1
|
Siteni S, Grichuk A, Shay JW. Telomerase in Cancer Therapeutics. Cold Spring Harb Perspect Biol 2024; 16:a041703. [PMID: 39349313 PMCID: PMC11610755 DOI: 10.1101/cshperspect.a041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
While silent in normal differentiated human tissues, telomerase is reactivated in most human cancers. Thus, telomerase is an almost universal oncology target. This update describes preclinical and clinical advancements using a variety of approaches to target telomerase. These include direct telomerase inhibitors, G-quadruplex DNA-interacting ligands, telomerase-based vaccine platforms, telomerase promoter-driven attenuated viruses, and telomerase-mediated telomere targeting approaches. While imetelstat has been recently approved by the Food and Drug Administration (FDA), several other approaches are in late-stage clinical development. The pros and cons of the major approaches will be reviewed.
Collapse
Affiliation(s)
- Silvia Siteni
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| | - Anthony Grichuk
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| |
Collapse
|
2
|
Mohanty SK, Chiaromonte F, Makova KD. Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621973. [PMID: 39574740 PMCID: PMC11580976 DOI: 10.1101/2024.11.05.621973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that can form at approximately 1% of the human genome. G4s contribute to point mutations and structural variation and thus facilitate genomic instability. They play important roles in regulating replication, transcription, and telomere maintenance, and some of them evolve under purifying selection. Nevertheless, the evolutionary dynamics of G4s has remained underexplored. Here we conducted a comprehensive analysis of predicted G4s (pG4s) in the recently released, telomere-to-telomere (T2T) genomes of human and other great apes-bonobo, chimpanzee, gorilla, Bornean orangutan, and Sumatran orangutan. We annotated tens of thousands of new pG4s in T2T compared to previous ape genome assemblies, including 41,236 in the human genome. Analyzing species alignments, we found approximately one-third of pG4s shared by all apes studied and identified thousands of species- and genus-specific pG4s. pG4s accumulated and diverged at rates consistent with divergence times between the studied species. We observed a significant enrichment and hypomethylation of pG4 shared across species at regulatory regions, including promoters, 5' and 3'UTRs, and origins of replication, strongly suggesting their formation and functional role in these regions. pG4s shared among great apes displayed lower methylation levels compared to species-specific pG4s, suggesting evolutionary conservation of functional roles of the former. Many species-specific pG4s were located in the repetitive and satellite regions deciphered in the T2T genomes. Our findings illuminate the evolutionary dynamics of G4s, their role in gene regulation, and their potential contribution to species-specific adaptations in great apes, emphasizing the utility of high-resolution T2T genomes in uncovering previously elusive genomic features.
Collapse
Affiliation(s)
- Saswat K. Mohanty
- Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
3
|
Rainot A, D'Anna L, Terenzi A, Rouget R, Grandemange S, Piro B, Barone G, Barbault F, Monari A. In Silico Design of a Solution-Gated Graphene Transistor Sensor for the Efficient Detection of Guanine Quadruplexes. J Phys Chem Lett 2024; 15:10881-10887. [PMID: 39441974 DOI: 10.1021/acs.jpclett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures present in diverse regions of the genome, such as telomeres and transcription initiators. Recently, the different biological roles of G4s have been evidenced as well as their role as biomarkers for tumors or viral infections. However, the fast and efficient detection of G4s in complex matrices remains elusive. In this contribution, by using long-scale molecular dynamics simulations, we propose the design of a biosensor based on organic field-effect transistors recognizing G4s. In particular, we show that the interaction of the G4s with the biosensor is translated into a change in the charge density profile, which correlates with the electrical transduction of the signal, thus allowing the detection of the nucleic acid structure. We also provide rules of thumb for the optimization of the design of the device and more generally for the integration of computationally driven design approaches.
Collapse
Affiliation(s)
- Aurianne Rainot
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Luisa D'Anna
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Raphael Rouget
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France
| | | | - Benoit Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Giampaolo Barone
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | | | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
4
|
Ren CX, Duan RF, Wang J, Hao YH, Tan Z. Dominant and genome-wide formation of DNA:RNA hybrid G-quadruplexes in living yeast cells. Proc Natl Acad Sci U S A 2024; 121:e2401099121. [PMID: 39441636 PMCID: PMC11536079 DOI: 10.1073/pnas.2401099121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Guanine-rich DNA forms G-quadruplexes (G4s) that play a critical role in essential cellular processes. Previous studies have mostly focused on intramolecular G4s composed of four consecutive guanine tracts (G-tracts) from a single strand. However, this structural form has not been strictly confirmed in the genome of living eukaryotic cells. Here, we report the formation of hybrid G4s (hG4s), consisting of G-tracts from both DNA and RNA, in the genome of living yeast cells. Analysis of Okazaki fragment syntheses and two other independent G4-specific detections reveal that hG4s can efficiently form with as few as a single DNA guanine-guanine (GG) tract due to the participation of G-tracts from RNA. This finding increases the number of potential G4-forming sites in the yeast genome from 38 to 587,694, a more than 15,000-fold increase. Interestingly, hG4s readily form and even dominate at G4 sites that are theoretically capable of forming the intramolecular DNA G4s (dG4s) by themselves. Compared to dG4s, hG4s exhibit broader kinetics, higher prevalence, and greater structural diversity and stability. Most importantly, hG4 formation is tightly coupled to transcription through the involvement of RNA, allowing it to function in a transcription-dependent manner. Overall, our study establishes hG4s as the overwhelmingly dominant G4 species in the yeast genome and emphasizes a renewal of the current perception of the structural form, formation mechanism, prevalence, and functional role of G4s in eukaryotic genomes. It also establishes a sensitive and currently the only method for detecting the structural form of G4s in living cells.
Collapse
Affiliation(s)
- Chen-xia Ren
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
| | - Rui-fang Duan
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
| | - Jia Wang
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
| | - Yu-hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Zheng Tan
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| |
Collapse
|
5
|
Muramoto J, Sakamoto T. Tripodal Quinone-Cyanine G-Quadruplex Ligands as Novel Photosensitizers on Photoinduced Cancer Cell Death. Molecules 2024; 29:5094. [PMID: 39519736 PMCID: PMC11547667 DOI: 10.3390/molecules29215094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Guanine-quadruplex (G4) selective photosensitizers have huge potential for photodynamic therapy against various diseases correlated with G4 DNA and G4 RNAs; however, the types of photosensitizer skeletons available are limited. Herein, we investigated the ability of our original G4 ligands, tripodal quinone-cyanine dyes (tpQCy(s)), which were developed as fluorescent probes for G4, to act as photosensitizers for cancer-selective apoptosis inducers. The results indicated that the tpQCy skeleton has great potential for developing G4-targeted cancer-selective photosensitizers for photodynamic therapy. Among the two tpQCys, only QCy(BnBT)3, which has greater G4 selectivity, exhibited photoinduced cytotoxicity in HeLa cell growth, suggesting that the direct oxidation of G4 DNA or RNA is crucial for photoinduced cytotoxicity. RNA-seq analysis using a next-generation sequencing technique revealed that apoptosis was clearly induced by photoirradiation after QCy(BnBT)3 treatment.
