1
|
Gaborieau B, Vaysset H, Tesson F, Charachon I, Dib N, Bernier J, Dequidt T, Georjon H, Clermont O, Hersen P, Debarbieux L, Ricard JD, Denamur E, Bernheim A. Prediction of strain level phage-host interactions across the Escherichia genus using only genomic information. Nat Microbiol 2024; 9:2847-2861. [PMID: 39482383 DOI: 10.1038/s41564-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage-host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage-bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%). We experimentally established a dataset of interactions between 403 diverse Escherichia strains and 96 phages. Most interactions are explained by adsorption factors as opposed to antiphage systems which play a marginal role. We trained predictive algorithms and pinpoint poorly predicted interactions to direct future research efforts. Finally, we established a pipeline to recommend tailored phage cocktails, demonstrating efficiency on 100 pathogenic E. coli isolates. This work provides quantitative insights into phage-host specificity and supports the use of predictive algorithms in phage therapy.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
- AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France.
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France.
| | - Hugo Vaysset
- AgroParisTech, Université Paris-Saclay, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Florian Tesson
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
| | - Inès Charachon
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
| | - Nicolas Dib
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
| | | | - Tanguy Dequidt
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France
| | - Héloïse Georjon
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
| | | | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Erick Denamur
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France.
| |
Collapse
|
2
|
Pérez LM, Havryliuk O, Infante N, Muniesa M, Morató J, Mariychuk R, Tzanov T. Biofilm Prevention and Removal in Non-Target Pseudomonas Strain by Siphovirus-like Coliphage. Biomedicines 2024; 12:2291. [PMID: 39457603 PMCID: PMC11504082 DOI: 10.3390/biomedicines12102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives. Bacteriophages have gained significant interest as a potential solution to combat harmful bacteria, especially in the fight against antimicrobial resistance. With the rise in drug-resistant microorganisms, the medical community is increasingly exploring new alternatives to traditional antibiotics, and bacteriophages offer several advantages in this regard. However, phage applications still face some challenges, such as host specificity. Methods. In this study, a somatic Siphovirus-like coliphage (SOM7) was tested for inhibiting the biofilm-forming capacity of the non-target strain Pseudomonas aeruginosa (ATTC 10145). The phage-sensitive strain E. coli WG5 was used as a control. The selected microorganisms were first tested for growth in the presence of SOM7 at three different concentrations (105, 107, and 109 PFU/mL). Results. As expected, the phage-sensitive E. coli WG5 was fully inhibited by the coliphage, and no phage-related affection on the growth rate was observed for the SOM7-resistant P. aeruginosa. More notably, increasing concentrations of SOM7 significantly reduced both the biofilm-forming capacity and the amount of pre-established bacterial biofilm of the phage-insensitive P. aeruginosa (24.9% and 38.8% reduction in the biofilm-forming ability, and 18.8% and 28.0% biofilm degradation for 107 PFU/mL and 109 PFU/mL SOM7, respectively; p < 0.05). These results were supported by transmission electron microscopy (TEM) imaging, providing unprecedent evidence for the interaction of the somatic coliphage with the non-host strain. Conclusions. Although more studies in other biofilm models are necessary, our results show for the very first time that bacteriophages could potentially be used as an alternative to achieve desired anti-biofilm and biofilm-degrading activity in non-host bacterial strains.
Collapse
Affiliation(s)
- Leonardo Martín Pérez
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain;
| | - Olesia Havryliuk
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Nury Infante
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 (Annex. Floor 0), 08028 Barcelona, Spain;
| | - Jordi Morató
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 08001 Presov, Slovakia
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain;
| |
Collapse
|
3
|
Aggarwal R, Mahajan P, Pandiya S, Bajaj A, Verma SK, Yadav P, Kharat AS, Khan AU, Dua M, Johri AK. Antibiotic resistance: a global crisis, problems and solutions. Crit Rev Microbiol 2024; 50:896-921. [PMID: 38381581 DOI: 10.1080/1040841x.2024.2313024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Healthy state is priority in today's world which can be achieved using effective medicines. But due to overuse and misuse of antibiotics, a menace of resistance has increased in pathogenic microbes. World Health Organization (WHO) has announced ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) as the top priority pathogens as these have developed resistance against certain antibiotics. To combat such a global issue, it is utmost important to identify novel therapeutic strategies/agents as an alternate to such antibiotics. To name certain antibiotic adjuvants including: inhibitors of beta-lactamase, efflux pumps and permeabilizers for outer membrane can potentially solve the antibiotic resistance problems. In this regard, inhibitors of lytic domain of lytic transglycosylases provide a novel way to not only act as an alternate to antibiotics but also capable of restoring the efficiency of previously resistant antibiotics. Further, use of bacteriophages is another promising strategy to deal with antibiotic resistant pathogens. Taking in consideration the alternatives of antibiotics, a green synthesis nanoparticle-based therapy exemplifies a good option to combat microbial resistance. As horizontal gene transfer (HGT) in bacteria facilitates the evolution of new resistance strains, therefore identifying the mechanism of resistance and development of inhibitors against it can be a novel approach to combat such problems. In our perspective, host-directed therapy (HDT) represents another promising strategy in combating antimicrobial resistance (AMR). This approach involves targeting specific factors within host cells that pathogens rely on for their survival, either through replication or persistence. As many new drugs are under clinical trials it is advisable that more clinical data and antimicrobial stewardship programs should be conducted to fully assess the clinical efficacy and safety of new therapeutic agents.
