1
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Liu S, Guo H, Kong Z, Han X, Gao Y, Zhang Y, Daigger GT, Zhang P, Kang J, Yu S, Li G, Song G. Performance improvement and application of copper-based nanomaterials in membrane technology for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122755. [PMID: 39378812 DOI: 10.1016/j.jenvman.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Membrane fouling, including organic, inorganic, and biological fouling, poses enormous challenges in membrane water treatment. Incorporation of copper-based nanomaterials in polymeric membranes is highly favored due to their exceptional antibacterial properties and capacity to improve membrane hydrophilicity. This review extensively explores the utilization of copper-based nanomaterials in membrane technology for water treatment, with a specific focus on enhancing anti-fouling performance. It elaborates on how copper-based nanomaterials improve the surface properties of membrane materials (such as porosity, hydrophilicity, surface charge, etc.) through physical and chemical processes. It summarizes the properties and potential antibacterial mechanisms of copper-based nanomaterials, primarily by disrupting microbial cell structures through the generation of reactive oxygen species (ROS). Furthermore, recent efforts to enhance the environmental sustainability, cost-effectiveness, and recyclability of copper-based nanomaterials are outlined. The attempts to offer insights for the advancement of anti-fouling practices in water treatment through the use of copper-modified polymer membranes.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Shuchun Yu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Mulinari J, Rigo D, Demaman Oro CE, de Meneses AC, Zin G, Eleutério RV, Tres MV, Dallago RM. Multienzyme Immobilization on PVDF Membrane via One-Step Mussel-Inspired Method: Enhancing Fouling Resistance and Self-Cleaning Efficiency. MEMBRANES 2024; 14:208. [PMID: 39452819 PMCID: PMC11509426 DOI: 10.3390/membranes14100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Immobilizing different enzymes on membranes can result in biocatalytic active membranes with a self-cleaning capacity toward a complex mixture of foulants. The membrane modification can reduce fouling and enhance filtration performance. Protease, lipase, and amylase were immobilized on poly(vinylidene fluoride) (PVDF) microfiltration membranes using a polydopamine coating in a one-step method. The concentrations of polydopamine precursor and enzymes were optimized during the immobilization. The higher hydrolytic activities were obtained using 0.2 mg/mL of dopamine hydrochloride and 4 mg/mL of enzymes: 0.90 mgstarch/min·cm2 for amylase, 10.16 nmoltyrosine/min·cm2 for protease, and 20.48 µmolp-nitrophenol/min·cm2 for lipase. Filtration tests using a protein, lipid, and carbohydrate mixture showed that the modified membrane retained 41%, 29%, and 28% of its initial water permeance (1808 ± 39 L/m2·h·bar) after three consecutive filtration cycles, respectively. In contrast, the pristine membrane (initial water permeance of 2016 ± 40 L/m2·h·bar) retained only 23%, 12%, and 8%. Filtrations of milk powder solution were also performed to simulate dairy industry wastewater: the modified membrane maintained 28%, 26%, and 26% of its initial water permeance after three consecutive filtration cycles, respectively, and the pristine membrane retained 34%, 21%, and 7%. The modified membrane showed increased fouling resistance against a mixture of foulants and presented a similar water permeance after three cycles of simulated dairy wastewater filtration. Membrane fouling is reduced by the immobilized enzymes through two mechanisms: increased membrane hydrophilicity (evidenced by the reduced water contact angle after modification) and the enzymatic hydrolysis of foulants as they accumulate on the membrane surface.
Collapse
Affiliation(s)
- Jéssica Mulinari
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| | - Diane Rigo
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| | - Carolina Elisa Demaman Oro
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| | | | - Guilherme Zin
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
| | - Rafael Vidal Eleutério
- Graduate Program in Materials Science and Engineering (PGMAT), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul 96503-205, Brazil
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| |
Collapse
|
4
|
Li H, Li X, Ouyang G, Huang L, Li L, Li W, Huang W, Li D. Ultrathin organic solvent nanofiltration membrane with polydopamine-HKUST-1 interlayer for organic solvent separation. J Environ Sci (China) 2024; 141:182-193. [PMID: 38408819 DOI: 10.1016/j.jes.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 02/28/2024]
Abstract
Polydopamine (PDA) and metal-organic skeleton HKUST-1 were co-deposited on the base membrane of hexamethylenediamine (HDA)-crosslinked polyetherimide (PEI) ultrafiltration membrane as the interlayer, and high-throughput organic solvent nanofiltration membrane (OSN) was prepared by interfacial polymerization and solvent activation reaction. The polyamide (PA) layer surface roughness from 28.4 nm in PA/PEI to 78.3 nm in PA/PDA-HKUST-10.6/PEI membrane, reduced the thickness of the separation layer from 79 to 14 nm, and significantly improved the hydrophilic, thermal and mechanical properties. The flux of the PA/PDA-HKUST-10.6/PEI membrane in a 0.1 g/L Congo Red (CR) ethanol solution at 0.6 MPa test pressure reached 21.8 L/(m2·hr) and the rejection of CR was 92.8%. Solvent adsorption test, N, N-dimethylformamide (DMF) immersion experiment, and long-term operation test in ethanol showed that the membranes had high solvent tolerance. The solvent flux test demonstrated that, under the test pressure of 0.6 MPa, the flux of different solvents ranked as follows: methanol (56.9 L/(m2·hr)) > DMF (39.6 L/(m2·hr)) > ethanol (31.2 L/(m2·hr)) > IPA (4.5 L/(m2·hr)) > N-hexane (1.9 L/(m2·hr)). The ability of the membranes to retain dyes in IPA/water dyes solution was also evaluated. The flux of the membrane was 30.4 L/(m2·hr) and the rejection of CR was 91.6% when the IPA concentration reached 50%. This OSN membrane-making strategy is economical, environment-friendly and efficient, and has a great application prospect in organic solvent separation systems.
