1
|
Choi S, Choi SH, Bastola T, Kim KY, Park S, Weinreb RN, Miller YI, Ju WK. AIBP Protects Müller Glial Cells Against Oxidative Stress-Induced Mitochondrial Dysfunction and Reduces Retinal Neuroinflammation. Antioxidants (Basel) 2024; 13:1252. [PMID: 39456505 PMCID: PMC11505583 DOI: 10.3390/antiox13101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma, an optic neuropathy with the loss of retinal ganglion cells (RGCs), is a leading cause of irreversible vision loss. Oxidative stress and mitochondrial dysfunction have a significant role in triggering glia-driven neuroinflammation and subsequent glaucomatous RGC degeneration in the context of glaucoma. It has previously been shown that apolipoprotein A-I binding protein (APOA1BP or AIBP) has an anti-inflammatory function. Moreover, Apoa1bp-/- mice are characterized by retinal neuroinflammation and RGC loss. In this study, we found that AIBP deficiency exacerbated the oxidative stress-induced disruption of mitochondrial dynamics and function in the retina, leading to a further decline in visual function. Mechanistically, AIBP deficiency-induced oxidative stress triggered a reduction in glycogen synthase kinase 3β and dynamin-related protein 1 phosphorylation, optic atrophy type 1 and mitofusin 1 and 2 expression, and oxidative phosphorylation, as well as the activation of mitogen-activated protein kinase (MAPK) in Müller glia dysfunction, leading to cell death and inflammatory responses. In vivo, the administration of recombinant AIBP (rAIBP) effectively protected the structural and functional integrity of retinal mitochondria under oxidative stress conditions and prevented vision loss. In vitro, incubation with rAIBP safeguarded the structural integrity and bioenergetic performance of mitochondria and concurrently suppressed MAPK activation, apoptotic cell death, and inflammatory response in Müller glia. These findings support the possibility that AIBP promotes RGC survival and restores visual function in glaucomatous mice by ameliorating glia-driven mitochondrial dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- Seunghwan Choi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA; (S.-H.C.); (Y.I.M.)
| | - Tonking Bastola
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92039, USA;
| | - Sungsik Park
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA; (S.-H.C.); (Y.I.M.)
| | - Won-Kyu Ju
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| |
Collapse
|
2
|
Messedi M, Makni-Ayadi F. 24S-Hydroxycholesterol in Neuropsychiatric Diseases: Schizophrenia, Autism Spectrum Disorder, and Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:293-304. [PMID: 38036886 DOI: 10.1007/978-3-031-43883-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Neuropsychiatric diseases (NPDs) are severe, debilitating psychiatric conditions that affect the nervous system. These are among the most challenging disorders in medicine. Some examples include Alzheimer's, anxiety disorders, autism spectrum disorder, bipolar disorder, and schizophrenia. NPDs represent an ever-increasing burden on public health and are prevalent throughout the world. For most of these diseases, the particular etiopathogeneses are still enigmatic. NPDs are also associated with structural and functional changes in the brain, along with altered neurotransmitter and neuroendocrine systems.Approximately 25% of the total human body cholesterol is located in the brain. Its involvement in neuronal functions starts in the early growth stages and remains important throughout adulthood. It is also an integral part of the neuronal membrane, ensuring membrane lipid organization and regulating membrane fluidity. The main mechanism for removing cholesterol from the brain is cholesterol 24-hydroxylation by cytochrome P450 46A1 (CYP46A1), an enzyme specifically found in the central nervous system. Although research on 24S-OHC and its role in neuropsychiatric diseases is still in its early stages, this oxidized cholesterol metabolite is thought to play a crucial role in the etiology of NPDs. 24S-OHC can affect neurons, astrocytes, oligodendrocytes, and vascular cells. In addition to regulating the homeostasis of cholesterol in the brain, this oxysterol is involved in neurotransmission, oxidative stress, and inflammation. The role of 24S-OHC in NPDs has been found to be controversial in terms of the findings so far. There are several intriguing discrepancies in the data gathered so far regarding 24S-OHC and NPDs. In fact, 24S-OHC levels were reported to have decreased in a number of NPDs and increased in others.Hence, in this chapter, we first summarize the available data regarding 24S-OHC as a biomarker in NPDs, including schizophrenia, autism spectrum disorder, and bipolar disorder. Then, we present a brief synopsis of the pharmacological targeting of 24S-OHC levels through the modulation of CYP46A1 activity.