Collapse
Affiliation(s)
- Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sameeksha Pandiya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aayushi Bajaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Arun S Kharat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Xiao N, Zhang X, Xi Y, Li Z, Wei Y, Shen J, Wang L, Qin D, Xie Z, Li Z. Study on the effects of intestinal flora on gouty arthritis. Front Cell Infect Microbiol 2024; 14:1341953. [PMID: 39176260 PMCID: PMC11339034 DOI: 10.3389/fcimb.2024.1341953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Gouty arthritis (GA), a metabolic and immunologic disease, primarily affects joints. Dysbiosis of intestinal flora is an important cause of GA. The metabolic disorders of intestinal flora leading to GA and immune disorders might play an important role in patients with hyperuricemia and established GA. However, the exact mechanisms, through which the dysbiosis of intestinal flora causes the development of GA, are not fully understood yet. Moreover, several therapies commonly used to treat GA might alter the intestinal flora, suggesting that modulation of the intestinal flora might help prevent or treat GA. Therefore, a better understanding of the changes in the intestinal flora of GA patients might facilitate the discovery of new diagnostic and therapeutic approaches. The current review article discusses the effects of intestinal flora dysbiosis on the pathogenesis of GA and the cross-regulatory effects between gut flora and drugs for treating GA. This article also highlights the modulatory effects of gut flora by traditional Chinese medicine (TCM) to lower uric acid levels and relieve joint pain as well as provides a summary and outlook, which might help guide future research efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
Berkson JD, Wate CE, Allen GB, Schubert AM, Dunbar KE, Coryell MP, Sava RL, Gao Y, Hastie JL, Smith EM, Kenneally CR, Zimmermann SK, Carlson PE. Phage-specific immunity impairs efficacy of bacteriophage targeting Vancomycin Resistant Enterococcus in a murine model. Nat Commun 2024; 15:2993. [PMID: 38582763 PMCID: PMC10998888 DOI: 10.1038/s41467-024-47192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.
Collapse
Affiliation(s)
- Julia D Berkson
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Claire E Wate
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Garrison B Allen
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Alyxandria M Schubert
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Kristin E Dunbar
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Michael P Coryell
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Rosa L Sava
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Yamei Gao
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Viral Products, Laboratory of Pediatric and Respiratory Viral Diseases, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Jessica L Hastie
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Emily M Smith
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Charlotte R Kenneally
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Sally K Zimmermann
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA
| | - Paul E Carlson
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, 10903 New Hampshire Ave, Silver Spring, MD, 20832, USA.
| |
Collapse
|
6
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
8
|
Liu K, Wang C, Zhou X, Guo X, Yang Y, Liu W, Zhao R, Song H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol 2024; 14:1336821. [PMID: 38357445 PMCID: PMC10864608 DOI: 10.3389/fcimb.2024.1336821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kaixin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xudong Zhou
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA, Morowitz MJ, Banfield JF. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35-47.e6. [PMID: 38096814 PMCID: PMC11156429 DOI: 10.1016/j.chom.2023.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Spencer-Drakes TCJ, Sarabia A, Heussler G, Pierce EC, Morin M, Villareal S, Dutton RJ. Phage resistance mutations affecting the bacterial cell surface increase susceptibility to fungi in a model cheese community. ISME COMMUNICATIONS 2024; 4:ycae101. [PMID: 39296780 PMCID: PMC11409937 DOI: 10.1093/ismeco/ycae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/17/2024] [Indexed: 09/21/2024]
Abstract
Diverse populations of bacteriophages infect and coevolve with their bacterial hosts. Although host recognition and infection occur within microbiomes, the molecular mechanisms underlying host-phage interactions within a community context remain poorly studied. The biofilms (rinds) of aged cheeses contain taxonomically diverse microbial communities that follow reproducible growth patterns and can be manipulated under laboratory conditions. In this study, we use cheese as a model for studying phage-microbe interactions by identifying and characterizing a tractable host-phage pair co-occurring within a model Brie-like community. We isolated a novel bacteriophage, TS33, that kills Hafnia sp. JB232, a member of the model community. TS33 is easily propagated in the lab and naturally co-occurs in the cheese community, rendering it a prime candidate for the study of host-phage interactions. We performed growth assays of the Hafnia, TS33, and the fungal community members, Geotrichum candidum and Penicillium camemberti. Employing Random Barcode Transposon Sequencing experiments, we identified candidate host factors that contribute to TS33 infectivity, many of which are homologs of bacterial O-antigen genes. Hafnia mutants in these genes exhibit decreased susceptibility to phage infection, but experience negative fitness effects in the presence of the fungi. Therefore, mutations in O-antigen biosynthesis homologs may have antagonistic pleiotropic effects in Hafnia that have major consequences for its interactions with the rest of the community. Ongoing and future studies aim to unearth the molecular mechanisms by which the O-antigen of Hafnia mediates its interactions with its viral and fungal partners.
Collapse
Affiliation(s)
- Tara C J Spencer-Drakes
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Angel Sarabia
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Gary Heussler
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Emily C Pierce
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Arcadia Science, 3100 San Pablo Avenue, Suite #120, Berkeley, CA 94702, United States
| | - Manon Morin
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Arcadia Science, 3100 San Pablo Avenue, Suite #120, Berkeley, CA 94702, United States
| | - Steven Villareal
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Rachel J Dutton
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Astera Institute, 2625 Alcatraz Ave, #201, Berkeley, CA 94705, United States
| |
Collapse
|
11
|
Smug BJ, Szczepaniak K, Rocha EPC, Dunin-Horkawicz S, Mostowy RJ. Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nat Commun 2023; 14:7460. [PMID: 38016962 PMCID: PMC10684548 DOI: 10.1038/s41467-023-43236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Biological modularity enhances evolutionary adaptability. This principle is vividly exemplified by bacterial viruses (phages), which display extensive genomic modularity. Phage genomes are composed of independent functional modules that evolve separately and recombine in various configurations. While genomic modularity in phages has been extensively studied, less attention has been paid to protein modularity-proteins consisting of distinct building blocks that can evolve and recombine, enhancing functional and genetic diversity. Here, we use a set of 133,574 representative phage proteins and highly sensitive homology detection to capture instances of domain mosaicism, defined as fragment sharing between two otherwise unrelated proteins, and to understand its relationship with functional diversity in phage genomes. We discover that unrelated proteins from diverse functional classes frequently share homologous domains. This phenomenon is particularly pronounced within receptor-binding proteins, endolysins, and DNA polymerases. We also identify multiple instances of recent diversification via domain shuffling in receptor-binding proteins, neck passage structures, endolysins and some members of the core replication machinery, often transcending distant taxonomic and ecological boundaries. Our findings suggest that ongoing diversification via domain shuffling is reflective of a co-evolutionary arms race, driven by the need to overcome various bacterial resistance mechanisms against phages.