Collapse
Affiliation(s)
- Junya Muramoto
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan;
| | - Takashi Sakamoto
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan;
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| |
Collapse
|
6
|
Liew D, Lim ZW, Yong EH. Machine learning-based prediction of DNA G-quadruplex folding topology with G4ShapePredictor. Sci Rep 2024; 14:24238. [PMID: 39414858 PMCID: PMC11484705 DOI: 10.1038/s41598-024-74826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Deoxyribonucleic acid (DNA) is able to form non-canonical four-stranded helical structures with diverse folding patterns known as G-quadruplexes (G4s). G4 topologies are classified based on their relative strand orientation following the 5' to 3' phosphate backbone polarity. Broadly, G4 topologies are either parallel (4+0), antiparallel (2+2), or hybrid (3+1). G4s play crucial roles in biological processes such as DNA repair, DNA replication, transcription and have thus emerged as biological targets in drug design. While computational models have been developed to predict G4 formation, there is currently no existing model capable of predicting G4 folding topology based on its nucleic acid sequence. Therefore, we introduce G4ShapePredictor (G4SP), an application featuring a collection of multi-classification machine learning models that are trained on a custom G4 dataset combining entries from existing literature and in-house circular dichroism experiments. G4ShapePredictor is designed to accurately predict G4 folding topologies in potassium ( K + ) buffer based on its primary sequence and is able to incorporate a threshold optimization strategy allowing users to maximise precision. Furthermore, we have identified three topological sequence motifs that suggest specific G4 folding topologies of (4+0), (2+2) or (3+1) when utilising the decision-making mechanisms of G4ShapePredictor.
Collapse
Affiliation(s)
- Donn Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
| | - Zi Way Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
| | - Ee Hou Yong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore.
| |
Collapse
|
7
|
Dobrovolná M, Mergny JL, Brázda V. Complete analysis of G-quadruplex forming sequences in the gapless assembly of human chromosome Y. Biochimie 2024:S0300-9084(24)00233-5. [PMID: 39389449 DOI: 10.1016/j.biochi.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Recent advancements have finally delivered a complete human genome assembly, including the elusive Y chromosome. This accomplishment closes a significant knowledge gap. Prior efforts were hampered by challenges in sequencing repetitive DNA structures such as direct and inverted repeats. We used the G4Hunter algorithm to analyze the presence of G-quadruplex forming sequences (G4s) within the current human reference genome (GRCh38) and the new telomere-to-telomere (T2T) Y chromosome assemblies. This analysis served a dual purpose: identifying the location of potential G4s within the genomes and exploring their association with functionally annotated sequences. Compared to GRCh38, the T2T assembly exhibited a significantly higher prevalence of G-quadruplex forming sequences. Notably, these repeats were abundantly located around precursor RNA, exons, genes, and within protein binding sites. This remarkable co-occurrence of G4-forming sequences with these critical regulatory regions suggests their role in fundamental DNA regulation processes. Our findings indicate that the current human reference genome significantly underestimated the number of G4s, potentially overlooking their functional importance.
Collapse
Affiliation(s)
- Michaela Dobrovolná
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Václav Brázda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
9
|
Wang R, Hu MH. Development of a fluorescent ligand that specifically binds to the c-MYC G-quadruplex by migrating the benzene group on a carbazole-benzothiazolium scaffold. Bioorg Chem 2024; 151:107690. [PMID: 39098087 DOI: 10.1016/j.bioorg.2024.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
c-MYC is one of the most important oncogenes, which is overexpressed in many cancers, and is highly related to development, metastasis, and drug resistance of cancers. The G4 structure in the promoter of c-MYC oncogene contributes a lot to the gene transcriptional mechanism. Small-molecule ligands binding to the c-MYC G4 appear to be a new class of anticancer agents. However, selective ligands for the c-MYC G4 over other G4s have been rarely reported. In this study, we reported a novel fluorescent ligand by migrating the benzene group on a carbazole-benzothiazolium scaffold, which was demonstrated to exhibit considerable specificity to the c-MYC G4, which was distinguished from other small-molecule ligands. The further cellular experiments suggested that this ligand may indeed target the promoter G4 and cause apparent transcriptional inhibition of the c-MYC oncogene instead of other G4-mediated oncogenes, which thereby resulted in cancer cell growth inhibition. Collectively, this study provided a good example for developing specific c-MYC G4 ligands, which may further develop into an effective anticancer agent that inhibit the c-MYC expression.
Collapse
Affiliation(s)
- Rui Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
10
|
Medoro A, Saso L, Scapagnini G, Davinelli S. NRF2 signaling pathway and telomere length in aging and age-related diseases. Mol Cell Biochem 2024; 479:2597-2613. [PMID: 37917279 PMCID: PMC11455797 DOI: 10.1007/s11010-023-04878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is well recognized as a critical regulator of redox, metabolic, and protein homeostasis, as well as the regulation of inflammation. An age-associated decline in NRF2 activity may allow oxidative stress to remain unmitigated and affect key features associated with the aging phenotype, including telomere shortening. Telomeres, the protective caps of eukaryotic chromosomes, are highly susceptible to oxidative DNA damage, which can accelerate telomere shortening and, consequently, lead to premature senescence and genomic instability. In this review, we explore how the dysregulation of NRF2, coupled with an increase in oxidative stress, might be a major determinant of telomere shortening and age-related diseases. We discuss the relevance of the connection between NRF2 deficiency in aging and telomere attrition, emphasizing the importance of studying this functional link to enhance our understanding of aging pathologies. Finally, we present a number of compounds that possess the ability to restore NRF2 function, maintain a proper redox balance, and preserve telomere length during aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| |
Collapse
|
11
|
Pirota V, Rey F, Esposito L, Fantini V, Pandini C, Maghraby E, Di Gerlando R, Doria F, Mella M, Pansarasa O, Gandellini P, Freccero M, Carelli S, Cereda C. Effective lowering of α-synuclein expression by targeting G-quadruplex structures within the SNCA gene. Int J Biol Macromol 2024; 277:134417. [PMID: 39098688 DOI: 10.1016/j.ijbiomac.2024.134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Alpha-synuclein, encoded by the SNCA gene, is a pivotal protein implicated in the pathogenesis of synucleinopathies, including Parkinson's disease. Current approaches for modulating alpha-synuclein levels involve antisense nucleotides, siRNAs, and small molecules targeting SNCA's 5'-UTR mRNA. Here, we propose a groundbreaking strategy targeting G-quadruplex structures to effectively modulate SNCA gene expression and lowering alpha-synuclein amount. Novel G-quadruplex sequences, identified on the SNCA gene's transcription starting site and 5'-UTR of SNCA mRNAs, were experimentally confirmed for their stability through biophysical assays and in vitro experiments on human genomic DNA. Biological validation in differentiated SH-SY5Y cells revealed that well-known G-quadruplex ligands remarkably stabilized these structures, inducing the modulation of SNCA mRNAs expression, and the effective decrease in alpha-synuclein amount. Besides, a novel peptide nucleic acid conjugate, designed to selectively disrupt of G-quadruplex within the SNCA gene promoter, caused a promising lowering of both SNCA mRNA and alpha-synuclein protein. Altogether our findings highlight G-quadruplexes' key role as intriguing biological targets in achieving a notable and successful reduction in alpha-synuclein expression, pointing to a novel approach against synucleinopathies.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, Pavia, Italy; G4-INTERACT, USERN, Pavia, Italy.
| | - Federica Rey
- G4-INTERACT, USERN, Pavia, Italy; Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| | - Valentina Fantini
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, Abbiategrasso, Italy
| | - Cecilia Pandini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Mariella Mella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mauro Freccero
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy.
