1
|
Milinčić DD, Vidović BB, Gašić UM, Milenković M, Kostić AŽ, Stanojević SP, Ilić T, Pešić MB. A systematic UHPLC Q-ToF MS approach for the characterization of bioactive compounds from freeze-dried red goji berries (L. barbarum L.) grown in Serbia: Phenolic compounds and phenylamides. Food Chem 2024; 456:140044. [PMID: 38876071 DOI: 10.1016/j.foodchem.2024.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The aim of this study was to identify and characterise different classes of bioactive compounds from freeze-dried red goji berries (RGB) grown in Serbia, using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC Q-ToF MS). In addition, this study aims to demonstrate the importance of applying the advanced UHPLC Q-ToF MS technique in the identification of various biocompounds. The analysis showed the presence of 28 phenolic compounds, 3 organic acids, and 26 phenylamides. The 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG) was identified by UHPLC Q-ToF MS and quantified by standardised UHPLC-DAD method. Most of the compounds detected were derivatives of caffeic acid and ferulic acid, followed by quercetin derivatives. Among the phenylamides, several glucosylated caffeoyl and/or dihydrocaffeoyl derivatives of spermidine and spermine were characterized, confirming their recent characterization. Some glycosylated/non-glycosylated putrescine derivatives and caffeoyl-dihydrocaffeoyl-feruloyl spermidines were identified in goji berriesfor the first time. Their tentative structures and fragmentations were proposed.
Collapse
Affiliation(s)
- Danijel D Milinčić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana B Vidović
- University of Belgrade - Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Milan Milenković
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Center for Hygiene and Human Ecology, 11000 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - T Ilić
- University of Belgrade - Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Mirjana B Pešić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia.
| |
Collapse
|
2
|
Wang X, Zhang J, He F, Jing W, Li M, Guo X, Cheng X, Wei F. Differential Chemical Components Analysis of Periplocae Cortex, Lycii Cortex, and Acanthopanacis Cortex Based on Mass Spectrometry Data and Chemometrics. Molecules 2024; 29:3807. [PMID: 39202886 PMCID: PMC11357377 DOI: 10.3390/molecules29163807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Background:Periplocae Cortex (PC), Acanthopanacis Cortex (AC), and Lycii Cortex (LC), as traditional Chinese medicines, are all dried root bark, presented in a roll, light and brittle, easy to break, have a fragrant scent, etc. Due to their similar appearances, it is tough to distinguish them, and they are often confused and adulterated in markets and clinical applications. To realize the identification and quality control of three herbs, in this paper, Ultra Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry Expression (UHPLC-QTOF-MSE) combined with chemometric analysis was used to explore the different chemical compositions. Methods: LC, AC, and PC were analyzed by UHPLC-QTOF-MSE, and the quantized MS data combined with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used to explore the different chemical compositions with Variable Importance Projection (VIP) > 1.0. Further, the different chemical compositions were identified according to the chemical standard substances, related literature, and databases. Results: AC, PC, and LC can be obviously distinguished in PCA and PLS-DA analysis with the VIP of 2661 ions > 1.0. We preliminarily identified 17 differential chemical constituents in AC, PC, and LC with significant differences (p < 0.01) and VIP > 1.0; for example, Lycium B and Periploside H2 are LC and PC's proprietary ingredients, respectively, and 2-Hydroxy-4-methoxybenzaldehyde, Periplocoside C, and 3,5-Di-O-caffeoylquinic acid are the shared components of the three herbs. Conclusions: UHPLC-QTOF-MSE combined with chemometric analysis is conducive to exploring the differential chemical compositions of three herbs. Moreover, the proprietary ingredients, Lycium B (LC) and Periploside H2 (PC), are beneficial in strengthening the quality control of AC, PC, and LC. In addition, limits on the content of shared components can be set to enhance the quality control of LC, PC, and AC.