Collapse
Affiliation(s)
- Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Stanislaw Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology & Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Rafał J Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Hetta HF, Rashed ZI, Ramadan YN, Al-Kadmy IMS, Kassem SM, Ata HS, Nageeb WM. Phage Therapy, a Salvage Treatment for Multidrug-Resistant Bacteria Causing Infective Endocarditis. Biomedicines 2023; 11:2860. [PMID: 37893232 PMCID: PMC10604041 DOI: 10.3390/biomedicines11102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Infective endocarditis (IE) is defined as an infection of the endocardium, or inner surface of the heart, most frequently affecting the heart valves or implanted cardiac devices. Despite its rarity, it has a high rate of morbidity and mortality. IE generally occurs when bacteria, fungi, or other germs from another part of the body, such as the mouth, spread through the bloodstream and attach to damaged areas in the heart. The epidemiology of IE has changed as a consequence of aging and the usage of implantable cardiac devices and heart valves. The right therapeutic routes must be assessed to lower complication and fatality rates, so this requires early clinical suspicion and a fast diagnosis. It is urgently necessary to create new and efficient medicines to combat multidrug-resistant bacterial (MDR) infections because of the increasing threat of antibiotic resistance on a worldwide scale. MDR bacteria that cause IE can be treated using phages rather than antibiotics to combat MDR bacterial strains. This review will illustrate how phage therapy began and how it is considered a powerful potential candidate for the treatment of MDR bacteria that cause IE. Furthermore, it gives a brief about all reported clinical trials that demonstrated the promising effect of phage therapy in combating resistant bacterial strains that cause IE and how it will become a hope in future medicine.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq
| | - Soheir M. Kassem
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Assuit University, Assiut 71515, Egypt;
| | - Hesham S. Ata
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Qassim, Saudi Arabia;
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
13
|
Lourenço M, Osbelt L, Passet V, Gravey F, Megrian D, Strowig T, Rodrigues C, Brisse S. Phages against Noncapsulated Klebsiella pneumoniae: Broader Host range, Slower Resistance. Microbiol Spectr 2023; 11:e0481222. [PMID: 37338376 PMCID: PMC10433977 DOI: 10.1128/spectrum.04812-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Klebsiella pneumoniae (Kp), a human gut colonizer and opportunistic pathogen, is a major contributor to the global burden of antimicrobial resistance. Virulent bacteriophages represent promising agents for decolonization and therapy. However, the majority of anti-Kp phages that have been isolated thus far are highly specific to unique capsular types (anti-K phages), which is a major limitation to phage therapy prospects due to the highly polymorphic capsule of Kp. Here, we report on an original anti-Kp phage isolation strategy, using capsule-deficient Kp mutants as hosts (anti-Kd phages). We show that anti-Kd phages have a broad host range, as the majority are able to infect noncapsulated mutants of multiple genetic sublineages and O-types. Additionally, anti-Kd phages induce a lower rate of resistance emergence in vitro and provide increased killing efficiency when in combination with anti-K phages. In vivo, anti-Kd phages are able to replicate in mouse guts colonized with a capsulated Kp strain, suggesting the presence of noncapsulated Kp subpopulations. The original strategy proposed here represents a promising avenue that circumvents the Kp capsule host restriction barrier, offering promise for therapeutic development. IMPORTANCE Klebsiella pneumoniae (Kp) is an ecologically generalist bacterium as well as an opportunistic pathogen that is responsible for hospital-acquired infections and a major contributor to the global burden of antimicrobial resistance. In the last decades, limited advances have been made in the use of virulent phages as alternatives or complements to antibiotics that are used to treat Kp infections. This work demonstrates the potential value of an anti-Klebsiella phage isolation strategy that addresses the issue of the narrow host range of anti-K phages. Anti-Kd phages may be active in infection sites in which capsule expression is intermittent or repressed or in combination with anti-K phages, which often induce the loss of capsule in escape mutants.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - François Gravey
- Dynamycure Inserm UM1311 Normandie Univ, UNICAEN, UNIROUEN, Caen, France
| | - Daniela Megrian
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Carla Rodrigues
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| |
Collapse
|
14
|
von Strempel A, Weiss AS, Wittmann J, Salvado Silva M, Ring D, Wortmann E, Clavel T, Debarbieux L, Kleigrewe K, Stecher B. Bacteriophages targeting protective commensals impair resistance against Salmonella Typhimurium infection in gnotobiotic mice. PLoS Pathog 2023; 19:e1011600. [PMID: 37603558 PMCID: PMC10470868 DOI: 10.1371/journal.ppat.1011600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host. However, the functional role of phages within the gastrointestinal microbiome remain poorly understood. Here, we investigated the effects of microbiota-directed phages on infection with the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm), using a gnotobiotic mouse model (OMM14) for colonization resistance (CR). We show, that phage cocktails targeting Escherichia coli and Enterococcus faecalis acted in a strain-specific manner. They transiently reduced the population density of their respective target before establishing coexistence for up to 9 days. Infection susceptibility to S. Tm was markedly increased at an early time point after challenge with both phage cocktails. Surprisingly, OMM14 mice were also susceptible 7 days after a single phage inoculation, when the targeted bacterial populations were back to pre-phage administration density. Concluding, our work shows that phages that dynamically modulate the density of protective members of the gut microbiota can provide opportunities for invasion of bacterial pathogens, in particular at early time points after phage application. This suggests, that phages targeting protective members of the microbiota may increase the risk for Salmonella infection.