Collapse
Affiliation(s)
- Haike Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xindong Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guozai Ouyang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lijinhong Huang
- School of Architecture and Design, Jiangxi University of Science and Technology, Ganzhou 341000, China; WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6845, Australia
| | - Lang Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wenhao Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wanfu Huang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Duokun Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
5
|
Sun Y, Yong Z, Xie X, Ma X, Xu C, Hu B, He J, Guo Y, Bai B. Improving antifouling performance of FO membrane by surface immobilization of silver nanoparticles based on a tannic acid: diethylenetriamine precursor layer for municipal wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30988-31000. [PMID: 38622420 DOI: 10.1007/s11356-024-33312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
In this study, a facile method for multifunctional surface modification on forward osmosis (FO) membrane was constructed by surface immobilization of AgNPs based on tannic acid (TA)/diethylenetriamine (DETA) precursor layer. The cellulose triacetate (CTA) FO membranes modified by TA and DETA with different co-deposition time (6 h, 12 h, 24 h) were investigated. Results indicated that the TA/DETA (24)-Ag CTA membrane with a TA/DETA co-deposition time of 24 h was identified to be optimal, which attained more hydrophilic. And it had the bacterial mortality of Escherichia coli and Staphylococcus aureus reaching 98.23% and 99.83% respectively and possessed excellent physical and chemical binding stability. Meanwhile, the coating layer resulted in the antifouling ability without damaging the membrane intrinsic transport characteristics. As for synthetic municipal wastewater treatment, the water flux of CTA FO membrane decreased approximately 49% of the initial flux after running for 14 days. In contrast, the flux decline rate of TA/DETA (24)-Ag CTA membrane was about 37%. Furthermore, less foulant deposition and higher recovery rate of water flux was observed for TA/DETA (24)-Ag CTA membrane, implying that the modified membrane effectively alleviated membrane fouling and processed a lower flux decline during municipal wastewater treatment. It was attributed to the enhanced surface hydrophilicity and antibacterial property of the coating layer, which improved antifouling property.
Collapse
Affiliation(s)
- Yan Sun
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China.
| | - ZiXin Yong
- China Northwest Architecture Design and Research Institute Co., Ltd., Xi'an, 710018, China
| | - Xiaoyang Xie
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Xiangdong Ma
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Changhao Xu
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Bo Hu
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - JiaoJie He
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Yuanqing Guo
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Bo Bai
- School of Water and Environment, Chang'an University, Xi'an, 710061, China
| |
Collapse
|
6
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
7
|
Ghaffari SB, Sarrafzadeh MH. Cationic cellulose filter papers modified with ZnO/Ag/GO nanocomposite as point of use gravity-driven filters for bacterial removal from water. Sci Rep 2023; 13:22604. [PMID: 38114628 PMCID: PMC10730911 DOI: 10.1038/s41598-023-50114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
The surface modification of filters with large pore sizes for the development of low-cost gravity-driven point-of-use (POU) technologies for water disinfection can be an effective strategy to empower people to access safe water instantly, especially in low- and middle-income countries. In this study, the surface of commercial cellulose filter papers, as cheap and bio-based filters, was modified with polydopamine (PDA), polyethyleneimine (PEI) and ZnO/Ag/GO nanocomposite (ZnO/Ag/GO@PDA/PEI papers) for bacterial removal from water. PDA/PEI incorporation introduced a cationic functional layer, which can entrap negative bacteria and make a stable chemical bond with the nanocomposite. ZnO/Ag/GO exhibited promising synergistic antibacterial activities (30 times stronger than ZnO). As a result, 3 sheets of ZnO/Ag/GO@PDA/PEI papers showed a 99.98% bacterial reduction (E. coli), which met the WHO standards. Moreover, the leached zinc and silver in the filtrate were far below the WHO's limits (380 and 10 ppb, respectively). The results showed that the modified papers could be reused multiple times. After six times of reuse, the flow rate dropped slightly (below 20%) and the bacterial removal efficiency was more than 99.9%. This study is valuable for developing filters for treating bacterial-contaminated water on-site with no need for energy, which is a demand in many countries.
