; 154:135101. [PMID: 33832232 DOI: 10.1063/5.0043212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intermolecular interactions between cholesterol and lipids in cell membranes, which play critical roles in cellular processes such as the formation of nano-domains, depend on the molecular structure of the lipids. The diffusion and the spatial arrangement of cholesterol within the lipid membranes also change with the type of lipids. For example, the flip-flop, an important transport mechanism for cholesterol in the membranes, can be facilitated significantly by the presence of unsaturated lipids. However, how the structure of lipids affects the spatial arrangement and the dynamics of cholesterol remains elusive at a molecular level. In this study, we investigate the effects of lipid-cholesterol interactions on the spatial arrangement and the dynamics of cholesterol. We perform molecular dynamics simulations for the binary component membranes of lipids and cholesterol. We employ seven different kinds of lipids by changing either the degree of a saturation level or the length of lipid tails. We find from our simulations that the rate of cholesterol flip-flop is enhanced as the lipids are either less saturated or shorter, which is consistent with previous studies. Interestingly, when the lipid tails are fully saturated and sufficiently long, the center in between two leaflets becomes metastable for cholesterol to stay at. Because the cholesterol at the membrane center diffuses faster than that within leaflets, regardless of the lipid type, such an emergence of the metastable state (in terms of the cholesterol position) complicates the cholesterol diffusion significantly.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Eun Sub Song
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
29
|
Pattnaik GP, Chakraborty H. Cholesterol: A key player in membrane fusion that modulates the efficacy of fusion inhibitor peptides. VITAMINS AND HORMONES 2021; 117:133-155. [PMID: 34420578 DOI: 10.1016/bs.vh.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interaction of cholesterol with the neighboring lipids modulates several physical properties of the membrane. Mostly, it affects membrane fluidity, membrane permeability, lateral diffusion of lipids, bilayer thickness, and water penetration into the lipid bilayer. Due to the smaller head group to hydrophobic cross-sectional area of the tail, cholesterol induces intrinsic negative curvature to the membrane. The interaction of cholesterol with sphingolipids forms lipid rafts; generates phase separation in the membrane. The cholesterol-dependent modifications of membrane physical properties modulate viral infections by affecting the fusion between viral and host cell membranes. Cholesterol demonstrates a strong impact on the structure, depth of penetration, conformation, and organization of fusion peptides in membrane milieu. Further, cholesterol has been implicated to modify the fusion inhibitory efficiency of peptide-based membrane fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha, India; Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Burla, Odisha, India.
| |
Collapse
|
30
|
Alvira-Iraizoz F, Gillard BT, Lin P, Paterson A, Pauža AG, Ali MA, Alabsi AH, Burger PA, Hamadi N, Adem A, Murphy D, Greenwood MP. Multiomic analysis of the Arabian camel (Camelus dromedarius) kidney reveals a role for cholesterol in water conservation. Commun Biol 2021; 4:779. [PMID: 34163009 PMCID: PMC8222267 DOI: 10.1038/s42003-021-02327-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/06/2021] [Indexed: 02/05/2023] Open
Abstract
The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.
Collapse
Affiliation(s)
- Fernando Alvira-Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Mahmoud A Ali
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, AL Ain, United Arab Emirates
| | - Ammar H Alabsi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pamela A Burger
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, AL Ain, United Arab Emirates.
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
31
|
Zhang H, Zhao W, Li X, He Y. Cholesterol Metabolism as a Potential Therapeutic Target and a Prognostic Biomarker for Cancer Immunotherapy. Onco Targets Ther 2021; 14:3803-3812. [PMID: 34188488 PMCID: PMC8232957 DOI: 10.2147/ott.s315998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Checkpoint-based immunotherapies, such as programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors, have shown promising clinical outcomes in many types of cancers. Unfortunately, the response rate of immune checkpoint inhibitors is low. It is very important to discover novel therapeutic targets and prognostic biomarkers. Cholesterol metabolism has been demonstrated to be related to the occurrence and development of a variety of tumors and may provide a new breakthrough in the development of immunotherapy. First of all, cholesterol metabolism in the tumor microenvironment affects the function of tumor-infiltrating immune cells. In addition, intracellular cholesterol homeostasis is an important regulator of immune cell function. Furthermore, drugs that act on cholesterol metabolism affect the efficacy of immunotherapy. What is more, peripheral blood cholesterol level can be a biomarker to predict the efficacy of immunotherapy. In this review, we aimed to explore the potential role of cholesterol metabolism on immunotherapy. By summarizing the major findings of recent preclinical and clinical studies on cholesterol metabolism in immunotherapy, we suggested that cholesterol metabolism could be a potential therapeutic target and a prognostic biomarker for immunotherapy.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
32
|
Rowlands LJ, Marks A, Sanderson JM, Law RV. 17O NMR spectroscopy as a tool to study hydrogen bonding of cholesterol in lipid bilayers. Chem Commun (Camb) 2021; 56:14499-14502. [PMID: 33150883 DOI: 10.1039/d0cc05466f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol is a crucial component of biological membranes and can interact with other membrane components through hydrogen bonding. NMR spectroscopy has been used previously to investigate this bonding, however this study represents the first 17O NMR spectroscopy study of isotopically enriched cholesterol. We demonstrate the 17O chemical shift is dependent on hydrogen bonding, providing a novel method for the study of cholesterol in bilayers.