Collapse
Affiliation(s)
- Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna S. Weiss
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Kalpana S, Lin WY, Wang YC, Fu Y, Wang HY. Alternate Antimicrobial Therapies and Their Companion Tests. Diagnostics (Basel) 2023; 13:2490. [PMID: 37568853 PMCID: PMC10417861 DOI: 10.3390/diagnostics13152490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
New antimicrobial approaches are essential to counter antimicrobial resistance. The drug development pipeline is exhausted with the emergence of resistance, resulting in unsuccessful trials. The lack of an effective drug developed from the conventional drug portfolio has mandated the introspection into the list of potentially effective unconventional alternate antimicrobial molecules. Alternate therapies with clinically explicable forms include monoclonal antibodies, antimicrobial peptides, aptamers, and phages. Clinical diagnostics optimize the drug delivery. In the era of diagnostic-based applications, it is logical to draw diagnostic-based treatment for infectious diseases. Selection criteria of alternate therapeutics in infectious diseases include detection, monitoring of response, and resistance mechanism identification. Integrating these diagnostic applications is disruptive to the traditional therapeutic development. The challenges and mitigation methods need to be noted. Applying the goals of clinical pharmacokinetics that include enhancing efficacy and decreasing toxicity of drug therapy, this review analyses the strong correlation of alternate antimicrobial therapeutics in infectious diseases. The relationship between drug concentration and the resulting effect defined by the pharmacodynamic parameters are also analyzed. This review analyzes the perspectives of aligning diagnostic initiatives with the use of alternate therapeutics, with a particular focus on companion diagnostic applications in infectious diseases.
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Wan-Ying Lin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA;
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Grenfell AW, Intile PJ, McFarlane JA, Leung DC, Abdalla K, Wold MC, Kees ED, Gralnick JA. The Outer Membrane Cytochrome OmcA Is Essential for Infection of Shewanella oneidensis by a Zebrafish-Associated Bacteriophage. J Bacteriol 2023; 205:e0046922. [PMID: 37227287 PMCID: PMC10294696 DOI: 10.1128/jb.00469-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
The microbiota-the mixture of microorganisms in the intestinal tract of animals-plays an important role in host biology. Bacteriophages are a prominent, though often overlooked, component of the microbiota. The mechanisms that phage use to infect susceptible cells associated with animal hosts, and the broader role they could play in determining the substituents of the microbiota, are poorly understood. In this study, we isolated a zebrafish-associated bacteriophage, which we named Shewanella phage FishSpeaker. This phage infects Shewanella oneidensis strain MR-1, which cannot colonize zebrafish, but it is unable to infect Shewanella xiamenensis strain FH-1, a strain isolated from the zebrafish gut. Our data suggest that FishSpeaker uses the outer membrane decaheme cytochrome OmcA, which is an accessory component of the extracellular electron transfer (EET) pathway in S. oneidensis, as well as the flagellum to recognize and infect susceptible cells. In a zebrafish colony that lacks detectable FishSpeaker, we found that most Shewanella spp. are sensitive to infection and that some strains are resistant to infection. Our results suggest that phage could act as a selectivity filter for zebrafish-associated Shewanella and show that the EET machinery can be targeted by phage in the environment. IMPORTANCE Phage exert selective pressure on bacteria that influences and shapes the composition of microbial populations. However, there is a lack of native, experimentally tractable systems for studying how phage influence microbial population dynamics in complex communities. Here, we show that a zebrafish-associated phage requires both the outer membrane-associated extracellular electron transfer protein OmcA and the flagellum to infect Shewanella oneidensis strain MR-1. Our results suggest that the newly discovered phage-FishSpeaker-could exert selective pressure that restricts which Shewanella spp. colonize zebrafish. Moreover, the requirement of OmcA for infection by FishSpeaker suggests that the phage preferentially infects cells that are oxygen limited, a condition required for OmcA expression and an ecological feature of the zebrafish gut.
Collapse
Affiliation(s)
- Andrew W. Grenfell
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Peter J. Intile
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - John A. McFarlane
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Dani C. Leung
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Khalid Abdalla
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Michael C. Wold
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Eric D. Kees
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
17
|
Moura de Sousa J, Lourenço M, Gordo I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023; 31:513-527. [PMID: 37054673 DOI: 10.1016/j.chom.2023.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Horizontal gene transfer is an important evolutionary force, facilitating bacterial diversity. It is thought to be pervasive in host-associated microbiomes, where bacterial densities are high and mobile elements are frequent. These genetic exchanges are also key for the rapid dissemination of antibiotic resistance. Here, we review recent studies that have greatly extended our knowledge of the mechanisms underlying horizontal gene transfer, the ecological complexities of a network of interactions involving bacteria and their mobile elements, and the effect of host physiology on the rates of genetic exchanges. Furthermore, we discuss other, fundamental challenges in detecting and quantifying genetic exchanges in vivo, and how studies have contributed to start overcoming these challenges. We highlight the importance of integrating novel computational approaches and theoretical models with experimental methods where multiple strains and transfer elements are studied, both in vivo and in controlled conditions that mimic the intricacies of host-associated environments.
Collapse
Affiliation(s)
- Jorge Moura de Sousa
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015 Paris, France
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, F-75015 Paris, France
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,6, Oeiras, Portugal.
| |
Collapse
|
18
|
Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses 2023; 15:v15030719. [PMID: 36992428 PMCID: PMC10057081 DOI: 10.3390/v15030719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and β), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.
Collapse
|
19
|
Ji Y, Xi H, Zhao Z, Jiang Q, Chen C, Wang X, Li F, Li N, Sun C, Feng X, Lei L, Han W, Gu J. Metagenomics analysis reveals potential pathways and drivers of piglet gut phage-mediated transfer of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160304. [PMID: 36427721 DOI: 10.1016/j.scitotenv.2022.160304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.
Collapse
Affiliation(s)
- Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zhen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun 130062, People's Republic of China
| | - Chong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Na Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Changjiang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xin Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
20
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
21
|
Shim H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Antibiotics (Basel) 2023; 12:antibiotics12020204. [PMID: 36830114 PMCID: PMC9952447 DOI: 10.3390/antibiotics12020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic exacerbated by the uncontrolled use of antibiotics. Since the discovery of penicillin, we have been largely dependent on microbe-derived small molecules to treat bacterial infections. However, the golden era of antibiotics is coming to an end, as the emergence and spread of antimicrobial resistance against these antibacterial compounds are outpacing the discovery and development of new antibiotics. The current antibiotic market suffers from various shortcomings, including the absence of profitability and investment. The most important underlying issue of traditional antibiotics arises from the inherent properties of these small molecules being mostly broad-spectrum and non-programmable. As the scientific knowledge of microbes progresses, the scientific community is starting to explore entirely novel approaches to tackling antimicrobial resistance. One of the most prominent approaches is to develop next-generation antibiotics. In this review, we discuss three innovations of next-generation antibiotics compared to traditional antibiotics as specificity, evolvability, and non-immunogenicity. We present a number of potential antimicrobial agents, including bacteriophage-based therapy, CRISPR-Cas-based antimicrobials, and microbiome-derived antimicrobial agents. These alternative antimicrobial agents possess innovative properties that may overcome the inherent shortcomings of traditional antibiotics, and some of these next-generation antibiotics are not merely far-fetched ideas but are currently in clinical development. We further discuss some related issues and challenges such as infection diagnostics and regulatory frameworks that still need to be addressed to bring these next-generation antibiotics to the antibiotic market as viable products to combat antimicrobial resistance using a diversified set of strategies.