Collapse
Affiliation(s)
- Xianrui Wang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jiating Zhang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Fangliang He
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- Institute for College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Jing
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Minghua Li
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiaohan Guo
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xianlong Cheng
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Feng Wei
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; (X.W.); (J.Z.); (F.H.); (W.J.); (M.L.); (X.G.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
3
|
Lu YW, Xie LY, Qi MH, Ren S, Wang YQ, Hu JN, Wang Z, Tang S, Zhang JT, Li W. Platycodin D Ameliorates Cognitive Impairment in Type 2 Diabetes Mellitus Mice via Regulating PI3K/Akt/GSK3β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12516-12528. [PMID: 38491972 DOI: 10.1021/acs.jafc.3c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Objectives: The aim of this study was to investigate the ameliorative effect of platycodin D (PD) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) and its potential molecular mechanisms of action in vivo and in vitro. Materials and methods: An animal model of cognitive impairment in T2DM was established using a single intraperitoneal injection of streptozotocin (100 mg/kg) after 8 weeks of feeding a high-fat diet to C57BL/6 mice. In vitro, immunofluorescence staining and Western blot were employed to analyze the effects of PD on glucose-induced neurotoxicity in mouse hippocampal neuronal cells (HT22). Results: PD (2.5 mg/kg) treatment for 4 weeks significantly suppressed the rise in fasting blood glucose in T2DM mice, improved insulin secretion deficiency, and reversed abnormalities in serum triglyceride, cholesterol, low-density lipoprotein, and high-density lipoprotein levels. Meanwhile, PD ameliorated choline dysfunction in T2DM mice and inhibited the production of oxidative stress and apoptosis-related proteins of the caspase family. Notably, PD dose-dependently prevents the loss of mitochondrial membrane potential, promotes phosphorylation of phosphatidylinositol 3 kinase and protein kinase B (Akt) in vitro, activates glycogen synthase kinase 3β (GSK3β) expression at the Ser9 site, and inhibits Tau protein hyperphosphorylation. Conclusions: These findings clearly indicated that PD could alleviate the neurological damage caused by T2DM, and the phosphorylation of Akt at Ser473 may be the key to its effect.
Collapse
Affiliation(s)
- Ya-Wei Lu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Li-Ya Xie
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yue-Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| |
Collapse
|
4
|
Xu Q, Chen Y, Chen D, Reddy MB. The Protection of EGCG Against 6-OHDA-Induced Oxidative Damage by Regulating PPARγ and Nrf2/HO-1 Signaling. Nutr Metab Insights 2024; 17:11786388241253436. [PMID: 38800717 PMCID: PMC11128170 DOI: 10.1177/11786388241253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
6-Hydroxydopamine (6-OHDA) is a classic neurotoxin that has been widely used in Parkinson's disease research. 6-OHDA can increase intracellular reactive oxygen species (ROS) and can cause cell damage, which can be attenuated with (-)-Epigallocatechin-3-gallate (EGCG) treatment. However, the mechanism by which EGCG alters the 6-OHDA toxicity remains unclear; In this study, we found 6-OHDA (25 μM) alone increased intracellular ROS concentration in N27 cells, which was attenuated by pretreating with EGCG (100 μM). We evaluated the intracellular oxidative damage by determining the level of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content. 6-OHDA significantly increased TBARS by 82.7% (P < .05) and protein carbonyl content by 47.8 (P < .05), compared to the control. Pretreatment of EGCG decreased TBARS and protein carbonyls by 36.4% (P < .001) and 27.7% (P < .05), respectively, compared to 6-OHDA alone treatment. Antioxidant effect was tested with E2-related factor 2 (Nrf2), heme oxygenase-1(HO-1) and peroxisome-proliferator activator receptor γ (PPARγ) expression. 6-OHDA increased Nrf2 expression by 69.6% (P < .001), HO-1 by 173.3% (P < .001), and PPARγ by 122.7% (P < .001), compared with untreatment. EGCG pretreatment stabilized these alterations induced by 6-OHDA. Our results suggested that the neurotoxicity of 6-OHDA in N27 cells was associated with ROS pathway, whereas pretreatment of EGCG suppressed the ROS generation and deactivated the Nrf2/HO-1 and PPARγ expression.
Collapse
Affiliation(s)
- Qi Xu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujie Chen
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Chen
- Iowa State University, Ames, IA, USA
| | | |
Collapse
|
5
|
An D, Xu Y. Environmental risk factors provoke new thinking for prevention and treatment of dementia with Lewy bodies. Heliyon 2024; 10:e30175. [PMID: 38707435 PMCID: PMC11068646 DOI: 10.1016/j.heliyon.2024.e30175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
In recent years, environmental factors have received attention in the pathogenesis of neurodegenerative diseases. Other than genetic factors, the identification of environmental factors and modifiable risk factors may create opportunities to delay the onset or slow the progression of Lewy body disease. Researchers have made significant progress in understanding environmental and modifiable risk factors over the past 30 years. To date, despite the increasing number of articles assessing risk factors for Lewy body disease, few reviews have focused on their role in its onset. In this review, we reviewed the literature investigating the relationship between Lewy body disease and several environmental and other modifiable factors. We found that some air pollutants, exposure to some metals, and infection with some microorganisms may increase the risk of Lewy body disease. Coffee intake and the Mediterranean diet are protective factors. However, it is puzzling that low educational levels and smoking may have some protective effects. In addition, we proposed specific protocols for subsequent research directions on risk factors for neurodegenerative diseases and improved methods. By conducting additional case-control studies, we could explore the role of these factors in the etiopathogenesis of Lewy body disease, establishing a foundation for strategies aimed at preventing and reducing the onset and burden of the disease.