Collapse
Affiliation(s)
- Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
| | - Fatma Makni-Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
- Department of Clinical biochemistry, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Sun Z, Yang J, Zhou J, Zhou J, Feng L, Feng Y, He Y, Liu M, Li Y, Wang G, Li R. Tissue-Specific Oxysterols as Predictors of Antidepressant (Escitalopram) Treatment Response in Patients With Major Depressive Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:663-672. [PMID: 37881566 PMCID: PMC10593904 DOI: 10.1016/j.bpsgos.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 02/03/2023] Open
Abstract
Background There is growing evidence that disturbances in cholesterol metabolism may be involved in major depressive disorder (MDD). However, it is not known if cholesterol metabolites present in the brain and periphery can be used to diagnose and predict an MDD patient's response to antidepressant treatment. Methods A total of 176 subjects (85 patients with MDD and 91 healthy control subjects) were included in this study. The expression of peripheral and brain-specific oxysterols and related gene polymorphisms were investigated in all subjects. The severity of depression was measured using the 17-item Hamilton Depression Rating Scale, 16-item Quick Inventory of Depressive Symptoms-Self-Report, and Patient Health Questionnaire-9 for all patients with MDD before and after 12 weeks of antidepressant treatment. Results Patients with MDD expressed higher plasma levels of 24(S)-hydroxycholesterol (24OHC) (mainly secreted from the brain) compared with healthy control subjects, and the higher levels of 24OHC were associated with 24OHC synthetase (CYP46A1) gene polymorphisms. In patients with MDD, an improved response to the 12-week antidepressant treatment was associated with a reduction of both 24OHC and 27OHC (mainly secreted from the peripheral system) levels relative to baseline levels. Nonresponders exhibited increased levels of oxysterols at the end of treatment compared with baseline. The superior reduction in oxysterol levels correlated with better outcomes from the antidepressant treatment. Conclusions These data suggest a potential role for oxysterols as diagnostic and treatment response-related indicators for MDD.
Collapse
Affiliation(s)
- Zuoli Sun
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jia Zhou
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Feng
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Feng
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, Baroux E, Sterley TL, Bosch-Bouju C, Morel L, Amadieu C, Lecours C, St-Pierre MK, Bordeleau M, De Smedt-Peyrusse V, Séré A, Schwendimann L, Grégoire S, Bretillon L, Acar N, Joffre C, Ferreira G, Uricaru R, Thebault P, Gressens P, Tremblay ME, Layé S, Nadjar A. N-3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia 2022; 70:50-70. [PMID: 34519378 DOI: 10.1002/glia.24088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France
| | | | - Stephane Leon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Emilie Baroux
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Tony-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lydie Morel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Camille Amadieu
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec City, Québec, Canada
| | | | - Alexandran Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Stephane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Raluca Uricaru
- CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | | | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Québec City, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Agnes Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Guidara W, Messedi M, Maalej M, Naifar M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols: Altered level of plasma 24-hydroxycholesterol in patients with bipolar disorder. J Steroid Biochem Mol Biol 2021; 211:105902. [PMID: 33901658 DOI: 10.1016/j.jsbmb.2021.105902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Cholesterol and its oxygenated metabolites, including oxysterols, are intensively investigated as potential players in the pathophysiology of brain disorders. Altered oxysterol levels have been described in patients with numerous neuropsychiatric disorders. Recent studies have shown that Bipolar disorder (BD) is associated with the disruption of cholesterol metabolism. The present study was aimed at investigating the profile of oxysterols in plasma, their ratio to total cholesterol and their association with clinical parameters in patients with BD. Thirty three men diagnosed with BD and forty healthy controls matched for age and sex were included in the study. Oxysterol levels were measured by isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Significantly higher levels were observed for cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol in patients with BD. The concentration of 24-hydroxycholesterol (24-OHC) was significantly lower in patients compared to controls. 24-OHC was also negatively correlated to MAS subscale score (r =-0.343; p = 0.049). In patients, 24-OHC was inversely correlated with age (r = -0.240; p = 0.045). Multivariate analysis found that BD acute decompensation was independently related to the rise in plasma 24-OHC (p = 0.002; OR = 0.966, 95 % CI [0.945 - 0.987]). However, the 24-OHC assay relevance as a biomarker of this disease deserves further investigation in other studies.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, University of Sfax & Hédi Chaker Hospital, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Walid Khrouf