Collapse
Affiliation(s)
- Seyed-Behnam Ghaffari
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| |
Collapse
|
8
|
Baig N, Khan NA, Salhi B, Abdulazeez I, Abu-Zahra N, Abdelazem S, Aljundi IH. Highly Permeable Sulfonated Polydopamine Integrated MXene Membranes for Efficient Surfactant-Stabilized Oil-in-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13953-13967. [PMID: 37729118 DOI: 10.1021/acs.langmuir.3c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
MXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of Ti3C2Tx MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes. The SPDMX membrane was tested for challenging surfactant-stabilized oil-in-water separation with an impressive efficiency of 98%. Moreover, an ultrahigh permeability of 1620 LMH/bar was also achieved. The sulfonation of PD helps in improving the antifouling characteristics of SPDMX by developing a strong hydration layer and enhancing the oleophobicity of the membrane. The underwater SPDMX membrane appeared superoleophobic with an oil contact angle of 153°, whereas the ceramic membrane exhibited an oil contact angle of 137°. The SPDMX membranes showed an improved flux recovery (31%) compared to the nonsulfonated counterpart. This work highlights the appropriate functionalization of MXene as a promising approach to developing MXene membranes with high permeation flux and better antifouling characteristics for oily wastewater treatment.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Nidal Abu-Zahra
- Department of Materials Science & Engineering College of Engineering and Applied Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sohaib Abdelazem
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Guo J, Xiong X, Zeng J, Liu Q, Wang Q, Liu G, Wei N, Wang Y, Wu Y. Preparation and antifouling performance of low-pressure carbon nanotube membranes based on polydopamine biomimetic modification. Colloids Surf B Biointerfaces 2023; 228:113398. [PMID: 37320979 DOI: 10.1016/j.colsurfb.2023.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
In order to investigate the antifouling performance of low-pressure carbon nanotube membranes based on polydopamine (PDA) biomimetic modification, layered multi-walled carbon nanotubes PDA membrane (layered MWCNTs-PDA) and PDA blended MWCNTs membrane (blended PDA/MWCNTs) were prepared. The MWCNTs membranes' antifouling performance and recoverability was significantly improved in filtrating BSA, HA and SA after PDA biomimetic modification, and the total fouling and irreversible fouling were all decreased. Compared with the blended PDA/MWCNTs membrane, the layered MWCNTs-PDA membrane had higher antifouling property as it further improved the electronegativity and hydrophilicity of membrane surface. In addition, denser surface pore size of the layered MWCNTs-PDA membrane can effectively reduce the fouling by trapping foulants on its surface. The combination of PDA biomimetic modification with MWCNTs membrane had a superior antifouling performance and rejection performance in processing NOM and artificial wastewater, and the majority of humic-like foulants could be excluded by the layered MWCNTs-PDA membrane. PDA biomimetic modification alleviated the adhesion of FITC-BSA on the MWCNTs membrane. The layered MWCNTs-PDA membrane especially alleviated the attachment of bacteria and processed excellent antimicrobial ability for bacteria.
Collapse
Affiliation(s)
- Jin Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China.
| | - Xinya Xiong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Jia Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Qiushan Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Qingshan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Guohan Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Na Wei
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Yufei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| | - Yaochen Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No.100, Beijing 100124, China
| |
Collapse
|
10
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
11
|
Plisko T, Burts K, Penkova A, Dmitrenko M, Kuzminova A, Ermakov S, Bildyukevich A. Effect of the Addition of Polyacrylic Acid of Different Molecular Weights to Coagulation Bath on the Structure and Performance of Polysulfone Ultrafiltration Membranes. Polymers (Basel) 2023; 15:polym15071664. [PMID: 37050278 PMCID: PMC10097043 DOI: 10.3390/polym15071664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Membrane fouling is a serious issue in membrane technology which cannot be completely avoided but can be diminished. The perspective technique of membrane modification is the introduction of hydrophilic polymers or polyelectrolytes into the coagulation bath during membrane preparation via non-solvent-induced phase separation. The influence of polyacrylic acid (PAA) molecular weight (100,000, 250,000 and 450,000 g·mol−1) added to the aqueous coagulation bath (0.4–2.0 wt.%) on the polysulfone membrane structure, surface roughness, water contact angle and zeta potential of the selective layer, as well as the separation and antifouling performance, was systematically studied. It was found that membranes obtained via the addition of PAA with higher molecular weight feature smaller pore size and porosity, extremely high hydrophilicity and higher values of negative charge of membrane surface. It was shown that the increase in PAA concentration from 0.4 wt.% to 2.0 wt.% for all studied PAA molecular weights yielded a substantial decrease in water contact angle compared with the reference membrane (65 ± 2°) (from 27 ± 2° to 17 ± 2° for PAA with Mn = 100,000 g·mol−1; from 25 ± 2° to 16 ± 2° for PAA with Mn = 250,000 g·mol−1; and from 19 ± 2° to 10 ± 2° for PAA with Mn = 450,000 g·mol−1). An increase in PAA molecular weight from 100,000 to 450,000 g·mol−1 led to a decrease in membrane permeability, an increase in rejection and tailoring excellent antifouling performance in the ultrafiltration of humic acid solutions. The fouling recovery ratio increased from 73% for the reference membrane up to 91%, 100% and 136% for membranes modified with the addition to the coagulation bath of 1.5 wt.% of PAA with molecular weights of 100,000 g·mol−1, 250,000 g·mol−1 and 450,000 g·mol−1, respectively. Overall, the addition of PAA of different molecular weights to the coagulation bath is an efficient tool to adjust membrane separation and antifouling properties for different separation tasks.