Collapse
Affiliation(s)
- Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
22
|
Zuckerman NS, Shulman LM. Next-Generation Sequencing in the Study of Infectious Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
23
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
24
|
Ping L, Zhuoya L, Pei J, Jingchao C, Yi L, Guosheng L, Hailei W. Editing of a Specific Strain of Escherichia coli in the Mouse Gut Using Native Phages. Microbiol Spectr 2022; 10:e0180422. [PMID: 36301104 PMCID: PMC9770003 DOI: 10.1128/spectrum.01804-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
There is a lack of methodological investigation of the in situ functions of bacterial species in microecosystems. Here, we used native phages as a microbial editing tool for eliminating Escherichia coli strain MG1655 labeled with green fluorescent protein (GFP) in the mouse gut. The virulent phages (W1 and W3) possessed host specificity at both the genus and species levels, resulting in an 8.8-log10 difference in the titer of viable bacteria after 12 h of phage treatment compared with that in the phage-free control in an in vitro test. In vivo, they reduced strain MG1655 colonizing the mouse gut at concentrations of 106 to 108 CFU g-1 to a 102 CFU g-1 level, which is almost undetectable by the plate colony-counting method. Moreover, the impact of phage treatment on the microbial community structure of the mouse gut was not significant (P > 0.05), indicating that native phages can effectively edit a target bacterium, with limited perturbation of microbial diversity and relative abundance. Therefore, we developed an engineering technique for investigation of the functions of a specific bacterium by depleting its abundance in microecosystems. IMPORTANCE This report describes a gut engineering technique for investigation of the functions of a specific bacterium. Native phages with host specificity can knock down the corresponding E. coli strain in the mouse gut with limited perturbation of microbial diversity and relative abundance, indicating that they, as a microbial editing tool, can effectively edit the abundance of a target bacterium. Such an approach is undoubtedly of interest in the context of lack of knowledge of how to methodologically study the in situ function of a specific species in a complex microecosystem.
Collapse
Affiliation(s)
- Li Ping
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Zhuoya
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jia Pei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chen Jingchao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Yi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Liu Guosheng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wang Hailei
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Advanced Environmental Biotechnology Center, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Zhou R, Wen W, Gong X, Zhao Y, Zhang W. Nephro-protective effect of Daphnetin in hyperoxaluria-induced rat renal injury via alterations of the gut microbiota. J Food Biochem 2022; 46:e14377. [PMID: 35994414 DOI: 10.1111/jfbc.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023]
Abstract
It is well proved that hyperoxaluria induces the renal injury and finally causes the end stage kidney disease. Daphnetin (coumarin derivative) already confirmed renal protective effect in renal model, but hyperoxaluria protective effect still unexplore. The objective of this research was to scrutinize the renal protective effect of daphnetin against ethylene glycol (GC)-induced hyperoxaluria via altering the gut microbiota. GC (1% v/v) was used for the induction of hyperoxaluria in the rats and the rats were received the oral administration of daphnetin (5, 10 and 15 mg/kg). The body and renal weight were assessed. Urine, renal, inflammatory cytokines, antioxidant, inflammatory parameters, and gut microbiota were appraised. Daphnetin effectually improved the body weight and reduced the renal weight. Its also remarkably boosted the magnesium, calcium, citrate level and suppressed the level of uric acid and oxalate formation. Daphnetin significantly (p < .001) ameliorate the level of urinary kidney injury molecule 1 (KIM-1), blood urea nitrogen (BUN), urea, serum creatinine (Scr), neutrophil gelatinase-associated lipocalin (NGAL) and uric acid along with inflammatory cytokines and inflammatory mediators. Daphnetin considerably repressed the malonaldehyde (MDA) level, protein carbonyl and improved the level of glutathione reductase (GR), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). Daphnetin treatment considerably altered the microbial composition of different bacteria at phylum, genus and family level. Daphnetin significantly suppressed the Firmicutes relative abundance and boosted the Bacteroidetes relative abundance. Our result clearly indicated that daphnetin remarkably ameliorates the GC induced hyperoxaluria in rats via altering the oxidative stress, inflammatory reaction and gut microbiota. PRACTICAL APPLICATION: Nephrotoxicity is a serious health disease worldwide. We induce the renal toxicity in the experimental rats using the ethylene glycol and scrutinized the renal protective effect of daphnetin. Daphnetin considerably suppress the renal, urine parameters. For estimation the underlying mechanism, we estimated the gut microbiota in all group rats. Daphnetin remarkably altered the level of gut microbiota and suggesting the renal protective effect.