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France
| | - Sahar Grayaa
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, University of Sfax & Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France; UTCBS, U1267 Inserm, UMR 8258 CNRS, Université de Paris, Paris, France
| | - Foudil Lamari
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France
| | - Fatma Ayadi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
6
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Horváth Á, Payrits M, Steib A, Kántás B, Biró-Süt T, Erostyák J, Makkai G, Sághy É, Helyes Z, Szőke É. Analgesic Effects of Lipid Raft Disruption by Sphingomyelinase and Myriocin via Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Ankyrin 1 Ion Channel Modulation. Front Pharmacol 2021; 11:593319. [PMID: 33584270 PMCID: PMC7873636 DOI: 10.3389/fphar.2020.593319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Transient Receptor Potential (TRP) Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and integratively regulate nociceptor and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin and gangliosides. We earlier showed that lipid raft disruption inhibits TRPV1 and TRPA1 functions in primary sensory neuronal cultures. Here we investigated the effects of sphingomyelinase (SMase) cleaving membrane sphingomyelin and myriocin (Myr) prohibiting sphingolipid synthesis in mouse pain models of different mechanisms. SMase (50 mU) or Myr (1 mM) pretreatment significantly decreased TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements by 37 and 41%, respectively. Intraplantar pretreatment by both compounds significantly diminished TRPV1 stimulation (resiniferatoxin)-evoked thermal allodynia developing mainly by peripheral sensitization. SMase (50 mU) also decreased mechanical hyperalgesia related to both peripheral and central sensitizations. SMase (50 mU) significantly reduced TRPA1 activation (formalin)-induced acute nocifensive behaviors by 64% in the second, neurogenic inflammatory phase. Myr, but not SMase altered the plasma membrane polarity related to the cholesterol composition as shown by fluorescence spectroscopy. These are the first in vivo results showing that sphingolipids play a key role in lipid raft integrity around nociceptive TRP channels, their activation and pain sensation. It is concluded that local SMase administration might open novel perspective for analgesic therapy.
Collapse
Affiliation(s)
- Ádám Horváth
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Anita Steib
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Boglárka Kántás
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tünde Biró-Süt
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - János Erostyák
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Experimental Physics, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Géza Makkai
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Experimental Physics, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Éva Sághy
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry. Sci Rep 2020; 10:20053. [PMID: 33208898 PMCID: PMC7674471 DOI: 10.1038/s41598-020-77087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
In order to better understand retinal physiology, alterations to which underlie some ocular diseases, we set out to establish the lipid signature of two fundamental cell types in the retina, Müller Glia and Retinal Ganglion Cells (RGCs). Moreover, we compared the lipid signature of these cells in sections (in situ), as well as after culturing the cells and isolating their cell membranes (in vitro). The lipidome of Müller glia and RGCs was analyzed in porcine retinal sections using Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS). Isolated membranes, as well as whole cells from primary cell cultures of RGCs and Müller glia, were printed onto glass slides using a non-contact microarrayer (Nano Plotter), and a LTQ-Orbitrap XL analyzer was used to scan the samples in negative ion mode, thereafter identifying the RGCs and Müller cells immunohistochemically. The spectra acquired were aligned and normalized against the total ion current, and a statistical analysis was carried out to select the lipids specific to each cell type in the retinal sections and microarrays. The peaks of interest were identified by MS/MS analysis. A cluster analysis of the MS spectra obtained from the retinal sections identified regions containing RGCs and Müller glia, as confirmed by immunohistochemistry in the same sections. The relative density of certain lipids differed significantly (p-value ≤ 0.05) between the areas containing Müller glia and RGCs. Likewise, different densities of lipids were evident between the RGC and Müller glia cultures in vitro. Finally, a comparative analysis of the lipid profiles in the retinal sections and microarrays identified six peaks that corresponded to a collection of 10 lipids characteristic of retinal cells. These lipids were identified by MS/MS. The analyses performed on the RGC layer of the retina, on RGCs in culture and using cell membrane microarrays of RGCs indicate that the lipid composition of the retina detected in sections is preserved in primary cell cultures. Specific lipid species were found in RGCs and Müller glia, allowing both cell types to be identified by a lipid fingerprint. Further studies into these specific lipids and of their behavior in pathological conditions may well help identify novel therapeutic targets for ocular diseases.