Collapse
Affiliation(s)
- Tatiana Plisko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
- Correspondence:
| | - Katsiaryna Burts
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
12
|
Ultrafiltration Pd-immobilized catalytic membrane microreactors continuously reduce nitrophenol: A study of catalytic activity and simultaneous separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Activated carbon fibers with different hydrophilicity/hydrophobicity modified by pDA-SiO2 coating for gravity oil–water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Mi YF, Huang YH, He SH, Cao ZH, Shentu BQ. Promoted deposition of polydopamine by carbon quantum dots to construct loose nanofiltration membranes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Ultrafast deposition of polydopamine for high-performance fiber-reinforced high-temperature ceramic composites. Sci Rep 2022; 12:20489. [DOI: 10.1038/s41598-022-24971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractThe low deposition time efficiency and small thickness limit the expansion of polydopamine (PDA) application to fiber-reinforced high-temperature ceramic composites. In this work, the electric field-assisted polymerization (EFAP) route was developed to improve the deposition time efficiency of PDA coating and overcome the thickness limitation. Carbonized polydopamine (C-PDA) coating was used as the interphase of carbon fiber-reinforced ZrB2-based composites (Cf/ZrB2-based composite) to bond rigid fibers and brittle ceramics, where C-PDA coating was prepared by the carbonization of PDA coating. Firstly, uniform and dense PDA coatings were deposited on carbon fibers (Cf) by EFAP. The thickness of PDA coating reached the micron level (over 1800 nm) for the first time. Benefiting from the EFAP route promoting the oxidation process of dopamine (DA) and accelerating the aggregation and in-situ polymerization of DA and its derivatives on the surface of Cf, the deposition rate of PDA coating reached 5589 nm/h, which was 3 orders of magnitude higher than that of the traditional self-polymerization process. By adjusting the EFAP parameters (e.g. DA-concentration, current, and deposition time), the thickness of PDA coating could be conveniently designed from nano-scale to micro-scale. Then, PDA coating was pyrolyzed to obtain C-PDA coating. C-PDA coating was well bonded on Cf without visible cross-sticking among neighboring fibers. C-PDA coating presented a layered structure and the thickness of C-PDA coating could be designed by controlling the thickness of PDA. C-PDA coating was used as the interfacial phase of the Cf/ZrB2-based composite, which ensured that the composite possessed good load-bearing capacity and thermal stability. Moreover, extraordinary damage resistance of the composite was achieved, with work of fracture up to 9936 ± 548 J/m2 at room temperature and 19,082 ± 3458 J/m2 at 1800 °C. The current work provides a high time efficiency processing route for depositing PDA coating on carbon fibers and demonstrates the attractive potential of PDA coating in fiber-reinforced high-temperature ceramic composites.
Collapse
|
16
|
Liu Z, Wu Y, Lan F, Xie G, Zhang M, Ma C, Jia J. Improvement of permeability and antifouling performance of PVDF membranes via dopamine-assisted deposition of zwitterionic copolymer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Li B, Ke XX, Zhong LB, Wu RX, Yuan ZH, Fan JJ, Zheng YM. Super-hydrophilic nanofiber substrate supported forward osmosis membrane with less polyamide layer defects by polydopamine-graphene oxide modification for high salinity desulfurization wastewater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhang Z, Yan C, Liu C, Ye X, Yuan X, Li H. Dopamine facilitates Al 2O 3film growth on polyethylene terephthalate by low-temperature plasma-enhanced atomic layer deposition. NANOTECHNOLOGY 2022; 33:485705. [PMID: 36037715 DOI: 10.1088/1361-6528/ac8d6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Polymeric materials, including polyethylene terephthalate (PET), are widely used in various fields because of their beneficial properties. Functional films are deposited on these materials through different approaches, such as plasma-enhanced atomic layer deposition (PEALD), to enhance their performance and prolong their life span. However, the inert and thermally fragile nature of most polymers hinders deposition. We developed a strategy for the PEALD of nanoscale Al2O3films on PET substrates. First, a PET substrate is subjected to alkali treatment, which gives it basic hydrophilicity for the subsequent dopamine modification. After 24 h of dopamine deposition, the substrate shows adequate active sites (phenolic hydroxyl groups), which can chemisorb large amounts of precursor during the initial deposition. The island growth mode was observed during the PEALD processes. We analyzed the detailed chemical components of Al2O3on alkali-treated PET and dopamine-modified PET. After 100 cycles of deposition, the Al2O3films on both samples contained much hydrogen. Benefitting from the more active sites, we observed more continuous Al2O3film on dopamine-modified PET, which exhibited excellent water vapor blocking performance. Our findings suggest that dopamine could act as a 'bridge' between polymers and PEALD functional films.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chi Yan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Cui Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaojun Ye
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiao Yuan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongbo Li
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
19
|
Polydopamine-modified ceramic membrane for filtering brown sugar redissolved syrup: Characterisation, experiments, and advanced modelling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
In-situ aeration-assisted polydopamine/polyethyleneimine copolymerization and deposition for rapid and uniform membrane modification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Szewczyk J, Aguilar-Ferrer D, Coy E. Polydopamine films: Electrochemical growth and sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. MEMBRANES 2022; 12:membranes12070675. [PMID: 35877880 PMCID: PMC9317275 DOI: 10.3390/membranes12070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Incorporating polydopamine has become a viable method for membrane modification due to its universality and versatility. Fillers in their different categories have been confirmed as effective elements to improve the properties of membranes such as hydrophilicity, permeability, mechanical strength, and fouling resistance. Thus, this paper mainly highlights the recent studies that have been carried out using polydopamine and nanomaterial fillers simultaneously in modifying the performance of different membranes such as ultrafiltration, microfiltration, nanofiltration, reverse osmosis, and forward osmosis membranes according to the various modification methods. Graphene oxide nanoparticles have recently attracted a lot of attention among different nanoparticles used with polydopamine, due to their impressive characteristics impacts on enhancing membrane hydrophilicity, mechanical strength, and fouling resistance. Thus, the incorporation techniques of graphene oxide nanoparticles and polydopamine for enhancing membranes have been highlighted in this work. Moreover, different studies carried out on using polydopamine as a nanofiller for optimizing membrane performance have been discussed. Finally, perspectives, and possible paths of further research on mussel-inspired polydopamine and nanoparticles co-incorporation are stated according to the progress made in this field. It is anticipated that this review would provide benefits for the scientific community in designing a new generation of polymeric membranes for the treatment of different feed water and wastewater based on adhesive mussel inspired polydopamine polymer and nanomaterials combinations.