Collapse
Affiliation(s)
- Lucy J Rowlands
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | | | | | | |
Collapse
|
33
|
Kinnun JJ, Scott HL, Ashkar R, Katsaras J. Biomembrane Structure and Material Properties Studied With Neutron Scattering. Front Chem 2021; 9:642851. [PMID: 33987167 PMCID: PMC8110834 DOI: 10.3389/fchem.2021.642851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure–function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - John Katsaras
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States.,Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
34
|
Pattnaik GP, Chakraborty H. Fusogenic Effect of Cholesterol Prevails over the Inhibitory Effect of a Peptide-Based Membrane Fusion Inhibitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3477-3489. [PMID: 33689373 DOI: 10.1021/acs.langmuir.1c00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane fusion is the primary step in the entry of enveloped viruses into the host cell. Membrane composition modulates the membrane fusion by changing the organization dynamics of the fusion proteins, peptides, and membranes. The asymmetric lipid compositions of the viral envelope and the host cell influence the membrane fusion. Cholesterol is an important constituent of mammalian cells and plays a vital role in the entry of several viruses. In our pursuit of developing peptide-based general fusion inhibitors, we have previously shown that a coronin 1-derived peptide, TG-23, inhibited polyethylene glycol-induced fusion between symmetric membranes without cholesterol. In this work, we have studied the effect of TG-23 on the polyethylene glycol-mediated fusion between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (50/30/10/10 mol %) membranes and between DOPC/DOPE/DOPG (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (40/30/10/20 mol %) membranes. Our results demonstrate that the TG-23 peptide inhibited the fusion between membranes containing 0 and 10 mol % cholesterol though the efficacy is less than that of symmetric fusion between membranes devoid of cholesterol, and the inhibitory efficacy becomes negligible in the fusion between membranes containing 0 and 20 mol % cholesterol. Several steady-state and time-resolved fluorescence spectroscopic techniques have been successfully utilized to evaluate the organization, dynamics, and membrane penetration of the TG-23 peptide. Taken together, our results demonstrate that the reduction of the inhibitory effect of TG-23 in asymmetric membrane fusion containing cholesterol of varying concentrations is not due to the altered peptide structure, organization, and dynamics, rather owing to the intrinsic negative curvature-inducing property of cholesterol. Therefore, the membrane composition is an added complexity in the journey of developing peptide-based membrane fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
- Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
35
|
Aghaaminiha M, Farnoud AM, Sharma S. Quantitative relationship between cholesterol distribution and ordering of lipids in asymmetric lipid bilayers. SOFT MATTER 2021; 17:2742-2752. [PMID: 33533367 DOI: 10.1039/d0sm01709d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plasma membrane of eukaryotic cells is known to be compositionally asymmetric. Certain phospholipids, such as sphingomyelin and phosphatidylcholine species, are predominantly localized in the outer leaflet, while phosphatidylethanolamine and phosphatidylserine species primarily reside in the inner leaflet. While phospholipid asymmetry between the membrane leaflets is well established, there is no consensus about cholesterol distribution between the two leaflets. We have performed a systematic study, via molecular simulations, of how the spatial distribution of cholesterol molecules in different "asymmetric" lipid bilayers are affected by the lipids' backbone, head-type, unsaturation, and chain-length by considering an asymmetric bilayer mimicking the plasma membrane lipids of red blood cells, as well as seventeen other asymmetric bilayers comprising of different lipid types. Our results reveal that the distribution of cholesterol in the leaflets is solely a function of the extent of ordering of the lipids within the leaflets. The ratio of the amount of cholesterol matches the ratio of lipid order in the two leaflets, thus providing a quantitative relationship between the two. These results are understood by the observation that asymmetric bilayers with equimolar amount of lipids in the two leaflets develop tensile and compressive stresses due to differences in the extent of lipid order. These stresses are alleviated by the transfer of cholesterol from the leaflet in compressive stress to the one in tensile stress. These findings are important in understanding the biology of the cell membrane, especially with regard to the composition of the membrane leaflets.