Collapse
Affiliation(s)
- Ruijun Zhou
- Department of Endocrinology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wenbin Wen
- Department of Nephropathy, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaoli Gong
- Department of Nephropathy, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yanxia Zhao
- Department of Nephropathy, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wei Zhang
- Department of Nephropathy, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
26
|
Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N, Bera BC, Vaid RK, Tripathi BN. Tracking the phage trends: A comprehensive review of applications in therapy and food production. Front Microbiol 2022; 13:993990. [PMID: 36504807 PMCID: PMC9730251 DOI: 10.3389/fmicb.2022.993990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
In the present scenario, the challenge of emerging antimicrobial resistance is affecting human health globally. The increasing incidences of multidrug-resistant infections have become harder to treat, causing high morbidity, and mortality, and are posing extensive financial loss. Limited discovery of new antibiotic molecules has further complicated the situation and has forced researchers to think and explore alternatives to antibiotics. This has led to the resurgence of the bacteriophages as an effective alternative as they have a proven history in the Eastern world where lytic bacteriophages have been used since their first implementation over a century ago. To help researchers and clinicians towards strengthening bacteriophages as a more effective, safe, and economical therapeutic alternative, the present review provides an elaborate narrative about the important aspects of bacteriophages. It abridges the prerequisite essential requirements of phage therapy, the role of phage biobank, and the details of immune responses reported while using bacteriophages in the clinical trials/compassionate grounds by examining the up-to-date case reports and their effects on the human gut microbiome. This review also discusses the potential of bacteriophages as a biocontrol agent against food-borne diseases in the food industry and aquaculture, in addition to clinical therapy. It finishes with a discussion of the major challenges, as well as phage therapy and phage-mediated biocontrols future prospects.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Taruna Anand
- ICAR – National Research Centre on Equines, Hisar, India,*Correspondence: Taruna Anand,
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Medhavi Vashisth
- Department of Molecular Biology, Biotechnology, and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Nitin Virmani
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. C. Bera
- ICAR – National Research Centre on Equines, Hisar, India
| | - R. K. Vaid
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. N. Tripathi
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India
| |
Collapse
|
27
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Examining the effects of Salmonella phage on the caecal microbiota and metabolome features in Salmonella-free broilers. Front Genet 2022; 13:1060713. [PMID: 36437955 PMCID: PMC9691336 DOI: 10.3389/fgene.2022.1060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota's structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Juan Carlos Rodríguez
- Microbiology Department, Balmis General University Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Balmis General University Hospital, ISABIAL, Alicante, Spain
| | | | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
28
|
Tang X, Fan C, Zeng G, Zhong L, Li C, Ren X, Song B, Liu X. Phage-host interactions: The neglected part of biological wastewater treatment. WATER RESEARCH 2022; 226:119183. [PMID: 36244146 DOI: 10.1016/j.watres.2022.119183] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 05/25/2023]
Abstract
In wastewater treatment plants (WWTPs), the stable operation of biological wastewater treatment is strongly dependent on the stability of associated microbiota. Bacteriophages (phages), viruses that specifically infect bacteria and archaea, are highly abundant and diverse in WWTPs. Although phages do not have known metabolic functions for themselves, they can shape functional microbiota via various phage-host interactions to impact biological wastewater treatment. However, the developments of phage-host interaction in WWTPs and their impact on biological wastewater treatment are overlooked. Here, we review the current knowledge regarding the phage-host interactions in biological wastewater treatment, mainly focusing on the characteristics of different phage populations, the phage-driven changes in functional microbiota, and the potential driving factors of phage-host interactions. We also discuss the efforts required further to understand and manipulate the phage-host interactions in biological wastewater treatment. Overall, this review advocates more attention to the phage dynamics in WWTPs.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China; Nova Skantek (Hunan) Environ Energy Co., Ltd., Changsha 410100, P.R. China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
29
|
Bao M, Zhang P, Guo S, Zou J, Ji J, Ding X, Yu X. Altered gut microbiota and gut-derived p-cresyl sulfate serum levels in peritoneal dialysis patients. Front Cell Infect Microbiol 2022; 12:639624. [PMID: 36237423 PMCID: PMC9551184 DOI: 10.3389/fcimb.2022.639624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal dialysis (PD) is a renal replacement therapy for end-stage renal disease. Gut microbiota-derived uremic solutes, indoxyl sulfate (IS), p-cresyl sulfate (PCS), and trimethylamine-N-oxide (TMAO) accumulate in PD patients. The objective was to explore the gut microbiota and their influence on uremic toxins in PD patients and healthy controls (HC). Fecal samples were collected from PD patients (n = 105) and HC (n = 102). 16S rRNA gene regions were sequenced for gut microbiota analysis. IS, PCS, and TMAO levels were measured using HPLC-MS. PD patients exhibited lower alpha diversity and altered gut microbiota composition compared to HC. At the genus level, PD patients showed increased abundance of opportunistic pathogenic bacteria, and decreased abundance of beneficial bacteria. Three Operational Taxonomic Units discriminated PD patients from HC. Phenylalanine metabolism increased in PD, whereas tryptophan metabolism was unaltered. Low serum PCS did not necessarily mean healthier due to the loss of alpha diversity, increased Proteobacteria and opportunistic pathogenic bacteria. High serum PCS was mainly caused by elevated p-cresol-producing bacteria, enriched amino acid related enzymes, and enhanced sulfur metabolism, rather than declined residual renal function. In patients with different urine volumes, the gut microbiota alpha diversity and composition were unaltered, but serum IS and TMAO were significantly elevated in anuric patients. In conclusion, the gut microbiota abundance, composition, and function were altered in PD patients, which increased the PCS levels. We provided a better understanding of the microbiota-metabolite-kidney axis in PD patients. Targeting certain bacteria could decrease the PCS levels, whereas preserving the residual renal function could reduce the IS and TMAO levels.
Collapse
Affiliation(s)
- Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- *Correspondence: Xiaofang Yu, ; Xiaoqiang Ding,
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- *Correspondence: Xiaofang Yu, ; Xiaoqiang Ding,
| |
Collapse
|
30
|
An in vitro fermentation model to study the impact of bacteriophages targeting Shiga toxin-encoding Escherichia coli on the colonic microbiota. NPJ Biofilms Microbiomes 2022; 8:74. [PMID: 36163472 PMCID: PMC9512901 DOI: 10.1038/s41522-022-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic bacteriophages are considered safe for human consumption as biocontrol agents against foodborne pathogens, in particular in ready-to-eat foodstuffs. Phages could, however, evolve to infect different hosts when passing through the gastrointestinal tract (GIT). This underlines the importance of understanding the impact of phages towards colonic microbiota, particularly towards bacterial families usually found in the colon such as the Enterobacteriaceae. Here we propose in vitro batch fermentation as model for initial safety screening of lytic phages targeting Shiga toxin-producing Escherichia coli (STEC). As inoculum we used faecal material of three healthy donors. To assess phage safety, we monitored fermentation parameters, including short chain fatty acid production and gas production/intake by colonic microbiota. We performed shotgun metagenomic analysis to evaluate the outcome of phage interference with colonic microbiota composition and functional potential. During the 24 h incubation, concentrations of phage and its host were also evaluated. We found the phage used in this study, named E. coli phage vB_EcoS_Ace (Ace), to be safe towards human colonic microbiota, independently of the donors’ faecal content used. This suggests that individuality of donor faecal microbiota did not interfere with phage effect on the fermentations. However, the model revealed that the attenuated STEC strain used as phage host perturbed the faecal microbiota as based on metagenomic analysis, with potential differences in metabolic output. We conclude that the in vitro batch fermentation model used in this study is a reliable safety screening for lytic phages intended to be used as biocontrol agents.