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
12
|
De-Paula RB, Bacolla A, Syed A, Tainer JA. Enriched G4 forming repeats in the human genome are associated with robust well-coordinated transcription and reduced cancer transcriptome variation. J Biol Chem 2024; 300:107822. [PMID: 39341500 PMCID: PMC11532954 DOI: 10.1016/j.jbc.2024.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
Non-B DNA G-quadruplex (G4) structures with guanine (G) runs of 2 to 4 repeats can trigger opposing experimental transcriptional impacts. Here, we used bioinformatic algorithms to comprehensively assess correlations of steady-state RNA transcript levels with all putative G4 sequence (pG4) locations genome-wide in three mammalian genomes and in normal and tumor human tissues. The human pG4-containing gene set displays higher expression levels than the set without pG4, supporting and extending some prior observations. pG4 enrichment at transcription start sites (TSSs) in human, but not chimpanzee and mouse genomes, suggests possible positive selection pressure for pG4 at human TSS, potentially driving genome rewiring and gene expression divergence between human and chimpanzee. Comprehensive bioinformatic analyses revealed lower pG4-containing gene set variability in humans and among different pG4 genes in tumors. As G4 stabilizers are under therapeutic consideration for cancer and pathogens, such distinctions between human normal and tumor G4s along with other species merit attention. Furthermore, in germline and cancer sequences, the most mutagenic pG4 mapped to regions promoting alternative DNA structures. Overall findings establish high pG4 at TSS as a human genome attribute statistically associated with robust well-coordinated transcription and reduced cancer transcriptome variation with implications for biology, model organisms, and medicine.
Collapse
Affiliation(s)
- Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
13
|
Bisoi A, Majumdar T, Singh PC. Ionic Liquids-Induced Recovery of the G-Quadruplex DNA Destabilized by Dodine Fungicide. J Phys Chem B 2024; 128:9111-9119. [PMID: 39283898 DOI: 10.1021/acs.jpcb.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Dodine is an important surfactant-based chemical fungicide used widely to kill fungi associated with black spot and foliar diseases on several fruit plants, such as apples, pears, peaches, and strawberries. However, the extensive use of dodine depicts the genotoxic effect, which may cause gene-associated diseases. Dodine can destabilize G-quadruplex (G4) DNA, which is one of the key targets for cancer therapy. Hence, finding an eco-friendly medium that can reduce or reverse the destabilization effect of dodine on G4 is important. This study investigates the efficacy of ionic liquids (ILs) containing a 1,1,3,3-tetramethyl guanidinium (TMG) cation with various anions (chloride, acetate, trifluoroacetate, octanoate, and perfluorooctanoate) in restoring the structure and stability of G4 induced by dodine. Our findings demonstrate that all ILs effectively reverse dodine-induced destabilization of G4, with the required concentration varying based on the lipophilicity of IL's anions. Specifically, higher concentrations of TMG-chloride and TMG-acetate are needed compared to TMG-perfluorooctanoate for the same effect. The IL anions remove dodine from G4 binding sites, while the TMG cation's interaction with G4 mitigates the destabilizing effect of dodine. This study indicates that ILs can be an eco-friendly medium for the storage of dodine to reverse the effect of dodine on G4.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Trideep Majumdar
- School of Chemical Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Teng X, Hu D, Dai Y, Jing H, Hu W, Zhang Q, Zhang N, Li J. Discovery of A G-Quadruplex Unwinder That Unleashes the Translation of G-Quadruplex-Containing mRNA without Inducing DNA Damage. Angew Chem Int Ed Engl 2024; 63:e202407353. [PMID: 38953247 DOI: 10.1002/anie.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
To explore the mechanisms and therapeutic strategies for G-quadruplex (G4) mediated diseases, it is crucial to manipulate and intervene in intracellular G4 structures using small molecular tools. While hundreds of G4 stabilizers have been developed, there is a significant gap in the availability of G4 unwinding agents. Here, we propose a strategy to disrupt G-quadruplexes by forming G-C hydrogen bonds with chemically modified cytidine trimers. We validated a good G4 unwinder, the 2'-F cytidine trimer (2'-F C3). 2'-F C3 does not inhibit cell growth nor cause severe DNA damage at a concentration below 10 μM. Moreover, 2'-F C3 does not affect gene transcription nor RNA splicing, while it significantly enhances the translation of G4-containing mRNA and upregulates RNA splicing, RNA processing and cell cycle pathways. The discovery of this G4 unwinder provides a functional tool for the chemical modulation of G4s in living cells.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Beijing Life Science Academy, Beijing, 102209, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Difei Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qiushuang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Beijing Life Science Academy, Beijing, 102209, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Liu W, Zhu BC, Liu LY, Xia XY, Jang J, Dickerhoff J, Yang D, Mao ZW. Solution structures and effects of a platinum compound successively bound MYC G-quadruplex. Nucleic Acids Res 2024; 52:9397-9406. [PMID: 39077944 PMCID: PMC11381319 DOI: 10.1093/nar/gkae649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
G-quadruplex (G4) structures play integral roles in modulating biological functions and can be regulated by small molecules. The MYC gene is critical during tumor initiation and malignant progression, in which G4 acts as an important modulation motif. Herein, we reported the MYC promoter G4 recognized by a platinum(II) compound Pt-phen. Two Pt-phen-MYC G4 complex structures in 5 mM K+ were determined by NMR. The Pt-phen first strongly binds the 3'-end of MYC G4 to form a 1:1 3'-end binding complex and then binds 5'-end to form a 2:1 complex with more Pt-phen. In the complexes, the Pt-phen molecules are well-defined and stack over four bases at the G-tetrad for a highly extensive π-π interaction, with the Pt atom aligning with the center of the G-tetrad. The flanking residues were observed to rearrange and cover on top of Pt-phen to stabilize the whole complex. We further demonstrated that Pt-phen targets G4 DNA in living cells and represses MYC gene expression in cancer cells. Our work elucidated the structural basis of ligand binding to MYC promoter G4. The platinum compound bound G4 includes multiple complexes formation, providing insights into the design of metal ligands targeting oncogene G4 DNA.