Collapse
Affiliation(s)
- Mohammadreza Aghaaminiha
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
36
|
Coleman PS, Parlo RA. Warburg's Ghost-Cancer's Self-Sustaining Phenotype: The Aberrant Carbon Flux in Cholesterol-Enriched Tumor Mitochondria via Deregulated Cholesterogenesis. Front Cell Dev Biol 2021; 9:626316. [PMID: 33777935 PMCID: PMC7994618 DOI: 10.3389/fcell.2021.626316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Interpreting connections between the multiple networks of cell metabolism is indispensable for understanding how cells maintain homeostasis or transform into the decontrolled proliferation phenotype of cancer. Situated at a critical metabolic intersection, citrate, derived via glycolysis, serves as either a combustible fuel for aerobic mitochondrial bioenergetics or as a continuously replenished cytosolic carbon source for lipid biosynthesis, an essentially anaerobic process. Therein lies the paradox: under what conditions do cells control the metabolic route by which they process citrate? The Warburg effect exposes essentially the same dilemma—why do cancer cells, despite an abundance of oxygen needed for energy-generating mitochondrial respiration with citrate as fuel, avoid catabolizing mitochondrial citrate and instead rely upon accelerated glycolysis to support their energy requirements? This review details the genesis and consequences of the metabolic paradigm of a “truncated” Krebs/TCA cycle. Abundant data are presented for substrate utilization and membrane cholesterol enrichment in tumors that are consistent with criteria of the Warburg effect. From healthy cellular homeostasis to the uncontrolled proliferation of tumors, metabolic alterations center upon the loss of regulation of the cholesterol biosynthetic pathway. Deregulated tumor cholesterogenesis at the HMGR locus, generating enhanced carbon flux through the cholesterol synthesis pathway, is an absolute prerequisite for DNA synthesis and cell division. Therefore, expedited citrate efflux from cholesterol-enriched tumor mitochondria via the CTP/SLC25A1 citrate transporter is fundamental for sustaining the constant demand for cytosolic citrate that fuels the elevated flow of carbons from acetyl-CoA through the deregulated pathway of cholesterol biosynthesis.
Collapse
Affiliation(s)
| | - Risa A Parlo
- Kingsborough Community College, Brooklyn, NY, United States
| |
Collapse
|
37
|
Malekkhaiat Häffner S, Parra-Ortiz E, Skoda MWA, Saerbeck T, Browning KL, Malmsten M. Composition effects on photooxidative membrane destabilization by TiO 2 nanoparticles. J Colloid Interface Sci 2021; 584:19-33. [PMID: 33039680 DOI: 10.1016/j.jcis.2020.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/30/2022]
Abstract
Membrane interactions and photooxidative membrane destabilization of titanium dioxide (TiO2) nanoparticles were investigated, focusing on the effects of membrane composition, notably phospholipid headgroup charge and presence of cholesterol. For this, we employed a battery of state-of-the-art methods for studies of bilayers formed by zwitterionic palmitoyloleoylphosphatidylcholine (POPC) containing also polyunsaturated palmitoylarachidonoylphosphocholine (PAPC), as well as its mixtures with anionic palmitoyloleoylphosphatidylglycerol (POPG) and cholesterol. It was found that the TiO2 nanoparticles display close to zero charge at pH 7.4, resulting in aggregation. At pH 3.4, in contrast, the 6 nm TiO2 nanoparticles are well dispersed due to a strongly positive ζ-potential. Mirroring this pH dependence, TiO2 nanoparticles were observed to bind to negatively charged lipid bilayers at pH 3.4, but much less so at pH 7.4. While nanoparticle binding has some destabilizing effect alone, illumination with ultraviolet (UV) light accentuates membrane destabilization, a result of oxidative stress caused by generated reactive oxygen species (ROS). Neutron reflectivity (NR), quartz crystal microbalance (QCM), and small-angle X-ray scattering (SAXS) results all demonstrate that membrane composition strongly influences membrane interactions and photooxidative destabilization of lipid bilayers. In particular, the presence of anionic POPG makes the bilayers more sensitive to oxidative destabilization, whereas a stabilizing effect was observed in the presence of cholesterol. Also, structural aspects of peroxidation were found to depend strongly on membrane composition, notably the presence of anionic phospholipids. The results show that membrane interactions and UV-induced ROS generation act in concert and need to be considered together to understand effects of lipid membrane composition on UV-triggered oxidative destabilization by TiO2 nanoparticles, e.g., in the context of oxidative damage of bacteria and cells.