Collapse
Affiliation(s)
- Dinghao An
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neurology Clinical Medical Center, Nanjing, China
| |
Collapse
|
6
|
Athari SZ, Farajdokht F, Sadigh-Eteghad S, Mohajeri D, Nourazar MA, Mohaddes G. Hydroxychloroquine attenuated motor impairment and oxidative stress in a rat 6-hydroxydopamine model of Parkinson's disease. Int J Neurosci 2023; 133:1252-1261. [PMID: 35522252 DOI: 10.1080/00207454.2022.2074848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Parkinson's disease (PD) is associated with the destruction of dopaminergic neurons in the substantia nigra (SN). Hydroxychloroquine (HCQ) has the capability to cross the blood-brain barrier and promote a neuroprotective potential. This study evaluated the effects of HCQ on the 6-hydroxydopamine (6-OHDA)-induced PD model in rats. METHODS Wistar rats were randomly divided into sham, PD, PD + levodopa and PD + HCQ groups. The PD model was induced by a stereotactic administration of 6-OHDA into the left SN pars compacta (SNpc) and confirmed by rotation and the Murprogo's tests. HCQ (100 mg/kg, p.o.) and levodopa (12 mg/kg, p.o.) were administered once a day for 21 days. Three weeks after surgery, the behavioral tests were performed. Brain lipid peroxidation index (MDA), glutathione peroxidase activity (GPx), total antioxidant capacity (TAC) levels and α-synuclein protein expression in the SN were also measured. RESULTS The behavioral tests demonstrated that induction of PD increased the muscle rigidity and the number of rotations, which were reversed by HCQ treatment. Also, induction of PD was associated with an increase in α-synuclein protein levels and MDA and decreased TAC levels and GPx activity. However, HCQ decreased α-synuclein and MDA levels while increased TAC levels and GPx activity. In addition, histopathological data showed that HCQ protects dopaminergic neurons against 6-OHDA-induced toxicity. CONCLUSION According to the results, HCQ has a beneficial effect in improving PD-related pathophysiology, in part, by mitigating oxidative stress and protecting the dopaminergic neurons in the SN.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Mohajeri
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Mir Alireza Nourazar
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Wei J, Chahel AA, Ni Y, Wei X, Zhao Y, Wang Y, Zeng S. Lycium RIN negatively modulate the biosynthesis of kukoamine A in hairy roots through decreasing thermospermine synthase expression. Int J Biol Macromol 2023; 252:126246. [PMID: 37567520 DOI: 10.1016/j.ijbiomac.2023.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.
Collapse
Affiliation(s)
- Jinrong Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Aysha Arif Chahel
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuan Ni
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300000, PR China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuling Zhao
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Wang X, Hu W, Qu L, Wang J, Wu A, Lo HH, Ng JPL, Tang Y, Yun X, Wu J, Wong VKW, Chung SK, Wang L, Luo W, Ji X, Law BYK. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson's disease. Pharmacol Res 2023; 196:106874. [PMID: 37586619 DOI: 10.1016/j.phrs.2023.106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Tricin, a natural nontoxic flavonoid distributed in grasses and euphorbia plants, has been reported to scavenge free radicals, possess anti-inflammatory and antioxidative effects. However, its autophagic effect on Parkinson's disease (PD) has not been elucidated. By adopting cellular and C. elegans models of PD, the autophagic effect of tricin was identified based on the level of autophagy markers (LC3-II and p62). Besides, the pharmacological effects on neurotransmitters (dopamine), inflammatory cytokines (IFN γ, TNFα, MCP-1, IL-10, IL-6 and IL-17A), histology (hematoxylin & eosin and Nissl staining) and behavioural pathology (open-field test, hindlimb clasping, Y-maze, Morris water-maze and nest building test) were also confirmed in the A53T-α-synuclein transgenic PD mouse model. Further experiments demonstrated that tricin induced autophagic flux and lowered the level of α-synuclein through AMPK-p70s6K- and ATG7-dependent mechanism. Compared to the existing clinical PD drugs, tricin mitigated pathogenesis and symptoms of PD with no observable side effects. In summary, tricin is proposed as a potential adjuvant remedy or nutraceutical for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xingxia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Hu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jian Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jerome P L Ng
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Yong Tang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaoyun Yun
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jianhui Wu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Linna Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Weidan Luo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China.