Collapse
Affiliation(s)
- Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bo-Chen Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao- Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jinho Jang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Dickerhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Chen KY, Zeng YL, Mao ZW, Liu W. Development of a high quantum yield probe for detection of mitochondrial G-quadruplexes in live cells based on fluorescence lifetime imaging microscopy. Bioorg Med Chem 2024; 111:117856. [PMID: 39074413 DOI: 10.1016/j.bmc.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.
Collapse
Affiliation(s)
- Kai-Yi Chen
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You-Liang Zeng
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
17
|
Chen Y, Onizuka K, Nagatsugi F. Michael addition-activated alkylation of G-quadruplex DNA with methylamine-protected vinyl-quinazolinone derivatives. Bioorg Med Chem Lett 2024; 109:129855. [PMID: 38908766 DOI: 10.1016/j.bmcl.2024.129855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The role of G-quadruplex (G4) in cellular processes can be investigated by the covalent modification of G4-DNA using alkylating reagents. Controllable alkylating reagents activated by external stimuli can react elegantly and selectively. Herein, we report a chemical activation system that can significantly boost the reaction rate of methylamine-protected vinyl-quinazolinone (VQ) derivative for the alkylation of G4-DNA. The two screened activators can transform low-reactive VQ-NHR' to highly reactive intermediates following the Michael addition mechanism. This approach expands the toolbox of activable G4 alkylating reagents.
Collapse
Affiliation(s)
- Yutong Chen
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
18
|
Ji J, Sharma A, Pokhrel P, Karna D, Pandey S, Zheng YR, Mao H. Dynamic Structures and Fast Transition Kinetics of Oxidized G-Quadruplexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400485. [PMID: 38678502 PMCID: PMC11357892 DOI: 10.1002/smll.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Indexed: 05/01/2024]
Abstract
8-oxoguanines (8-oxoG) in cells form compromised G-quadruplexes (GQs), which may vary GQ mediated gene regulations. By mimicking molecularly crowded cellular environment using 40% DMSO or sucrose, here it is found that oxidized human telomeric GQs have stabilities close to the wild-type (WT) GQs. Surprisingly, while WT GQs show negative formation cooperativity between a Pt(II) binder and molecularly crowded environment, positive cooperativity is observed for oxidized GQ formation. Single-molecule mechanical unfolding reveals that 8-oxoG sequence formed more diverse and flexible structures with faster folding/unfolding transition kinetics, which facilitates the Pt(II) ligand to bind the best-fit structures with positive cooperativity. These findings offer new understanding on structures and properties of oxidized G-rich species in crowded environments. They also provide insights into the design of better ligands to target oxidized G-rich structures formed under oxidative cell stress.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Arpit Sharma
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
19
|
Troisi R, Sica F. Structural overview of DNA and RNA G-quadruplexes in their interaction with proteins. Curr Opin Struct Biol 2024; 87:102846. [PMID: 38848656 DOI: 10.1016/j.sbi.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Since the discovery of G-quadruplex (G4) participation in vital cellular processes, the regulation of the interaction of naturally occurring G4s with the relative target proteins has emerged as a promising approach for therapeutic development. Additionally, a synthetic strategy has produced several oligonucleotide aptamers, embodying a G4 module, which exhibit relevant biological activity by binding selectively to a target protein. In this context, the G4-protein structures available in the Protein Data Bank represent a valuable molecular view of the different G4 topologies involved in protein interaction. Interestingly, recent results have shown the co-existence of G4s with other structural domains such as duplexes. Overall, these findings allow a better understanding of the mechanisms that regulate intricate biological functions and suggest new design for innovative medical treatments.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, via Pietro Castellino 111, 80131 Naples, Italy. https://twitter.com/TroRom
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
20
|
Ooga M, Sahayasheela VJ, Hirose Y, Sasaki D, Hashiya K, Bando T, Sugiyama H. A dual DNA-binding conjugate that selectively recognizes G-quadruplex structures. Chem Commun (Camb) 2024. [PMID: 39072583 DOI: 10.1039/d4cc01572j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
G-quadruplex (G4) structures play roles in various biological processes, but the challenge lies in specific targeting. To address this, we synthesized a conjugate capable of recognizing the G4 structure and its proximal duplex. Our conjugate can enable recognition of specific G4s in the human genome to understand and target those structures.
Collapse
Affiliation(s)
- Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Alam P, Clovis NS, Chand AK, Khan MF, Sen S. Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy. Methods Appl Fluoresc 2024; 12:045002. [PMID: 39013401 DOI: 10.1088/2050-6120/ad63f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.
Collapse
Affiliation(s)
- Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Firoz Khan
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
23
|
Benassi A, Peñalver P, Pérez-Soto M, Pirota V, Freccero M, Morales JC, Doria F. Structure-Activity Study on Substituted, Core-Extended, and Dyad Naphthalene Diimide G-Quadruplex Ligands Leading to Potent Antitrypanosomal Agents. J Med Chem 2024; 67:10643-10654. [PMID: 38924701 DOI: 10.1021/acs.jmedchem.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Several G-quadruplex nucleic acid (G4s) ligands have been developed seeking target selectivity in the past decade. Naphthalene diimide (NDI)-based compounds are particularly promising due to their biological activity and red-fluorescence emission. Previously, we demonstrated the existence of G4s in the promoter region of parasite genomes, assessing the effectiveness of NDI-derivatives against them. Here, we explored the biological activity of a small library of G4-DNA ligands, exploiting the NDI pharmacophore, against both Trypanosoma brucei and Leishmania major parasites. Biophysical and biological assays were conducted. Among the various families analyzed, core-extended NDIs exhibited the most promising results concerning the selectivity and antiparasitic effects. NDI 16 emerged as the most potent, with an IC50 of 0.011 nM against T. brucei and remarkable selectivity vs MRC-5 cells (3454-fold). Fascinating, 16 is 480-fold more potent than the standard drug pentamidine (IC50 = 5.3 nM). Cellular uptake and parasite localization were verified by exploiting core-extended NDI red-fluorescent emission.
Collapse
Affiliation(s)
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Manuel Pérez-Soto
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Juan Carlos Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
24
|
Wang RX, Ou Y, Chen Y, Ren TB, Yuan L, Zhang XB. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging. J Am Chem Soc 2024; 146:11669-11678. [PMID: 38644738 DOI: 10.1021/jacs.3c13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yushi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Aderinto SO, John T, Onawole A, Galleh RP, Thomas JA. Iridium(III)-based minor groove binding complexes as DNA photocleavage agents. Dalton Trans 2024; 53:7282-7291. [PMID: 38466178 DOI: 10.1039/d4dt00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.