Collapse
Affiliation(s)
| | - E Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - M W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 OQX, UK
| | - T Saerbeck
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - K L Browning
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - M Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| |
Collapse
|
38
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
39
|
Battista S, Maggi MA, Bellio P, Galantini L, D’Archivio AA, Celenza G, Colaiezzi R, Giansanti L. Curcuminoids-loaded liposomes: influence of lipid composition on their physicochemical properties and efficacy as delivery systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Radyukhin VA, Baratova LA. Molecular Mechanisms of Raft Organization in Biological Membranes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Camilo CJJ, Leite DOD, Silva ARA, Menezes IRA, Coutinho HDM, Costa JGM. Lipid vesicles: applications, principal components and methods used in their formulations: A review. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n2.74830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Liposomes and niosomes are currently the most studied lipid vesicles in the nanomedicine field. The system formed by a phospholipid bilayer in aqueous medium allows these vesicles to carry both hydrophilic and lipophilic compounds, providing an increase in solubility of drugs lready used in conventional therapy. The focus on the development of these vesicles should be directed to determining the ideal composition, with low toxicity, biocompatibility and which remains stable for long periods. These characteristics are related to the components used for formulation and the substances that will be encapsulated. Another important point relates to the methods used during formulation, which are important in determining the type of vesicle formed, whether these be large or small, unilamellar or multilamellar. Because of the deliberate actions applied in the development of these vesicles, this review sought to gather updated information regarding the different methods used, including their main components while considering the behavior of each of them when used in different formulations. Also, data showing the importance of formulations in the medical field evidencing studies performed with liposome and niosome vesicles as promising in this area, and others, were included. The approach allows a better understanding of the participation of components in formulations such as cholesterol and non-ionic surfactants, as well as the basis for choosing the ideal components and methods for future research in the development of these vesicles.
Collapse
|
42
|
Ermilova I, Lyubartsev AP. Modelling of interactions between Aβ(25-35) peptide and phospholipid bilayers: effects of cholesterol and lipid saturation. RSC Adv 2020; 10:3902-3915. [PMID: 35492630 PMCID: PMC9048594 DOI: 10.1039/c9ra06424a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022] Open
Abstract
Aggregation of amyloid beta (Aβ) peptides in neuronal membranes is a known promoter of Alzheimer’s disease. To gain insight into the molecular details of Aβ peptide aggregation and its effect on model neuronal membranes, we carried out molecular dynamics simulations of the Aβ(25–35) fragment of the amyloid precursor protein in phospholipid bilayers composed of either fully saturated or highly unsaturated lipids, in the presence or absence of cholesterol. It was found that the peptide does not penetrate through any of the considered membranes, but can reside in the headgroup region and upper part of the lipid tails showing a clear preference to a polyunsaturated cholesterol-free membrane. Due to the ordering and condensing effect upon addition of cholesterol, membranes become more rigid facilitating peptide aggregation on the surface. Except for the case of the cholesterol-free saturated lipid bilayer, the peptides have a small effect on the membrane structure and ordering. It was also found that the most “active” amino-acid for peptide–lipid and peptide–cholesterol interaction is methionine-35, followed by asparagine-27 and serine-26, which form hydrogen bonds between peptides and polar atoms of lipid headgroups. These amino acids are also primarily responsible for peptide aggregation. This work will be relevant for designing strategies to develop drugs to combat Alzheimer’s disease. Molecular dynamics simulations of Aβ(25–35) peptides in phospholipid bilayers are carried out to investigate the effect of polyunsaturated lipids and cholesterol on aggregation of the peptides. ![]()
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden +46 8161193
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden +46 8161193
| |
Collapse
|
43
|
Cholesterol alters the inhibitory efficiency of peptide-based membrane fusion inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183056. [DOI: 10.1016/j.bbamem.2019.183056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022]
|
44
|
Salvador-Castell M, Tourte M, Oger PM. In Search for the Membrane Regulators of Archaea. Int J Mol Sci 2019; 20:E4434. [PMID: 31505830 PMCID: PMC6770870 DOI: 10.3390/ijms20184434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022] Open