Collapse
|
23
|
Mulinari J, Ambrosi A, Innocentini MDDM, Feng Y, Li Q, Di Luccio M, Hotza D, Oliveira JV. Lipase immobilization on alumina membranes using a traditional and a nature-inspired method for active degradation of oil fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Preparation of Stable POSS-Based Superhydrophobic Textiles Using Thiol–Ene Click Chemistry. Polymers (Basel) 2022; 14:polym14071426. [PMID: 35406300 PMCID: PMC9002989 DOI: 10.3390/polym14071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a superhydrophobic fabric was synthesized by modifying the fiber’s surface with dopamine-containing hydroxyl functional groups. Furthermore, we introduced mercapto-based functional groups by the hydrolysis of mercaptopropylmethyldimethoxysilane (MPMDS) and finally grafted POSS and mercaptans using a thiol–ene click reaction. These processes generated a superhydrophobic fabric with a static contact and a sliding angle of 162° and 8°, respectively. The superhydrophobic fabric’s compact and regular micro-nano rough structure based on POSS and mercaptans provides stable fastness and durability, as well as high resistance to organic solvents, acid–base environments, mechanical abrasion, UV rays, and washing. Moreover, it can be used for self-cleaning and oil–water separation, and it has a wide range of applications in the coating industry.
Collapse
|
25
|
Czieborowski M, Kemperman AJB, Rolevink E, Blom J, Visser T, Philipp B. A two-step bioluminescence assay for optimizing antibacterial coating of hollow-fiber membranes with polydopamine in an integrative approach. J Microbiol Methods 2022; 196:106452. [PMID: 35341879 DOI: 10.1016/j.mimet.2022.106452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Pure-water filtration membranes are often fouled by bacterial biofilms. Antibacterial coatings for preventing biofilm formation on such membranes should not rely on leaching of inhibiting compounds but should only be effective on surface contact. Certified assays for antibacterial coatings do not sufficiently exclude leaching effects and involve nutrient-rich cultivation media that do not correspond to conditions in pure-water systems. In this study, a two-step bioluminescence assay was developed for optimizing an antibacterial coating of PES/PVP ultrafiltration hollow-fiber membranes with a polydopamine as a sustainable, bio-inspired material for preventing bacterial biofilm formation. In the first step, leaching of the antimicrobial coating was analyzed by a bioluminescence assay with supernatants generated by washing coated membranes. In the second step, bioluminescence of bacterial biofilms on coated and uncoated membranes was measured using a nutrient-poor medium resembling site-specific conditions. Based on this bioluminescence assay, an optimized protocol for the coating process could be established by acidic polymerization of dopamine using 2 g/L sodium periodate and 4 g/L dopamine at 40 °C for 20 min reaction time. With coatings produced in this way, bioluminescence was reduced on coated membranes only while the corresponding supernatants exhibited no inhibitory effects.
Collapse
Affiliation(s)
- Michael Czieborowski
- Westfälische Wilhelms-Universität Münster, Institute for Molecular Microbiology and Biotechnology, Münster, Germany
| | | | | | | | | | - Bodo Philipp
- Westfälische Wilhelms-Universität Münster, Institute for Molecular Microbiology and Biotechnology, Münster, Germany; Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME, Schmallenberg, Germany.
| |
Collapse
|
26
|
Xia L, Hao Z, Vemuri B, Zhao S, Gadhamshetty V, Kilduff JE. Improving antifouling properties of poly (ether sulfone) UF membranes with hydrophilic coatings of dopamine and poly(2-dimethylamino) ethyl methacrylate salt to enable water reuse. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Tian J, Teng Y, Gao S, Zhang R. A Metal-organic composite ultrafiltration membrane synthesized via Quadratic phase inversion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Azmi FI, Goh PS, Ismail AF, Hilal N, Wong TW, Misson M. Biomolecule-Enabled Liquid Separation Membranes: Potential and Recent Progress. MEMBRANES 2022; 12:148. [PMID: 35207070 PMCID: PMC8874482 DOI: 10.3390/membranes12020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
The implementation of membrane surface modification to enhance the performance of membrane-based separation has become a favored strategy due to its promise to address the trade-off between water permeability and salt rejection as well as to improve the durability of the membranes. Tremendous work has been committed to modifying polymeric membranes through physical approaches such as surface coating and ontology doping, as well as chemical approaches such as surface grafting to introduce various functional groups to the membrane. In the context of liquid separation membranes applied for desalination and water and wastewater treatment, biomolecules have gained increasing attention as membrane-modifying agents due to their intriguing structural properties and chemical functionalities. Biomolecules, especially carbohydrates and proteins, exhibit attractive features, including high surface hydrophilicity and zwitterionic and antimicrobial properties that are desired for liquid separation membranes. In this review, we provide an overview of the recent developments in biomolecule-enabled liquid separation membranes. The roles and potentials of some commonly explored biomolecules in heightening the performance of polymeric membranes are discussed. With the advancements in material synthesis and the need to answer the call for more sustainable materials, biomolecules could serve as attractive alternatives for the development of high-performance composite membranes.