Collapse
Affiliation(s)
- Stephen O Aderinto
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abdulmujeeb Onawole
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
26
|
Fatma K, Thumpati P, Panda D, Velayutham R, Dash J. Selective Recognition of c-KIT 1 G-Quadruplex by Structural Tuning of Heteroaromatic Scaffolds and Side Chains. ACS Med Chem Lett 2024; 15:388-395. [PMID: 38505840 PMCID: PMC10945540 DOI: 10.1021/acsmedchemlett.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
In this study, carbazole (MC) and dibenzofuran (MD) derivatives were synthesized to examine their effect on the biomolecular recognition of G-quadruplex (G4) targets. Biophysical studies revealed that MC-4, a carbazole derivative, exhibits a specific affinity and effectively stabilizes the c-KIT 1 G4. Molecular modeling suggests a stable interaction of MC-4 with the terminal G-tetrad of c-KIT 1 G4. Biological studies demonstrate that MC-4 efficiently enters cells, reduces c-KIT gene expression, and induces cell cycle arrest, DNA damage, and apoptosis in cancer cells. These findings demonstrate MC-4 as a selective c-KIT G4 ligand with therapeutic potential, providing insight into the structural basis of its anticancer mechanisms.
Collapse
Affiliation(s)
- Khushnood Fatma
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
| | - Prasanth Thumpati
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
- National
Institute of Pharmaceutical Education and Research, Chunilal Bhawan, Maniktala, Kolkata-700054, India
| | - Deepanjan Panda
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
| | - Ravichandiran Velayutham
- National
Institute of Pharmaceutical Education and Research, Chunilal Bhawan, Maniktala, Kolkata-700054, India
| | - Jyotirmayee Dash
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
27
|
Figueiredo J, Mergny JL, Cruz C. G-quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci 2024; 340:122481. [PMID: 38301873 DOI: 10.1016/j.lfs.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Guanine-rich sequences can form G-quadruplexes (G4) in living cells, making these structures promising anti-cancer targets. Compounds able to recognize these structures have been investigated as potential anticancer drugs; however, no G4 binder has yet been approved in the clinic. Here, we describe G4 ligands structure-activity relationships, in vivo effects as well as clinical trials. Addressing G4 ligand characteristics, targeting challenges, and structure-activity relationships, this review provides insights into the development of potent and selective G4-targeting molecules for therapeutic applications.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau cedex, France; Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
28
|
Han X, Xu S, Wang L, Bi Z, Wang D, Bu H, Da J, Liu Y, Tan W. Artificial DNA Framework Channel Modulates Antiapoptotic Behavior in Ischemia-Stressed Cells via Destabilizing Promoter G-Quadruplex. ACS NANO 2024; 18:6147-6161. [PMID: 38372229 DOI: 10.1021/acsnano.3c06563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Regulating folding/unfolding of gene promoter G-quadruplexes (G4s) is important for understanding the topological changes in genomic DNAs and the biological effects of such changes on important cellular events. Although many G4-stabilizing ligands have been screened out, effective G4-destabilizing ligands are extremely rare, posing a great challenge for illustrating how G4 destabilization affects gene function in living cells under stress, a long-standing question in neuroscience. Herein, we report a distinct methodology able to destabilize gene promoter G4s in ischemia-stressed neural cells by mitigating the ischemia-induced accumulation of intracellular K+ with an artificial membrane-spanning DNA framework channel (DFC). We also show that ischemia-triggered K+ influx is positively correlated to anomalous stabilization of promoter G4s and downregulation of Bcl-2, an antiapoptotic gene with neuroprotective effects against ischemic injury. Intriguingly, the DFC enables rapid transmembrane transport of excessive K+ mediated by the internal G4 filter, leading to the destabilization of endogenous promoter G4 in Bcl-2 and subsequent turnover of gene expression at both transcription and translation levels under ischemia. Consequently, this work enriches our understanding of the biological roles of endogenous G4s and may offer important clues to study the cellular behaviors in response to stress.
Collapse
Affiliation(s)
- Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Shujuan Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Huitong Bu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Da
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Wang XD, Liu YS, Hu MH. Discovery of a near-infrared fluorescent probe for G-quadruplexes by exploiting the concept of unfolding-intramolecular-aggregation-induced emission. Bioorg Chem 2024; 143:107006. [PMID: 38035514 DOI: 10.1016/j.bioorg.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
In the very recent years, the concept of disaggregation-induced emission (DIE) has been applied to design G4 probes, thereby rendering several fluorophores that may suffer from aggregation-induced quenching (ACQ) to develop into desirable G4-selective probes. However, the design idea based on DIE was often limited by the instability and irreversibility of the "intermolecular" aggregation/disaggregation process. In this study, a self-folded, near-infrared fluorescent probe for selectively illuminating G4s was engineered. This probe restored its fluorescence via unfolding of its intramolecular aggregation (UIA) mediated by distinctive G4 binding, which may display more controllable background emission as well as more promising ability to track G4 forming dynamics as compared to the reported DIE probes. Altogether, this study provided insights into the development of new types of applicable G4 selective fluorescent probes.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yong-Si Liu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
30
|
Atapour-Mashhad H, Soukhtanloo M, Golmohammadzadeh S, Chamani J, Nejabat M, Hadizadeh F. Synthesis and Molecular Dynamic Simulation of Novel Cationic and Non-cationic Pyrimidine Derivatives as Potential G-quadruplex-ligands. Anticancer Agents Med Chem 2024; 24:1126-1141. [PMID: 38840398 DOI: 10.2174/0118715206291797240523112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/27/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Drug resistance has been a problem in cancer chemotherapy, which often causes shortterm effectiveness. Further, the literature indicates that telomere G-quadruplex could be a promising anti-cancer target. OBJECTIVE We synthesized and characterized two new pyrimidine derivatives as ligands for G-quadruplex DNA. METHODS The interaction of novel non-cationic and cationic pyrimidine derivatives (3a, b) with G-quadruplex DNA (1k8p and 3qsc) was explored by circular dichroism (CD) and ultraviolet-visible spectroscopy and polyacrylamide gel electrophoresis (PAGE) methods. The antiproliferative activity of desired compounds was evaluated by the MTT assay. Apoptosis induction was assessed by Propidium iodide (P.I.) staining and flow cytometry. Computational molecular modeling (CMM) and molecular dynamics simulation (MD) were studied on the complexes of 1k8p and 3qsc with the compounds. The van der Waals, electrostatic, polar solvation, solventaccessible surface area (SASA), and binding energies were calculated and analyzed. RESULTS The experimental results confirmed that both compounds 3a and 3b interacted with 1k8p and 3qsc and exerted cytotoxic and proapoptotic effects on cancer cells. The number of hydrogen bonds and the RMSD values increased in the presence of the ligands, indicating stronger binding and suggesting increased structural dynamics. The electrostatic contribution to binding energy was higher for the cationic pyrimidine 3b, indicating more negative binding energies. CONCLUSION Both experimental and MD results confirmed that 3b was more prone to form a complex with DNA G-quadruplex (1k8p and 3qsc), inhibit cell growth, and induce apoptosis, compared to the non-cationic pyrimidine 3a.