Collapse
|
31
|
Tan J, Dong L, Jiang Z, Tan L, Luo X, Pei G, Qin A, Zhong Z, Liu X, Tang Y, Qin W. Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling. Lab Invest 2022; 20:382. [PMID: 36038927 PMCID: PMC9422169 DOI: 10.1186/s12967-022-03585-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background Recently, a few studies have indicated a relationship between the gut microbiota and IgA nephropathy (IgAN). Whether the gut microbiota participates in the pathogenesis of IgAN and whether probiotics are effective in treating IgAN are still controversial. Therefore, this study aimed to identify the differences in the structure of the gut microbiota between IgAN and controls and to evaluate the efficacy and mechanism of probiotics in the treatment of IgAN. Methods To address this question, 35 IgAN patients and 25 healthy volunteers were enrolled, and a mouse IgAN model was also constructed. The stool microbes were analyzed by 16S rRNA high-throughput sequencing to identify the differential strains between IgAN and healthy controls. The impact of probiotics on the structure of the intestinal flora and the efficacy of the probiotics in the treatment of IgAN were evaluated. Results Although the microflora structure of mice and humans was not the same, both patients and mice with IgAN exhibited gut microbiota dysbiosis, with all subjects presenting an evident decrease in Bifidobacterium levels. The Bifidobacterium proportion was negatively correlated with proteinuria and hematuria levels, indicating that the decreased Bifidobacterium abundance could be related to IgAN severity. Probiotic treatment containing Bifidobacterium in IgAN mice could significantly alleviate gut dysbiosis, specifically by increasing the proportion of beneficial bacteria and reducing the abundance of potentially pathogenic bacteria. Moreover, both probiotics and their metabolites, short-chain fatty acids (SCFAs), could attenuate IgAN clinicopathological manifestations by inhibiting the NLRP3/ASC/Caspase 1 signaling pathway. Conclusions Supplementation with probiotics mainly containing Bifidobacterium could markedly improve gut dysbiosis in IgAN. Moreover, both probiotics and their SCFA metabolites could attenuate the clinicopathological manifestations of IgAN by inhibiting the NLRP3/ASC/Caspase 1 signaling pathway. Therefore, probiotics have potential as an adjunctive therapy for IgAN. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03585-3.
Collapse
Affiliation(s)
- Jiaxing Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingqiu Dong
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyao Luo
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gaiqin Pei
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Aiya Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengxia Zhong
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Liu
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Huang L, Wu X, Guo S, Lv Y, Zhou P, Huang G, Duan Z, Sun W. Metagenomic-based characterization of the gut virome in patients with polycystic ovary syndrome. Front Microbiol 2022; 13:951782. [PMID: 36051758 PMCID: PMC9424824 DOI: 10.3389/fmicb.2022.951782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex disease that afflicts women of reproductive age, and its pathological mechanism has not been well explained. The gut microbiota is believed to be closely related to the development of PCOS. Although an important component of the gut microbiome, the role of the gut virome in the development of PCOS is still unclear. Methods In this study, we profiled and compared the gut viral community of 50 patients with PCOS and 43 healthy women based on the analysis of their fecal whole-metagenome dataset. Results The gut virome of PCOS patients exhibited a significant decrease in within-sample viral diversity and a remarkable alteration of the overall virome composition compared with that of healthy controls. At the family level, Siphoviridae was significantly depleted in the gut virome of patients, while Quimbyviridae was enriched. We identified 1,089 viral operational taxonomic units (vOTUs) that differed in relative abundance between the two groups, of which 455 vOTUs were enriched in PCOS patients (including numerous Bacteroidaceae phages) and 634 were enriched in controls (including numerous viruses predicted to infect Oscillospiraceae, Prevotellaceae, and Ruminococcaceae). Functional comparison of the PCOS-enriched and control-enriched vOTUs uncovered the viral functional signatures associated with PCOS. Furthermore, we demonstrated gut viral signatures for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC) of 0.938, demonstrating the potential of the gut virome in the prediction of PCOS. Conclusion Our findings reveal specific alterations in viral diversity and taxonomic and functional compositions of the gut virome of PCOS patients. Further studies on the etiology of PCOS and the gut viral community will offer new prospects for treating and preventing PCOS and its related diseases.
Collapse
Affiliation(s)
- Liansha Huang
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoling Wu
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shumin Guo
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Lv
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Guangrong Huang
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zuzhen Duan
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Beijing key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Wen Sun,
| |
Collapse
|
33
|
Viral biogeography of the mammalian gut and parenchymal organs. Nat Microbiol 2022; 7:1301-1311. [PMID: 35918425 PMCID: PMC7614033 DOI: 10.1038/s41564-022-01178-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
The mammalian virome has been linked to health and disease but our understanding of how it is structured along the longitudinal axis of the mammalian gastrointestinal tract (GIT) and other organs is limited. Here, we report a metagenomic analysis of the prokaryotic and eukaryotic virome occupying luminal and mucosa-associated habitats along the GIT, as well as parenchymal organs (liver, lung and spleen), in two representative mammalian species, the domestic pig and rhesus macaque (six animals per species). Luminal samples from the large intestine of both mammals harboured the highest loads and diversity of bacteriophages (class Caudoviricetes, family Microviridae and others). Mucosal samples contained much lower viral loads but a higher proportion of eukaryotic viruses (families Astroviridae, Caliciviridae, Parvoviridae). Parenchymal organs contained bacteriophages of gut origin, in addition to some eukaryotic viruses. Overall, GIT virome composition was specific to anatomical region and host species. Upper GIT and mucosa-specific viruses were greatly under-represented in distal colon samples (a proxy for faeces). Nonetheless, certain viral and phage species were ubiquitous in all samples from the oral cavity to the distal colon. The dataset and its accompanying methodology may provide an important resource for future work investigating the biogeography of the mammalian gut virome.