Collapse
Affiliation(s)
- Faiz Izzuddin Azmi
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Tuck Whye Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| |
Collapse
|
29
|
Singh V, Prasad YS, Rachamalla AK, Rebaka VP, Banoo T, Maheswari CU, Sridharan V, Lalitha K, Nagarajan S. Hybrid hydrogels derived from renewable resources as a smart stimuli responsive soft material for drug delivery applications. RSC Adv 2022; 12:2009-2018. [PMID: 35425233 PMCID: PMC8979040 DOI: 10.1039/d1ra08447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
The design and synthesis of amphiphilic molecules play a crucial role in fabricating smart functional materials via self-assembly. Especially, biologically significant natural molecules and their structural analogues have inspired chemists and made a major contribution to the development of advanced smart materials. In this report, a series of amphiphilic N-acyl amides were synthesized from natural precursors using a simple synthetic protocol. Interestingly, the self-assembly of amphiphiles 6a and 7a furnished a hydrogel and oleogel in vegetable oils. Morphological analysis of gels revealed the existence of a 3-dimensional fibrous network. Thermoresponsive and thixotropic behavior of these gels were evaluated using rheological analysis. A composite gel prepared by the encapsulation of curcumin in the hydrogel formed from 7a displayed a gel-sol transition in response to pH and could act as a dual channel responsive drug carrier.
Collapse
Affiliation(s)
- Vandana Singh
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Yadavali Siva Prasad
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
- Department of Biomedical Engineering, Saveetha School of Engineering Saveetha Nagar Thandalam Tamil Nadu India
| | - Arun Kumar Rachamalla
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - Vara Prasad Rebaka
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - Tohira Banoo
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| | - C Uma Maheswari
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143 J&K India
| | - Krishnamoorthy Lalitha
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
| | - Subbiah Nagarajan
- School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 Tamil Nadu India
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| |
Collapse
|
30
|
Ahmadi B, Seyed Dorrji MS, Kianfar M, Rasoulifard MH, Ahmadi A. A novel multilayer thin-film membrane with high durability: preparation, characterization, performance investigation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01170k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main aim of this research is the improvement of the performance in desalination of polyamide (PA) thin film composite nanofiltration membranes by modification of nanofibrous polyvinylidene fluoride as a support layer.
Collapse
Affiliation(s)
- B. Ahmadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M. S. Seyed Dorrji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M. Kianfar
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M. H. Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - A. Ahmadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
- Department of Design & Engineering, Absamin Water Treatment Company, Karaj, Iran
| |
Collapse
|
31
|
Tailoring of polysulfate/polyvinylpyrrolidone membrane structure via NIPS coupled physical aging technique for high-performance dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Fan G, Chen C, Chen X, Li Z, Bao S, Luo J, Tang D, Yan Z. Enhancing the antifouling and rejection properties of PVDF membrane by Ag 3PO 4-GO modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149611. [PMID: 34428657 DOI: 10.1016/j.scitotenv.2021.149611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Ultrafiltration is an environmentally friendly water treatment technology, but membrane fouling significantly impacts membrane performance and service life. Photocatalytic modification of membrane is regarded as an effective way for membrane fouling control. In this study, graphite oxide (GO), Ag3PO4 and Ag3PO4-GO nanomaterials were applied in polyvinylidene fluoride (PVDF) ultrafiltration membranes modification, and the membranes was denoted as P-GO, P-AgP and P-AgP@GO, respectively. Filtration of humic acid (HA) at different operating conditions was adopted in evaluation of membrane performance. Among them, P-AgP@GO had the best permeation, rejection and antifouling performances, and could maintain excellent properties when operation conditions (HA concentration, operation pressure, pH and ionic strength) were changed. Furthermore, the effect of photocatalysis on the self-cleaning performance and its mechanism were revealed. The overall performance of P-AgP@GO could be enhanced by visible light irradiation, and extending the visible illumination time during the filtration was conducive to the reusability.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China
| | - Chongguo Chen
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Xiaolei Chen
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Zhongsheng Li
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Shulei Bao
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- Fujian Jinhuang Environmental Sci-Tech Co. Ltd., 350002, Fujian, China
| | - Dingsheng Tang
- CCCC First Highway Engineering Group Xiamen Co., Ltd., Xiamen 361021, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| |
Collapse
|
33
|
Pandey RR, Chusuei CC. Electrochemical Detection of Dopamine Using a Prussian Blue Carbon Nanotube Composite Decorated with Agglomerated ZnO Particles. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Raja Ram Pandey
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Charles C. Chusuei
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
34
|