Collapse
|
9
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Cao K, Ishida T, Fang Y, Shinohara K, Li X, Nagaoka N, Ohno-Matsui K, Yoshida T. Protection of the Retinal Ganglion Cells: Intravitreal Injection of Resveratrol in Mouse Model of Ocular Hypertension. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32176263 PMCID: PMC7401839 DOI: 10.1167/iovs.61.3.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose To investigate the efficacy of intravitreal administration of resveratrol (RSV) in a microbead-induced high intraocular pressure (IOP) murine model for glaucoma. Methods Experiments were performed using adult C57BL/6JJcl mice. Polystyrene microbeads were injected into the anterior chamber to induce IOP elevation. Retinal flat-mounts and sections were assessed by immunohistochemistry to detect the expression of reactive oxygen species and acetyl-p53 in retinal ganglion cells (RGCs), brain-derived neurotrophic factor (BDNF) in Müller glial cells (MGCs), and the receptor tropomyosin receptor kinase B (TrkB) in RGCs. Light cycler real-time PCR was also used for confirming gene expression of BDNF in primary cultured MGCs exposed to RSV. Results Microbeads induced high IOP followed by RGC death and axon loss. Administration of RSV rescued RGCs via decreased reactive oxygen species generation and acetyl-p53 expression in RGCs and upregulated BDNF in MGCs and TrkB expression in RGCs, which exhibited a strong cytoprotective action against cell death through multiple pathways under high IOP. Conclusions Our data suggest that administration of RSV may delay the progress of visual dysfunction during glaucoma and may therefore have therapeutic potential.
Collapse
|
11
|
Lin CL, Chang CH, Chang YS, Lu SC, Hsieh YL. Treatment with methyl-β-cyclodextrin prevents mechanical allodynia in resiniferatoxin neuropathy in a mouse model. Biol Open 2019; 8:bio.039511. [PMID: 30578250 PMCID: PMC6361210 DOI: 10.1242/bio.039511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Specialized microdomains which have cholesterol-rich membrane regions contain transient receptor potential vanilloid subtype 1 (TRPV1) are involved in pain development. Our previous studies have demonstrated that the depletion of prostatic acid phosphatase (PAP) – a membrane-bound ectonucleotidase – and disordered adenosine signaling reduce the antinociceptive effect. The role of membrane integrity in the PAP-mediated antinociceptive effect in small-fiber neuropathy remains unclear, especially with respect to whether TRPV1 and PAP are colocalized in the same microdomain which is responsible for PAP-mediated antinociception. Immunohistochemistry was conducted on the dorsal root ganglion to identify the membrane compositions, and pharmacological interventions were conducted using methyl-β-cyclodextrin (MβC) – a membrane integrity disruptor that works by depleting cholesterol – in pure small-fiber neuropathy with resiniferatoxin (RTX). Immunohistochemical evidence indicated that TRPV1 and PAP were highly colocalized with flotillin 1 (66.7%±9.7%) and flotillin 2 (73.7%±6.0%), which reside in part in the microdomain. MβC mildly depleted PAP, which maintained the ability to hydrolyze phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and delayed the development of mechanical allodynia. MβC treatment had no role in thermal transduction and neuronal injury following RTX neuropathy. In summary, this study demonstrated the following: (1) membrane cholesterol depletion preserves PAP-mediated antinociception through PI(4,5)P2 hydrolysis and (2) pain hypersensitivity that develops after TRPV1(+) neuron depletion-mediated neurodegeneration following RTX neuropathy is attributable to the downregulation of PAP analgesic signaling. Summary: The role and mechanism of cholesterol-rich membrane integrity in pain development for small-fiber neuropathy remains unclear. Depletion of membrane cholesterol contents preserves functional PAP profiles and the antinociceptive effect after RTX neuropathy.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
de Oliveira VS, Ferreira FS, Cople MCR, Labre TDS, Augusta IM, Gamallo OD, Saldanha T. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr Rev Food Sci Food Saf 2018; 17:1465-1483. [DOI: 10.1111/1541-4337.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Vanessa Sales de Oliveira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Maria Clara Ramos Cople
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ivanilda Maria Augusta
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ormindo Domingues Gamallo
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana Saldanha
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| |
Collapse
|
13
|
Grayaa S, Zerbinati C, Messedi M, HadjKacem I, Chtourou M, Ben Touhemi D, Naifar M, Ayadi H, Ayedi F, Iuliano L. Plasma oxysterol profiling in children reveals 24-hydroxycholesterol as a potential marker for Autism Spectrum Disorders. Biochimie 2018; 153:80-85. [DOI: 10.1016/j.biochi.2018.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022]
|
14
|
24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: A possible role of NO and lipid rafts. Mol Cell Neurosci 2018; 88:308-318. [PMID: 29550246 DOI: 10.1016/j.mcn.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the initial denervation of skeletal muscle and subsequent death of motor neurons. A dying-back pattern of ALS suggests a crucial role for neuromuscular junction dysfunction. In the present study, microelectrode recording of postsynaptic currents and optical detection of synaptic vesicle traffic (FM1-43 dye) and intracellular NO levels (DAF-FM DA) were used to examine the effect of the major brain-derived cholesterol metabolite 24S-hydroxycholesterol (24S-HC, 0.4 μM) on neuromuscular transmission in the diaphragm of transgenic mice carrying a mutant superoxide dismutase 1 (SODG93A). We found that 24S-HC suppressed spontaneous neurotransmitter release and neurotransmitter exocytosis during high-frequency stimulation. The latter was accompanied by a decrease in both the rate of synaptic vesicle recycling and activity-dependent enhancement of NO production. Inhibition of NO synthase with L-NAME also attenuated synaptic vesicle exocytosis during high-frequency stimulation and completely abolished the effect of 24S-HC itself. Of note, 24S-HC enhanced the labeling of synaptic membranes with B-subunit of cholera toxin, suggesting an increase in lipid ordering. Lipid raft-disrupting agents (methyl-β-cyclodextrin, sphingomyelinase) prevented the action of 24S-HC on both lipid raft marker labeling and NO synthesis. Together, these experiments indicate that 24S-HC is able to suppress the exocytotic release of neurotransmitter in response to intense activity via a NO/lipid raft-dependent pathway in the neuromuscular junctions of SODG93A mice.