Collapse
Affiliation(s)
- Hoda Atapour-Mashhad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, School of Medicine, Mashhad University Of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Schumann SL, Kotnig S, Kutin Y, Drosou M, Stratmann LM, Streltsova Y, Schnegg A, Pantazis DA, Clever GH, Kasanmascheff M. Structure and Flexibility of Copper-Modified DNA G-Quadruplexes Investigated by 19 F ENDOR Experiments at 34 GHz. Chemistry 2023; 29:e202302527. [PMID: 37602522 DOI: 10.1002/chem.202302527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
DNA G-quadruplexes (GQs) are of great interest due to their involvement in crucial biological processes such as telomerase maintenance and gene expression. Furthermore, they are reported as catalytically active DNAzymes and building blocks in bio-nanotechnology. GQs exhibit remarkable structural diversity and conformational heterogeneity, necessitating precise and reliable tools to unravel their structure-function relationships. Here, we present insights into the structure and conformational flexibility of a unimolecular GQ with high spatial resolution via electron-nuclear double resonance (ENDOR) experiments combined with Cu(II) and fluorine labeling. These findings showcase the successful application of the 19 F-ENDOR methodology at 34 GHz, overcoming the limitations posed by the complexity and scarcity of higher-frequency spectrometers. Importantly, our approach retains both sensitivity and orientational resolution. This integrated study not only enhances our understanding of GQs but also expands the methodological toolbox for studying other macromolecules.
Collapse
Affiliation(s)
- Simon L Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Simon Kotnig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yana Streltsova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
32
|
Bisoi A, Sarkar S, Singh PC. Hydrophobic Interaction-Induced Topology-Independent Destabilization of G-Quadruplex. Biochemistry 2023; 62:3430-3439. [PMID: 37971518 DOI: 10.1021/acs.biochem.3c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Since the inception of the G-quadruplex (G4), enormous attention has been devoted to designing small molecules which can stabilize the G-quadruplex. In contrast, the knowledge about the molecules and mechanisms involved in the destabilization of G4 is sparse, although it is well recognized that destabilization of G4 is important in neurobiology and age-related genetic issues. In this study, it has been shown that amphiphilic molecules having a long hydrocarbon chain can destabilize G4, regardless of its topology, using various biophysical and molecular dynamics simulation methods. It has been observed that the hydrophobic interaction induced by the long hydrocarbon chain of amphiphilic molecules is the main contributor in triggering the destabilization of G4, although hydrogen bonding by the polar part of the molecules also cooperates in the destabilization process. The experiment and simulation studies suggest that a long hydrocarbon chain containing amphiphilic molecules gets aggregated, and their hydrocarbon chain as well as the polar group intrude in the quartet region from the 5' side and interact with guanine bases as well as nearby loops through hydrophobic and electrostatic interactions, which trigger the destabilization of G4.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
33
|
Lejault P, Prudent L, Terrier MP, Perreault JP. Small molecule chaperones facilitate the folding of RNA G-quadruplexes. Biochimie 2023; 214:83-90. [PMID: 37666291 DOI: 10.1016/j.biochi.2023.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
RNA G-quadruplexes (rG4) have recently emerged as major regulatory elements in both mRNA and non-coding RNA. In order to investigate the biological roles of rG4 structures, chemists have developed a variety of highly specific and potent ligands. All of these ligands bind to the rG4s by stacking on top of them. The binding specificity is demonstrated by comparison to other structures such as duplex or three-way junctions. It remains unclear whether rG4-ligands merely stabilize fully formed rG4 structures, or if they actively participate in the folding of the rG4 structure through their association with an unfolded RNA sequence. In order to elucidate the innate steps of ligand-rG4 associations and mechanisms robust in vitro techniques, including FRET, electrophoretic mobility shift assays and reverse transcriptase stalling assays, were used to examine the capacity of five well-known G4 ligands to induce rG4 structures derived from either long non-coding RNAs or from synthetic RNAs. It was found that both PhenDC3 and PDS induce rG4 formation in single RNA strands. This discovery has important implications for the interpretation of RNA-seq experiments. Overall, in vitro data that can assist biochemists in selecting the optimal G4-ligands for their RNA cellular experiments are presented, and the effects induced by these ligands on the rG4s are also considered.
Collapse
Affiliation(s)
- Pauline Lejault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Louis Prudent
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michel-Pierre Terrier
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
34
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
35
|
Lin J, Zhang J, Ma Z, Wu X, Wang F, Zhao Y, Wu K, Liu Y. Reaction of human telomeric unit TTAGGG and a photoactivatable Pt(IV) anticancer prodrug. Dalton Trans 2023; 52:12057-12066. [PMID: 37581306 DOI: 10.1039/d3dt01643a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The interaction of a photoactivatable diazidodihydroxido Pt(IV) prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1), with a hexamer straight human telomeric DNA unit sequence (5'-T1T2A3G4G5G6-3', I) upon light irradiation was investigated by electrospray ionization mass spectroscopy (ESI-MS). In the primary mass spectrum, two major mono-platinated I adducts with the bound Pt moieties, trans-[PtII(N3)(py)2]+ (1') and trans-[PtII(py)2]2+ (1''), respectively, were detected. It is rare to observe such high abundance and nearly equal intensity platinated DNA adducts formed by these two PtII species because 1' is usually the only major reduced Pt(II) species produced by the photodecomposition of complex 1 in the presence of DNA while 1'' was rarely detected as the major reduced PtII species reported previously. Subsequent tandem mass spectrometric analysis by collision-induced dissociation (CID) showed that in the former adduct {I + 1'}2+, G6 and A3 were the platination sites. While in the latter adduct {I + 1''}2+, a potential intrastrand crosslink was speculated after G4 and G6 sites were identified. Additionally, other minor platinated adducts like di-platinated I adduct by 1' with platination sites at G4 and G6 and mono-platinated I adducts containing base oxidation were also detected by mass spectrometry. Due to the rich guanines and their sensitivity to oxidation, the oxidation induced by 1 most probably occurred at guanine. The oxidation adducts were proposed as 8-hydroxyl guanine, spiroiminodihydantoin (Sp), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 5-guanidinohydantoin (Gh), and/or dehydroguanidinohydantoin (DGh) referring to previous reports. The obtained results provide useful chemical information about the photoreaction between photoactivatable Pt(IV) anticancer prodrugs and human telomeric DNA. Such special damages of Pt(IV) prodrugs on human telomeric DNA implicate its active role in the mechanism of Pt(IV) prodrugs and further support the unique sequence-dependent photointeraction profile of complex 1 reacting with DNA.