Abstract
Membrane regulators such as sterols and hopanoids play a major role in the physiological and physicochemical adaptation of the different plasmic membranes in Eukarya and Bacteria. They are key to the functionalization and the spatialization of the membrane, and therefore indispensable for the cell cycle. No archaeon has been found to be able to synthesize sterols or hopanoids to date. They also lack homologs of the genes responsible for the synthesis of these membrane regulators. Due to their divergent membrane lipid composition, the question whether archaea require membrane regulators, and if so, what is their nature, remains open. In this review, we review evidence for the existence of membrane regulators in Archaea, and propose tentative location and biological functions. It is likely that no membrane regulator is shared by all archaea, but that they may use different polyterpenes, such as carotenoids, polyprenols, quinones and apolar polyisoprenoids, in response to specific stressors or physiological needs.
Collapse
Affiliation(s)
- Marta Salvador-Castell
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| | - Maxime Tourte
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| | - Philippe M Oger
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| |
Collapse
|
45
|
Moreau D, Vacca F, Vossio S, Scott C, Colaco A, Paz Montoya J, Ferguson C, Damme M, Moniatte M, Parton RG, Platt FM, Gruenberg J. Drug-induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and mice. EMBO Rep 2019; 20:e47055. [PMID: 31267706 PMCID: PMC6607015 DOI: 10.15252/embr.201847055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022] Open
Abstract
Most cells acquire cholesterol by endocytosis of circulating low-density lipoproteins (LDLs). After cholesteryl ester de-esterification in endosomes, free cholesterol is redistributed to intracellular membranes via unclear mechanisms. Our previous work suggested that the unconventional phospholipid lysobisphosphatidic acid (LBPA) may play a role in modulating the cholesterol flux through endosomes. In this study, we used the Prestwick library of FDA-approved compounds in a high-content, image-based screen of the endosomal lipids, lysobisphosphatidic acid and LDL-derived cholesterol. We report that thioperamide maleate, an inverse agonist of the histamine H3 receptor HRH3, increases highly selectively the levels of lysobisphosphatidic acid, without affecting any endosomal protein or function that we tested. Our data also show that thioperamide significantly reduces the endosome cholesterol overload in fibroblasts from patients with the cholesterol storage disorder Niemann-Pick type C (NPC), as well as in liver of Npc1-/- mice. We conclude that LBPA controls endosomal cholesterol mobilization and export to cellular destinations, perhaps by fluidifying or buffering cholesterol in endosomal membranes, and that thioperamide has repurposing potential for the treatment of NPC.
Collapse
Affiliation(s)
- Dimitri Moreau
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | - Fabrizio Vacca
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | - Stefania Vossio
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | - Cameron Scott
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | | | | | - Charles Ferguson
- Institute for Molecular Bioscience and Center for Microscopy and MicroanalysisUniversity of QueenslandBrisbaneQldAustralia
| | - Markus Damme
- Biochemisches InstitutChristian‐Albrechts‐UniversitätKielGermany
| | - Marc Moniatte
- Mass Spectrometry Core FacilityEPFLLausanneSwitzerland
| | - Robert G Parton
- Institute for Molecular Bioscience and Center for Microscopy and MicroanalysisUniversity of QueenslandBrisbaneQldAustralia
| | | | - Jean Gruenberg
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| |
Collapse
|
46
|
Abstract
This Review illustrates the evaluation of permeability of lipid membranes from molecular dynamics (MD) simulation primarily using water and oxygen as examples. Membrane entrance, translocation, and exit of these simple permeants (one hydrophilic and one hydrophobic) can be simulated by conventional MD, and permeabilities can be evaluated directly by Fick's First Law, transition rates, and a global Bayesian analysis of the inhomogeneous solubility-diffusion model. The assorted results, many of which are applicable to simulations of nonbiological membranes, highlight the limitations of the homogeneous solubility diffusion model; support the utility of inhomogeneous solubility diffusion and compartmental models; underscore the need for comparison with experiment for both simple solvent systems (such as water/hexadecane) and well-characterized membranes; and demonstrate the need for microsecond simulations for even simple permeants like water and oxygen. Undulations, subdiffusion, fractional viscosity dependence, periodic boundary conditions, and recent developments in the field are also discussed. Last, while enhanced sampling methods and increasingly sophisticated treatments of diffusion add substantially to the repertoire of simulation-based approaches, they do not address directly the critical need for force fields with polarizability and multipoles, and constant pH methods.