Ding A, Ren Z, Zhang Y, Ma J, Bai L, Wang B, Cheng X. Evaluations of holey graphene oxide modified ultrafiltration membrane and the performance for water purification. CHEMOSPHERE 2021; 285:131459. [PMID: 34256201 DOI: 10.1016/j.chemosphere.2021.131459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Membrane technology has been widely used in the fields of drinking water treatment with the advantages of pollutants separation. However, membrane fouling has become main obstacle in further application. Graphene oxide (GO) and its functionalized derivatives are considered to be ideal membrane modification materials of membrane fouling control. However, GO coated membranes were suffered from serious flux decline which raises challenges for GO modification. In this study, porous holey graphene oxide (HGO) was synthesized by hydrothermal etched GO to modify UF membranes. Water permeability of HGO membrane was more than twice that of GO membrane at the loading of 0.08 g/m2. At the optimal loading of 0.08 g/m2, the rejection rate of HGO coated membrane on natural organic matter (NOM) such as bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA) was increased from 55%, 29%, 58%-85%, 72%, 92%, and the contact angle was reduced from 71° to 35° with the HGO coating amount of 0.04 g/m2. Finally, the membrane fouling resistance distribution of each HGO membrane was analyzed given HA as model pollutant, and the effects of HGO on mitigating the organic fouling of Polyethersulfone (PES) membranes were discussed. The total fouling resistance decreased from 3.45 to 1.73 with HGO coating, the irreversible fouling decreased by 62.86%-95.83%. Standard blocking was dominated during filtration. It was also found that increasing the loading of HGO could delay the conversion of pore blocking to the cake layer. Overall, HGO coating has an application prospect for membrane fouling control.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuehua Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| |
Collapse
|
35
|
Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Wang S, Lao W, He Y, Shi H, Ye Q, Ma J. Promoting the stability and adsorptive capacity of Fe 3O 4-embedded expanded graphite with an aminopropyltriethoxysilane-polydopamine coating for the removal of copper(ii) from water. RSC Adv 2021; 11:35673-35686. [PMID: 35493170 PMCID: PMC9043260 DOI: 10.1039/d1ra05160a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
In this study, three magnetic graphites, namely, EGF, GAF, and GFA + KH550, were prepared, which were loaded either with Fe3O4 or with Fe3O4 and PDA or with Fe3O4, PDA, and KH550 onto expanded graphite. ATR-FTIR, XRD, XPS, SEM, TEM, and TGA characterization results showed that EGF, GAF, and GFA + KH550 were successfully prepared. Under the same initial copper concentration, the removal rates of copper ions by EGF, GFA, and GFA + KH550 were 86.2%, 96.9%, and 97.0%, respectively and the hazard index reductions of the three adsorbents were 2191 ± 71 (EGF), 1843 ± 68 (GFA), and 1664 ± 102 (GFA + KH550), respectively. Therefore GFA + KH550 exhibited better removal of Cu(ii) than EGF and GFA, for PDA and KH550 provided more adsorption-active sites like –OH and –NH. Here, the adsorption of GFA + KH550 fitted the pseudo-second-order kinetic and Langmuir models well within the testing range, which means that adsorption occurs on a monolayer surface between Cu(ii) and the adsorption sites. The intraparticle diffusion model and various thermodynamic parameters demonstrated that Cu(ii) was adsorbed on GFA + KH550 mainly via external surface diffusion and that the process was both endothermic and spontaneous. Recycling experiments show that GFA + KH550 has a satisfactory recyclability, and the way of direct recovery by magnets exhibits good magnetic induction. GFA + KH550 was applied in lake water and artificial seawater samples, and exhibited better removal of copper than that in DI water under the same environmental conditions for the existence of macromolecular organic matter. Furthermore, the adsorption capacity of copper ions was not relative to the salinity of water. The application of GFA + KH550 demonstrated the potential for application in water treatment procedures. In this study, three magnetic graphites, namely, EGF, GAF, and GFA + KH550, were prepared, which were loaded either with Fe3O4 or with Fe3O4 and PDA or with Fe3O4, PDA, and KH550 onto expanded graphite.![]()
Collapse
Affiliation(s)
- Shunhui Wang
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| | - Wenjian Lao
- Southern California Coastal Water Research Project Authority Costa Mesa California 92626 USA
| | - Yi He
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367.,State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Chengdu Sichuan 610500 China
| | - Heng Shi
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| | - Qihang Ye
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| |
Collapse
|
37
|
Gao M, Xu D, Gao Y, Chen G, Zhai R, Huang X, Xu X, Wang J, Yang X, Liu G. Mussel-inspired triple bionic adsorbent: Facile preparation of layered double hydroxide@polydopamine@metal-polyphenol networks and their selective adsorption of dyes in single and binary systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126609. [PMID: 34329113 DOI: 10.1016/j.jhazmat.2021.126609] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
To effectively address the serious human health challenges and ecological damage caused by organic dyes in wastewater, we developed a novel bionic adsorbent (LDH@PDA@MPNs) for the selective adsorption and removal of malachite green (MG) and crystalline violet (CV). The adsorbent was prepared using a facile two-step method based on mussel-inspired chemistry and metal complexation. The physicochemical structure, surface morphology, and composition of the LDH@PDA@MPNs were characterized by scanning electron microscopy, Fourier-transform infrared spectrometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Adsorption of MG and CV with the LDH@PDA@MPNs was evaluated. Under optimal conditions, the maximum adsorption of MG and CV by the adsorbent was 89.608 and 40.481 mg/g, respectively. The adsorption kinetics showed that the experimental data were in good agreement with the pseudo-second-order kinetic model, and the equilibrium adsorption isotherm data fitted well with the Freundlich model. The thermodynamic results indicated that the adsorption of the dyes on LDH@PDA@MPNs was a spontaneous endothermic process. Importantly, the bionic adsorbent not only shows high removal efficiency by easy regeneration with low-cost reagents but also exhibits high selectivity for dyes in both single and binary systems. Therefore, LDH@PDA@MPNs have the potential to adsorb and remove dyes from complex wastewater solutions.