Collapse
Affiliation(s)
- Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yi Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|
36
|
Dong J, Willner I. Transient Transcription Machineries Modulate Dynamic Functions of G-Quadruplexes: Temporal Regulation of Biocatalytic Circuits, Gene Replication and Transcription. Angew Chem Int Ed Engl 2023; 62:e202307898. [PMID: 37380611 DOI: 10.1002/anie.202307898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
37
|
Sarkar S, Bisoi A, Singh PC. Antimalarial Drugs Induce the Selective Folding of Human Telomeric G-Quadruplex in a Cancer-Mimicking Microenvironment. J Phys Chem B 2023; 127:6648-6655. [PMID: 37467470 DOI: 10.1021/acs.jpcb.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Regulating the equilibrium between the duplex form of DNA and G-quadruplex (Gq) and stabilizing the folded Gq are the critical factors for any drug to be effective in cancer therapy due to the direct involvement of Gq in controlling the transcription process. Antimalarial drugs are in the trial stage for different types of cancer diseases; however, the plausible mechanism of action of these drug molecules is not well known. Hence, we investigate the plausible role of antimalarial drugs in the folding and stabilization of Gq-forming DNA sequences from the telomere and promoter gene regions by varying the salt (KCl) concentrations, mimicking the in vitro cancerous and normal cell microenvironments. The study reveals that antimalarial drugs fold and stabilize specifically to telomere Gq-forming sequences in the cancerous microenvironment than the DNA sequences located in the promoter region of the gene. Antimalarial drugs are not only able to fold Gq but also efficiently protect them from unfolding by their complementary strands, hence significantly biasing the equilibrium toward the Gq formation from the duplex. In contrast, in a normal cell microenvironment, K+ controls the folding of telomeres, and the role of antimalarial drugs is not prominent. This study suggests that the action of antimalarial drugs is sensitive to the cancer microenvironment as well as selective to the Gq-forming region.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
38
|
He C, Peng J, Li Z, Yang Q, Zhang Y, Luo X, Liu Z, Feng G, Fang J. Engineering a Red Fluorescent Protein Chromophore for Visualization of RNA G-Quadruplexes. Biochemistry 2023. [PMID: 37376793 DOI: 10.1021/acs.biochem.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Synthetic red fluorescent protein (RFP) chromophores have emerged as valuable tools for biological imaging and therapeutic applications, but their application in the visualization of endogenous RNA G-quadruplexes (G4s) in living cells has been rarely reported so far. Here, by integrating the group of the excellent G4 dye ThT, we modulate RFP chromophores to create a novel fluorescent probe DEBIT with red emission. DEBIT selectively recognizes the G4 structure with the advantage of strong binding affinity, high selectivity, and excellent photostability. Using DEBIT as a fluorescent indicator, the real-time monitoring of RNA G4 in biological systems can be achieved. In summary, our work expands the application of synthetic RFP chromophores and provides an essential dye category to the classical G4 probes.
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zekai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
39
|
Xiao CD, Jia MH, Zhong MQ, Xu Y, Yu ZT, He ZY, Lu X, Zhang Y, Zhou X, Fu LY, Shen XC. Unveiling the role of G-quadruplex structure in promoter region: Regulation of ABCA1 expression in macrophages possibly via NONO protein recruitment. Int J Biol Macromol 2023:125443. [PMID: 37353131 DOI: 10.1016/j.ijbiomac.2023.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
ABCA1 has been found to be critical for cholesterol efflux in macrophages. Understanding the mechanism regulating ABCA1 expression is important for the prevention and treatment of atherosclerosis. In the present study, a G-quadruplex (G4) structure was identified in the ABCA1 promoter region. This G4 was shown to be essential for ABCA1 transcription. Stabilizing the G4 by ligands surprisingly upregulated ABCA1 expression in macrophages. Knocking out the G4 remarkably reduced ABCA1 expression, and abolished the increase of ABCA1 expression induced by the G4 ligand. By pull-down assays, the protein NONO was identified as an ABCA1 G4 binder. Overexpression or repression of NONO significantly induced upregulation and downregulation of ABCA1 expression, respectively. ChIP and EMSA experiments showed that the G4 ligand promoted the binding between the ABCA1 G4 and NONO, which led to more recruitment of NONO to the promoter region and enhanced ABCA1 transcription. Finally, the G4 ligand was shown to significantly reduce the accumulation of cholesterol in macrophages. This study showed a new insight into the regulation of gene expression by G4, and provided a new molecular mechanism regulating ABCA1 expression in macrophages. Furthermore, the study showed a possible novel application of the G4 ligand: preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Zu-Tao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zhi-Yong He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xu Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yan Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Xue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Lin-Yun Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| |
Collapse
|
40
|
Zhang X, Barrow J, van Mourik T, Bühl M. Towards Computational Modeling of Ligand Binding to the ILPR G-Quadruplex. Molecules 2023; 28:molecules28083447. [PMID: 37110681 PMCID: PMC10145587 DOI: 10.3390/molecules28083447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Using a combination of unconstrained and constrained molecular dynamics simulations, we have evaluated the binding affinities between two porphyrin derivatives (TMPyP4 and TEGPy) and the G-quadruplex (G4) of a DNA fragment modeling the insulin-linked polymorphic region (ILPR). Refining a well-established potential of mean force (PMF) approach to selections of constraints based on root-mean-square fluctuations results in an excellent agreement between the calculated and observed absolute free binding energy of TMPyP4. The binding affinity of IPLR-G4 toward TEGPy is predicted to be higher than that toward TMPyP4 by 2.5 kcal/mol, which can be traced back to stabilization provided by the polyether side chains of TMPyP4 that can nestle into the grooves of the quadruplex and form hydrogen bonds through the ether oxygen atoms. Because our refined methodology can be applied to large ligands with high flexibility, the present research opens an avenue for further ligand design in this important area.
Collapse
Affiliation(s)
- Xiaotong Zhang
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - John Barrow
- School of Medicine, Medical Sciences and Nutrition, Institute of Education in Healthcare and Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Tanja van Mourik
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
41
|
Wu TY, Chen XC, Tang GX, Shao W, Li ZC, Chen SB, Huang ZS, Tan JH. Development and Characterization of Benzoselenazole Derivatives as Potent and Selective c-MYC Transcription Inhibitors. J Med Chem 2023; 66:5484-5499. [PMID: 37036951 DOI: 10.1021/acs.jmedchem.2c01808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Developing c-MYC transcription inhibitors that target the G-quadruplex has generated significant interest; however, few compounds have demonstrated specificity for c-MYC G-quadruplex and cancer cells. In this study, we designed and synthesized a series of benzoazole derivatives as potential G-quadruplex ligand-based c-MYC transcription inhibitors. Surprisingly, benzoselenazole derivatives, which are rarely reported as G-quadruplex ligands, demonstrated greater c-MYC G-quadruplex selectivity and cancer cell specificity compared to their benzothiazole and benzoxazole analogues. The most promising compound, benzoselenazole m-Se3, selectively inhibited c-MYC transcription by specifically stabilizing the c-MYC G-quadruplex. This led to selective inhibition of hepatoma cell growth and proliferation by affecting the MYC target gene network, as well as effective tumor growth inhibition in hepatoma xenografts. Collectively, our study demonstrates that m-Se3 holds significant promise as a potent and selective inhibitor of c-MYC transcription for cancer treatment. Furthermore, our findings inspire the development of novel selenium-containing heterocyclic compounds as c-MYC G-quadruplex-specific ligands and transcription inhibitors.
