1
|
Mattsson I, Majoinen J, Lahtinen M, Sandberg T, Fogde A, Saloranta-Simell T, Rojas OJ, Ikkala O, Leino R. Stereochemistry-dependent thermotropic liquid crystalline phases of monosaccharide-based amphiphiles. SOFT MATTER 2023; 19:8360-8377. [PMID: 37873653 PMCID: PMC10630951 DOI: 10.1039/d3sm00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
Conformational rigidity controls the bulk self-assembly and liquid crystallinity from amphiphilic block molecules to copolymers. The effects of block stereochemistry on the self-assembly have, however, been less explored. Here, we have investigated amphiphilic block molecules involving eight open-chain monosaccharide-based polyol units possessing different stereochemistries, derived from D-glucose, D-galactose, L-arabinose, D-mannose and L-rhamnose (allylated monosaccharides t-Glc*, e-Glc*, t-Gal*, e-Gal*, t-Ara*, e-Ara*, t-Man*, and t-Rha*), end-functionalized with repulsive tetradecyl alkyl chain blocks to form well-defined amphiphiles with block molecule structures. All compounds studied showed low temperature crystalline phases due to polyol crystallization, and smectic (lamellar) and isotropic phases upon heating in bulk. Hexagonal cylindrical phase was additionally observed for the composition involving t-Man*. Cubic phases were observed for e-Glc*, e-Gal*, e-Ara*, and t-Rha* derived compounds. Therein, the rich array of WAXS-reflections suggested that the crystalline polyol domains are not ultra-confined in spheres as in classic cubic phases but instead show network-like phase continuity, which is rare in bulk liquid crystals. Importantly, the transition temperatures of the self-assemblies were observed to depend strongly on the polyol stereochemistry. The findings underpin that the stereochemistry in carbohydrate-based assemblies involves complexity, which is an important parameter to be considered in material design when developing self-assemblies for different functions.
Collapse
Affiliation(s)
- Ida Mattsson
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Johanna Majoinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- VTT Technical Research Centre of Finland Ltd, FI-02150, Finland.
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, FI-40014, Finland
| | - Thomas Sandberg
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Anna Fogde
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Tiina Saloranta-Simell
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| | - Reko Leino
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| |
Collapse
|
2
|
Wang Y, Gao S, Zhu K, Ren L, Yuan X. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs. ACS Biomater Sci Eng 2023; 9:498-507. [PMID: 36577138 DOI: 10.1021/acsbiomaterials.2c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryopreservation of red blood cells (RBCs) is imperative for transfusion therapy, while cryoprotectants are essential to protect RBCs from cryoinjury under freezing temperatures. Trehalose has been considered as a biocompatible cryoprotectant that naturally accumulates in organisms to tolerate anhydrobiosis and cryobiosis. Herein, we report a feasible protocol that enables glycerol-free cryopreservation of human RBCs by integration of the synthesized trehalose lipids and dissociative trehalose through ice tuning and membrane stabilization. Typically, in comparison with sucrose monolaurate or trehalose only, trehalose monolaurate was able to protect cell membranes against freeze stress, achieving 96.9 ± 2.0% cryosurvival after incubation and cryopreservation of human RBCs with 0.8 M trehalose. Moreover, there were slight changes in cell morphology and cell functions. It was further confirmed by isothermal titration calorimetry and osmotic fragility tests that the moderate membrane-binding activity of trehalose lipids exerted cell stabilization for high cryosurvival. The aforementioned study is likely to provide an alternative way for glycerol-free cryopreservation of human RBCs and other types of cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| |
Collapse
|
3
|
Ogawa S. Aqueous Sugar-Based Amphiphile Systems: Recent Advances in Phase Behavior and Nanoarchitectonics. J Oleo Sci 2023; 72:489-499. [PMID: 37121675 DOI: 10.5650/jos.ess22391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Currently, numerous fascinating molecular assemblies are used in food, cosmetics, and pharmaceuticals. Sugar-based amphiphiles are representative constituents of these molecular assemblies. Despite numerous studies on these generic compounds, many aspects remain unexplored even in aqueous systems. In this review, molecular assembly studies of sugar-based amphiphiles in aqueous systems are summarized. First, recent advances in molecular assembly studies, including the glassy state of lyotropic and thermotropic liquid crystalline (LC) phases, modulated crystal phases, and coagels consisting of nanofibers of alkyl β-D-glycosides, are presented. Second, research on thermotropic LC phases under desiccated conditions of trehalose fatty acid monoesters to clarify the fundamental behaviors of the glassy state and their use as stabilizers of glass-forming surfactants for pharmaceutical applications are discussed. Several effective X-ray analytical approaches are included to identify or clarify these phenomena, unknown or unsolved for a long time. Third, a comprehensive analysis of vitamin E (tocopherol)-cyclodextrin in aqueous systems is presented. Along with these topics, the importance of investigating stabilizer-free functional components, considered minor components, is highlighted. These unveiled phenomena or concepts will contribute to the development of nanoarchitectonics covering the self-assembly and selforganization of soft molecules.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Faculty of Bio-industry, Tokyo University of Agriculture, Hokkaido-Okhotsk Campus