Collapse
Affiliation(s)
- Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China; Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, No.92, West Dazhi Street, Nangang District, Harbin, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China.
| | - Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, No.92, West Dazhi Street, Nangang District, Harbin, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China.
| |
Collapse
|
38
|
Du C, Wang Z, Liu G, Wang W, Yu D. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Cheng C, Lu Y, Ma W, Li S, Yan J, Du S. Preparation and characterization of polydopamine/melamine microencapsulated red phosphorus and its flame retardance in epoxy resin. RSC Adv 2021; 11:20391-20402. [PMID: 35479930 PMCID: PMC9034026 DOI: 10.1039/d1ra03164c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Polydopamine/melamine composite microencapsulated red phosphorus (RP@PDA/MA) was prepared and applied as the flame retardant for epoxy resin (EP) in this work. For comparison, polydopamine (PDA) coated red phosphorus (RP@PDA) was also prepared. The microstructure, chemical composition and thermal decomposition of the as prepared samples were systematically characterized. The results showed that PDA and PDA/MA shell structures were fabricated successfully via convenient water-based processes at room temperature. The flame retardance of red phosphorus (RP), RP@PDA, and RP@PDA/MA on EP was evaluated. The results showed that EP blending with 7 wt% RP@PDA/MA passed V-0 degree in the vertical burning test (UL-94), reached a limited oxygen index (LOI) of 30.9% and decreased the peak heat release rate of EP by 65.1% in the cone calorimeter test. The satisfactory flame retardance can be attributed to the intumescent flame retardant system consisting of RP@PDA/MA. The PDA and PDA/MA shell structures also improved the compatibility between RP and EP, thus RP@PDA and RP@PDA/MA had less significant impact on the tensile-strain properties of EP.
Collapse
Affiliation(s)
- Chen Cheng
- Army Engineering University of PLA-Shijiazhuang Campus Shijiazhuang Hebei 050003 P. R. China
| | - Yanling Lu
- Army Engineering University of PLA-Shijiazhuang Campus Shijiazhuang Hebei 050003 P. R. China
| | - Weining Ma
- Army Engineering University of PLA-Shijiazhuang Campus Shijiazhuang Hebei 050003 P. R. China
| | - Shaojie Li
- Army Engineering University of PLA-Shijiazhuang Campus Shijiazhuang Hebei 050003 P. R. China
| | - Jun Yan
- Hebei Jiaotong Vocational and Technical College Shijiazhuang Hebei 050003 P. R. China
| | - Shiguo Du
- Army Engineering University of PLA-Shijiazhuang Campus Shijiazhuang Hebei 050003 P. R. China
| |
Collapse
|
40
|
Li Y, Shi S, Cao H, Cao R. Robust antifouling anion exchange membranes modified by graphene oxide (GO)-enhanced Co-deposition of tannic acid and polyethyleneimine. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Tian H, Wu X, Zhang K. Polydopamine-Assisted Two-Dimensional Molybdenum Disulfide (MoS 2)-Modified PES Tight Ultrafiltration Mixed-Matrix Membranes: Enhanced Dye Separation Performance. MEMBRANES 2021; 11:membranes11020096. [PMID: 33573126 PMCID: PMC7912618 DOI: 10.3390/membranes11020096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
Tight ultrafiltration (TUF) membranes with high performance have attracted more and more attention in the separation of organic molecules. To improve membrane performance, some methods such as interface polymerization have been applied. However, these approaches have complex operation procedures. In this study, a polydopamine (PDA) modified MoS2 (MoS2@PDA) blending polyethersulfone (PES) membrane with smaller pore size and excellent selectivity was fabricated by a simple phase inversion method. The molecular weight cut-off (MWCO) of as-prepared MoS2@PDA mixed matrix membranes (MMMs) changes, and the effective separation of dye molecules in MoS2@PDA MMMs with different concentrations were obtained. The addition amount of MoS2@PDA increased from 0 to 4.5 wt %, resulting in a series of membranes with the MWCO values of 7402.29, 7007.89, 5803.58, 5589.50, 6632.77, and 6664.55 Da. The MWCO of the membrane M3 (3.0 wt %) was the lowest, the pore size was defined as 2.62 nm, and the pure water flux was 42.0 L m−2 h−1 bar−1. The rejection of Chromotrope 2B (C2B), Reactive Blue 4 (RB4), and Janus Green B (JGB) in aqueous solution with different concentrations of dyes was better than that of unmodified membrane. The separation effect of M3 and M0 on JGB at different pH values was also investigated. The rejection rate of M3 to JGB was higher than M0 at different pH ranges from 3 to 11. The rejection of M3 was 98.17–99.88%. When pH was 11, the rejection of membranes decreased with the extension of separation time. Specifically, at 180 min, the rejection of M0 and M3 dropped to 77.59% and 88.61%, respectively. In addition, the membrane had a very low retention of salt ions, Nacl 1.58%, Na2SO4 10.52%, MgSO4 4.64%, and MgCl2 1.55%, reflecting the potential for separating salts and dyes of MoS2@PDA/PES MMMs.
Collapse
Affiliation(s)
- Huali Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wu
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
42
|
Two-Step Dopamine-to-Polydopamine Modification of Polyethersulfone Ultrafiltration Membrane for Enhancing Anti-Fouling and Ultraviolet Resistant Properties. Polymers (Basel) 2020; 12:polym12092051. [PMID: 32916778 PMCID: PMC7569805 DOI: 10.3390/polym12092051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
Collapse
|