Collapse
Affiliation(s)
- Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhang-Chi Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
42
|
Teng X, Dai Y, Li K, Wu Y, Hou H, Li J. LiveG4ID-Seq for Profiling the Dynamic Landscape of Chromatin G-Quadruplexes During Cell Cycle in Living Cells. SMALL METHODS 2023; 7:e2201487. [PMID: 36739600 DOI: 10.1002/smtd.202201487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
G-quadruplex (G4) structures exist in the single-stranded DNA of chromatin and regulate genome function. However, the native chromatin G4 landscape in living cells has yet to be fully characterized. Herein, a genetic-encoded live-cell G4 identifier probe (LiveG4ID) is constructed and its cellular localization, biocompatibility, and G4-binding specificity is evaluated. By coupling LiveG4ID with cleavage under targets and tagmentation (CUT&Tag), LiveG4ID-seq, a method for mapping native chromatin G4 landscape in living cells with high accuracy is established. Compared to the conventional G4 CUT&Tag method, LiveG4ID-seq can identify more chromatin G4 signals and have a higher ratio of true positive signals. Using LiveG4ID-seq, the dynamic landscape of chromatin G4 structures during the cell cycle is profiled. It is discovered that chromatin G4 structures are prevalent in the promoter regions of cell cycle-specific genes, even in the early M phase when the chromatin is condensed. These data demonstrate the capacity of LiveG4ID-seq to profile a more accurate G4 landscape in living cells and promote future studies on chromatin G4 structures.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Ke Li
- Novoprotein Scientific Inc., Shanghai, 201210, China
| | - Yuncong Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
- Beijing Institute of Life Science and Technology, Beijing, 100101, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
43
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
44
|
Uyar B, Ozsamur NG, Celik FS, Ozbayram I, Erbas-Cakmak S. Downregulation of gene expression in hypoxic cancer cells by an activatable G-quadruplex stabiliser. Chem Commun (Camb) 2023; 59:2247-2250. [PMID: 36723070 DOI: 10.1039/d2cc06347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the research, the modulation of gene expression with a novel G-quadruplex stabiliser was analysed. Activation by the removal of bulky hypoxia-responsive substituent enhances G-quadruplex stabilisation. Hypoxic MCF7 cells incubated with the stabiliser displayed significant downregulation of oncogenes c-myc, bcl-2, and hif-1α. This study presents the first hypoxia-activatable G-quadruplex stabilization and transcriptional regulation.
Collapse
Affiliation(s)
- Busra Uyar
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Nezahat Gokce Ozsamur
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Fatma Secer Celik
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Ilkyaz Ozbayram
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Sundus Erbas-Cakmak
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey. .,Konya Food and Agriculture University, Department of Molecular Biology and Genetics, Konya 42080, Turkey
| |
Collapse
|
45
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
46
|
Roy S, Bhattacharya S. Chemical Information and Computational Modeling of Targeting Hybrid Nucleic Acid Structures of PIM1 Sequences by Synthetic Pyrrole-Imidazole Carboxamide Drugs. J Chem Inf Model 2022; 62:6411-6422. [PMID: 35687766 DOI: 10.1021/acs.jcim.1c01500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA can adopt various distinct structural motifs, such as quadruplex, duplex, i-motifs, etc. which have multifarious applications in biomedical therapeutics. Quadruplex-duplex hybrids (QDHs) consist of the juxtaposed quadruplex and duplex motifs and are thermally stable and biologically relevant. Selective binding toward these secondary structures plays an important role in the evaluation of the structure-specific ligands. Herein, several small molecules containing anthraquinone conjugated oligopyrrole, oligoimidazole, and pyrrole-imidazole derivatives have been screened for the binding of the quadruplex-duplex nucleic acid hybrids formed in PIM1 sequences through docking and molecular dynamics (MD) simulation studies. The binding interaction of the anthraquinone polypyrrole ligands has also been checked by performing different biophysical experiments. PIM1, being a coactivator of the MYC oncogene, can be targeted by these small molecules to control MYC expression which is overexpressed in the majority of human cancer cells. Accordingly, these cancer cell-specific and blood-compatible anthraquinone conjugated oligopyrrole ligands can be employed for anticancer therapeutic applications. Thus, the structure-activity relationship (SAR) of the screened ligands manifested prudent structural information for designing PIM1 QDHs targeting small molecules.
Collapse
Affiliation(s)
- Soma Roy
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
47
|
Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int J Mol Sci 2022; 23:ijms232416020. [PMID: 36555662 PMCID: PMC9786302 DOI: 10.3390/ijms232416020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by four guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are implicated in the control of gene expression. Most G4-forming DNA contains more G residues than can simultaneously be incorporated into the core resulting in a variety of different possible G4 structures. Although this kind of structural polymorphism is well recognized in the literature, there remain unanswered questions regarding possible connections between G4 polymorphism and biological function. Here we report a detailed bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis is based on identifying G4-containing regions (G4CRs), which we define as stretches of DNA in which every residue can form part of a G4. We found that G4CRs with higher degrees of polymorphism are more tightly clustered near transcription sites and tend to contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-characterized biological functions tended to be longer and more polymorphic than genome-wide averages. These results represent new evidence linking G4 polymorphism to biological function and provide new criteria for identifying biologically relevant G4-forming regions from genomic data.
Collapse
|
48
|
Wang X, Chen S, Zhao Z, Chen F, Huang Y, Guo X, Lei L, Wang W, Luo Y, Yu H, Wang J. Genomic G-quadruplex folding triggers a cytokine-mediated inflammatory feedback loop to aggravate inflammatory diseases. iScience 2022; 25:105312. [PMID: 36304116 PMCID: PMC9593248 DOI: 10.1016/j.isci.2022.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
DNA G-quadruplex is a non-canonical secondary structure that could epigenetically regulate gene expression. To investigate the regulating role of G-quadruplex, we devised an integrating method to perform the algorithm profiling and genome-wide analysis for the dynamic change of genomic G-quadruplex and RNA profiles in rat nucleus pulposus cells by inducing G-quadruplex folding with multiple stabilizers. A group of genes potentially regulated by G-quadruplex and involved in the inflammation process has been identified. We found that G-quadruplex folding triggers inflammation response by upregulating inflammatory cytokines, which could promote G-quadruplex folding in a manner of positive feedback loop. Moreover, we confirmed that G-quadruplex is a marker indicating elevated inflammatory status and G-quadruplex folding facilitates the development of inflammatory diseases using in vivo intervertebral disc degeneration models. The crosstalk between G-quadruplex and inflammatory cytokines plays a vital role in regulating inflammation-derived diseases, which may provide new insights into the blocking target.
Collapse
Affiliation(s)
- Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunlun Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoyang Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Huang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingyu Guo
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Linchuan Lei
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wantao Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanxin Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
49
|
Simisi Clovis N, Alam P, Kumar Chand A, Sardana D, Firoz Khan M, Sen S. Molecular Crowders Modulate Ligand Binding Affinity to G-Quadruplex DNA by Decelerating Ligand Association. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Chen Y, Onizuka K, Hazemi ME, Nagatsugi F. Reactivity Modulation of Reactive OFF–ON Type G-Quadruplex Alkylating Agents. Bioconjug Chem 2022; 33:2097-2102. [DOI: 10.1021/acs.bioconjchem.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yutong Chen
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Madoka E. Hazemi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|