Collapse
Affiliation(s)
- Richard M Venable
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
47
|
Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep 2019; 9:5627. [PMID: 30948733 PMCID: PMC6449338 DOI: 10.1038/s41598-019-41903-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
The composition of the plasma membrane of malignant cells is thought to influence the cellular uptake of cisplatin and to take part in developing resistance to this widespread anti-cancer drug. In this work we study the permeation of cisplatin through the model membranes of normal and cancer cells using molecular dynamics simulations. A special attention is paid to lipid asymmetry and cholesterol content of the membranes. The loss of lipid asymmetry, which is common for cancer cells, leads to a decrease in their permeability to cisplatin by one order of magnitude in comparison to the membranes of normal cells. The change in the cholesterol molar ratio from 0% to 33% also decreases the permeability of the membrane by approximately one order of magnitude. The permeability of pure DOPC membrane is 5-6 orders of magnitude higher than one of the membranes with realistic lipid composition, which makes it as an inadequate model for the studies of drug permeability.
Collapse
Affiliation(s)
- Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.,Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028, Kyiv, Ukraine
| |
Collapse
|
48
|
Meinhardt S, Schmid F. Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes. SOFT MATTER 2019; 15:1942-1952. [PMID: 30662989 DOI: 10.1039/c8sm02261e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the lateral domain structure in a coarse-grained molecular model for multicomponent lipid bilayers by semi-grandcanonical Monte Carlo simulations. The membranes are filled with liquid ordered (lo) domains surrounded by a liquid disordered (ld) matrix. Depending on the membrane composition and temperature, we identify different morphological regimes: one regime (I) where the lo domains are small and relatively compact, and two regimes (II, II') where they are larger and often interconnected. In the latter two regimes, the ld matrix forms a network of disordered trenches separating the lo domains, with a relatively high content of interdigitated line defects. Since such defects are also a structural element of the modulated ripple phase in one component membranes, we argue that the regimes II, II' may be amorphous equivalents of the ripple phase in multicomponent membranes. We also analyze the local structure and provide evidence that the domains in regime I are stabilized by a monolayer curvature mechanism postulated in earlier work [S. Meinhardt et al., PNAS, 2013, 110, 4476].
Collapse
Affiliation(s)
- Sebastian Meinhardt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
| | | |
Collapse
|
49
|
Kiriakidi S, Kolocouris A, Liapakis G, Ikram S, Durdagi S, Mavromoustakos T. Effects of Cholesterol on GPCR Function: Insights from Computational and Experimental Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:89-103. [DOI: 10.1007/978-3-030-14265-0_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Javanainen M, Martinez-Seara H. Rapid diffusion of cholesterol along polyunsaturated membranes via deep dives. Phys Chem Chem Phys 2019; 21:11660-11669. [PMID: 31119241 DOI: 10.1039/c9cp02022e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol regulates the function of membrane proteins either via direct or membrane-mediated effects. Therefore, its ready availability is crucial for many protein-governed cellular processes. Recent studies suggest that cholesterol can partition to the core of polyunsaturated membranes, where cholesterol binding sites of many membrane proteins are also located. This core region is characterized by a lower viscosity. Therefore, we hypothesized that cholesterol partitioning into the membrane interior increases the rate of its diffusion in polyunsaturated membrane environments. We studied the behavior of cholesterol in membranes with increasing level of lipid chain unsaturation using a combination of atomistic and coarse-grained molecular dynamics simulations. Our simulations suggest a strong correlation between entropy-driven enhanced cholesterol partitioning to the membrane core and its faster lateral diffusion, which indicates that the less viscous membrane core indeed provides an efficient means for cholesterol movement in polyunsaturated membrane environments.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, CZ-166 10 Prague 6, Czech Republic.
| | | |
Collapse
|