| |
Collapse
|
4
|
Molecular mechanism underlying the selective attack of trehalose lipids on cancer cells as revealed by coarse-grained molecular dynamics simulations. Biochem Biophys Rep 2021; 25:100913. [PMID: 33521337 PMCID: PMC7820381 DOI: 10.1016/j.bbrep.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
The present study indicated that the mixed lipid bilayer of dimyristoylphosphatidylcholine (DMPC) and trehalosemonomyristate (TreC14) interacted strongly with the plasma membrane of cancer cells, and not that of normal cells, when the composition of TreC14 was 70%, as revealed by coarse-grained molecular dynamics simulations. These results were consistent with those of previous experimental studies, indicating that DMPC/TreC14 mixed liposomes (DMTreC14) with TreC14 composition at 70% exhibited a strong anti-cancer effect without affecting normal cells. The simulations also revealed that lipids with highly hydrophilic and bulky head groups, such as TreC14, phosphatidylinositol (PI), and phosphatidylserine (PS), showed the tendency to accumulate. This caused both the DMTreC14 and cancer cell membranes to bend into large positive curvatures, resulting in tight contact between them. In contrast, no apparent interaction between the DMTreC14 and normal cell membranes was observed because PI and PS did not exist in the extracellular monolayer of the normal cell membrane. The mixed lipid bilayer (DMTreC14) of dimyristoylphosphatidylcholine (DMPC) and trehalosemonomyristate (TreC14) interacted strongly with the plasma membrane of a cancer cell, but did not interact with that of a normal cell. TreC14 was shown to interact preferentially with phosphatidylinositol (PI) and phosphatidylserine (PS), which existed in the extracellular side of the cancer cell. This interaction was inferred to cause the physical contact between DMTreC14 and the cancer cell, leading to their membrane fusion.
Collapse
|
5
|
Ogawa S, Hirase R, Ohishi T, Hara S, Takahashi I. Thermal Behavior of Anhydrous Ascorbic Acid 6‐Palmitate with Trace of Decomposition. ChemistrySelect 2020. [DOI: 10.1002/slct.202002800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shigesaburo Ogawa
- Faculty of Science and Technology Seikei University 3-3-1 Kichijojikitamachi Musashino Tokyo 180-8633 Japan
| | - Ryuji Hirase
- Hyogo Prefectural Institute of Technology 3-1-12 Yukihira-cho, Suma Kobe 654-0037 Japan
| | - Tomoyuki Ohishi
- Faculty of Science and Technology Seikei University 3-3-1 Kichijojikitamachi Musashino Tokyo 180-8633 Japan
| | - Setsuko Hara
- Faculty of Science and Technology Seikei University 3-3-1 Kichijojikitamachi Musashino Tokyo 180-8633 Japan
| | - Isao Takahashi
- School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
6
|
Ogawa S, Ono Y, Takahashi I. Glass transition behavior of perpendicularly aligned thermotropic liquid crystalline phases consisting of long-chain trehalose lipids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ogawa S, Endo A, Kitahara N, Yamagishi T, Aoyagi S, Hara S. Factors determining the reaction temperature of the solvent-free enzymatic synthesis of trehalose esters. Carbohydr Res 2019; 482:107739. [PMID: 31288124 DOI: 10.1016/j.carres.2019.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Solvent-free synthesis encourages the design of processes and products that reduce the use and generation of hazardous chemicals. Given the importance of developing greener methodologies, we sought to determine the factors influencing the reaction temperature required for solvent-free, enzymatic synthesis of sugar esters such as trehalose (TRE) esters, using Novozyme 435 as the enzyme catalyst. The use of lauric acid (La) and ethyl laurate (LaEt) as acyl donors did not affect the activation temperature for the generation of trehalose diesters (TDEs), despite the differences in corresponding by-products (water and ethanol). However, when glucose (GLU) and La were employed as reaction substrates as a comparison, glucose monoester (GME) generation readily occurred at much lower temperatures than with the TRE esters, even without a water collection device. Moreover, when the glass transition temperature (Tg) of the sugar substrates increased, a higher reaction temperature was required. These results suggest that while the activation temperature of the reaction did not correlate with the boiling point of the by-product, it did correlate with the glass transition temperature (Tg) of the trehalose substrates. Thus, our work demonstrates the importance of the physical state of amorphous matrices in determining the optimal reaction temperature of a solvent-free sugar synthesis.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Ayano Endo
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Naoki Kitahara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Takayuki Yamagishi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Satoka Aoyagi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| |
Collapse
|