| |
Collapse
|
9
|
Wang R, Zhang X, Feng K, Zeng W, Wu J, Sun D, Lu Z, Feng H, Di L. Nanotechnologies meeting natural sources: Engineered lipoproteins for precise brain disease theranostics. Asian J Pharm Sci 2023; 18:100857. [PMID: 37953874 PMCID: PMC10637878 DOI: 10.1016/j.ajps.2023.100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 11/14/2023] Open
Abstract
Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity, from preventive and diagnostic to therapeutic fields. Lipoproteins, because of their inherent blood-brain barrier permeability and lesion-homing capability, have been identified as promising strategies for high-performance theranostics of brain diseases. However, the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes, which can be critical for individual therapeutics and clinical translation. To address these issues, lipoprotein-inspired nano drug-delivery systems (nano-DDSs), which have been learned from nature, have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions. In this review, the barriers in brain disease treatment, advantages of state-of-the-art lipoprotein-inspired nano-DDSs, and bio-interactions of such nano-DDSs are highlighted. Furthermore, the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized. Specifically, the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed. Finally, the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles, such as exosomes, cell membranes, and bacteria, are discussed.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xinru Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wei Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jie Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Danni Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ziyi Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Hao Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
10
|
Shu L, Wang Y, Huang W, Fan S, Pan J, Lv Q, Wang L, Wang Y, Xu J, Yan H, Bai Y, Wang Y, Li Y. Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Tongmai Yangxin Pills in Ameliorating Doxorubicin-Induced Cardiotoxicity. ACS OMEGA 2023; 8:18128-18139. [PMID: 37251132 PMCID: PMC10210219 DOI: 10.1021/acsomega.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Doxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in clinical treatment of malignant tumors. It has a high anticancer activity but also high cardiotoxicity. The aim of this study was to explore the mechanism of Tongmai Yangxin pills (TMYXPs) in ameliorating DOX-induced cardiotoxicity through integrated metabolomics and network pharmacology. In this study, first, an ultrahigh-performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) metabonomics strategy was established to obtain metabolite information and potential biomarkers were determined after data processing. Second, network pharmacological analysis was used to evaluate the active components, drug-disease targets, and key pathways of TMYXPs to alleviate DOX-induced cardiotoxicity. Targets from the network pharmacology analysis and metabolites from plasma metabolomics were jointly analyzed to select crucial metabolic pathways. Finally, the related proteins were verified by integrating the above results and the possible mechanism of TMYXPs to alleviate DOX-induced cardiotoxicity was studied. After metabolomics data processing, 17 different metabolites were screened, and it was found that TMYXPs played a role in myocardial protection mainly by affecting the tricarboxylic acid (TCA) cycle of myocardial cells. A total of 71 targets and 20 related pathways were screened out with network pharmacological analysis. Based on the combined analysis of 71 targets and different metabolites, TMYXPs probably played a role in myocardial protection through regulating upstream proteins of the insulin signaling pathway, MAPK signaling pathway, and p53 signaling pathway, as well as the regulation of metabolites related to energy metabolism. They then further affected the downstream Bax/Bcl-2-Cyt c-caspase-9 axis, inhibiting the myocardial cell apoptosis signaling pathway. The results of this study may contribute to the clinical application of TMYXPs in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lexin Shu
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Huang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, China
| | - Simiao Fan
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Pan
- Hainan
Province Key Laboratory for Drug Preclinical Study of Pharmacology
and Toxicology Research, Hainan Medical
University, Haikou 571199, China
| | - Qingbo Lv
- Institute
of Traditional Chinese Medicine, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Lin Wang
- Tianjin
Zhongxin Pharmaceutical Group Co., Ltd., Le Ren Tang Pharmaceutical
Factory, Tianjin 301617, China
| | - Yujing Wang
- Tianjin
Zhongxin Pharmaceutical Group Co., Ltd., Le Ren Tang Pharmaceutical
Factory, Tianjin 301617, China
| | - Jinpeng Xu
- Tianjin
Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 301617, China
| | - Haifeng Yan
- Institute
of Traditional Chinese Medicine, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yuchao Bai
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Wang
- Institute
of Traditional Chinese Medicine, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yubo Li
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
11
|
Characterization of Biological Properties of Individual Phenolamides and Phenolamide-Enriched Leaf Tomato Extracts. Molecules 2023; 28:molecules28041552. [PMID: 36838541 PMCID: PMC9966281 DOI: 10.3390/molecules28041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.
Collapse
|
12
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
13
|
Zhang L, Gu C, Liu J. Nature spermidine and spermine alkaloids: Occurrence and pharmacological effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|