Collapse
|
15
|
Lakk M, Vazquez-Chona F, Yarishkin O, Križaj D. Dyslipidemia modulates Müller glial sensing and transduction of ambient information. Neural Regen Res 2018; 13:207-210. [PMID: 29557361 PMCID: PMC5879883 DOI: 10.4103/1673-5374.226383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Unesterified cholesterol controls the fluidity, permeability and electrical properties of eukaryotic cell membranes. Consequently, cholesterol levels in the retina and the brain are tightly regulated whereas depletion or oversupply caused by diet or heredity contribute to neurodegenerative diseases and vision loss. Astroglia play a central role in the biosynthesis, uptake and transport of cholesterol and also drive inflammatory signaling under hypercholesterolemic conditions associated with high-fat diet (diabetes) and neurodegenerative disease. A growing body of evidence shows that unesterified membrane cholesterol modulates the ability of glia to sense and transduce ambient information. Cholesterol-dependence of Müller glia - which function as retinal sentinels for metabolic, mechanical, osmotic and inflammatory signals - is mediated in part by transient receptor potential V4 (TRPV4) channels. Cholesterol supplementation facilitates, whereas depletion suppresses, TRPV4-mediated transduction of temperature and lipid agonists in Müller cells. Acute effects of cholesterol supplementation/depletion on plasma membrane ion channels and calcium homeostasis differ markedly from the effects of chronic dyslipidemia, possibly due to differential modulation of modality-dependent energy barriers associated with the functionality of polymodal channels embedded within lipid rafts. Understanding of cholesterol-dependence of TRP channels is thus providing insight into dyslipidemic pathologies associated with diabetic retinopathy, glaucoma and macular degeneration.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Felix Vazquez-Chona
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences; Department of Bioengineering; Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. Neurosteroids and oxysterols as potential therapeutic agents for glaucoma and Alzheimer's disease. ACTA ACUST UNITED AC 2018; 8:344-359. [PMID: 30774720 DOI: 10.4172/neuropsychiatry.1000356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is one of the most frequent causes of visual impairment worldwide and involves selective damage to retinal ganglion cells (RGCs) resulting in degeneration of neural pathways connecting retina to visual cortex. It is of interest that similarities in pathological changes have been described in Alzheimer's disease (AD), the most common cause of progressive memory loss and dementia in older people. Accumulation of amyloid-beta (Abeta) and hyperphosphorylated tau is thought to contribute to apoptotic neuronal death in Alzheimer's disease, and similar changes have been linked to apoptotic RGC death in glaucoma. Both glaucoma and Alzheimer's disease also suffer from a lack of effective treatments prompting a search for novel therapeutic interventions. Neurosteroids (NSs) (including oxysterols) are endogenous molecules synthesized in the nervous system from cholesterol that can modulate glutamate and GABA receptors, the primary mediators of fast excitatory and inhibitory neurotransmission in the brain, respectively. Because changes in the glutamate and GABA neurotransmitter systems contribute to the pathogenesis of AD and glaucoma, NSs are possible therapeutic targets for these disorders. In this review, we present recent evidence supporting pathological links between Alzheimer's disease and glaucoma, and focus on the possible role of NSs in these diseases and how NSs might be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Akita University Graduate School of Medicine, Akita, Japan.,Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|