Collapse
|
34
|
Abstract
The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.
Collapse
|
35
|
Huang KZ, Ye H, Fang YY, Li T, Pei SJ, Wu LP, Su FF, Zheng XQ. Plasma Phage Load is Positively Related to the Immune Checkpoints in Patients Living with Human Immunodeficiency Virus. Curr HIV Res 2022; 20:301-308. [PMID: 35786189 DOI: 10.2174/1570162x20666220630141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Microbial Translocation (MT) and altered gut microbiota are involved in immune activation and inflammation, whereas immune checkpoint proteins play an important role in maintaining immune self-tolerance and preventing excessive immune activation. OBJECTIVE This study aims to investigate the relationship between plasma phage load and immune homeostasis in people living with HIV(PLWH). METHODS We recruited 15 antiretroviral therapy (ART)-naive patients, 23 ART-treated (AT) patients, and 34 Healthy Participants (HP) to explore the relationship between the plasma phage load and immune checkpoint proteins. The Deoxyribonucleic Acid (DNA) load of the lambda (λ) phage was detected using fluorescence quantitative Polymerase Chain Reaction (PCR). The Immune Checkpoints (ICPs) were detected using multiplex immunoassay. RESULTS Our study demonstrated that the plasma phage load was increased in people living with HIV (PLWH) (P<0.05), but not in the ART-naive and AT groups (P>0.05). Plasma ICPs, including cluster of differentiation 27 (CD27), soluble glucocorticoid-induced Tumor Necrosis Factor (TNF) receptor (sGITR), soluble cluster of differentiation 80 (sCD80), sCD86, soluble glucocorticoidinduced TNF receptor-related ligand (sGITRL), soluble induced T-cell Costimulatory (sICOS), sCD40, soluble toll-like receptor 2 (sTLR2), and sCD28, were markedly decreased among the ARTnaive group (P<0.05) but not in the AT and HP groups (P>0.05). The plasma phage load was positively correlated with ICP and C-reactive protein (CRP) levels in PLWH (P<0.05). CONCLUSION Our study indicated that the plasma phage load in PLWH was positively related to the expression of ICPs and inflammation, which may be used as a promising marker for the immune level of PLWH.
Collapse
Affiliation(s)
- Kai-Zhao Huang
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Yang-Yang Fang
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Tao Li
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Shun-Jie Pei
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Lian-Peng Wu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Fei-Fei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Xiao-Qun Zheng
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| |
Collapse
|
36
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
37
|
Cao C, Fan B, Zhu J, Zhu N, Cao JY, Yang DR. Association of Gut Microbiota and Biochemical Features in a Chinese Population With Renal Uric Acid Stone. Front Pharmacol 2022; 13:888883. [PMID: 35662733 PMCID: PMC9160931 DOI: 10.3389/fphar.2022.888883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022] Open
Abstract
Previous studies suggest that patients with nephrolithiasis exhibit dysbiosis in their gut microbiota, but those studies were conducted in calcium oxalate stone patients. We aimed to explore the association of gut microbiota and biochemical features of renal uric acid stone (UAS) patients in a Chinese population and identify the related bacteria that may affect the pathopoiesis of UAS. A case-control study of 117 patients with UAS, 123 patients with gout, and 135 healthy controls were included from January 2014 to October 2020. For each subject, data on demographics, biochemical parameters of blood and urine were analyzed. Fifteen patients with gout, 16 patients with UAS, 17 UAS patients with gout, and 17 healthy subjects were enrolled and provided fecal samples. The characteristics of gut microbiota were explored by using 16S ribosomal RNA (rRNA) gene sequencing and analyzed by using a combination of software mother and R. Hyperuricemia was the main risk factor for the development of gout and UAS. Obesity, dyslipidemia, and aciduria were unique risk factors for UAS patients. The richness, diversity, and relative abundance of dominant bacteria at the phylum and genus levels of gut microbiota in UAS patients were significantly distinct from other subjects. Abundance of Bacteroides and Fusobacterium was significantly positively correlated with the serum uric acid (UA) level of UAS patients. Fusobacteria was involved in the metabolism and degradation of certain short-chain fatty acids, amino acids, and sugars in pathopoiesis of UAS, and inhibited their synthesis pathways. Fusobacteria may be related to the pathogenesis of UAS, and this finding contributes to the personalized treatment of UAS from the perspective of maintaining micro-ecological equilibrium in gut.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Bo Fan
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Dong-Rong Yang, ; Jin Zhu,
| | - Na Zhu
- Department of Rheumatology, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jing-Yuan Cao
- Department of Nephrology, Taizhou People’s Hospital, Taizhou, China
| | - Dong-Rong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Dong-Rong Yang, ; Jin Zhu,
| |
Collapse
|
38
|
Baaziz H, Baker ZR, Franklin HC, Hsu BB. Rehabilitation of a misbehaving microbiome: phages for the remodeling of bacterial composition and function. iScience 2022; 25:104146. [PMID: 35402871 PMCID: PMC8991392 DOI: 10.1016/j.isci.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human gut microbiota is considered an adjunct metabolic organ owing to its health impact. Recent studies have shown correlations between gut phage composition and host health. Whereas phage therapy has popularized virulent phages as antimicrobials, both virulent and temperate phages have a natural ecological relationship with their cognate bacteria. Characterization of this evolutionary coadaptation has led to other emergent therapeutic phage applications that do not necessarily rely on bacterial eradication or target pathogens. Here, we present an overview of the tripartite relationship between phages, bacteria, and the mammalian host, and highlight applications of the wildtype and genetically engineered phage for gut microbiome remodeling. In light of new and varied strategies, we propose to categorize phage applications aiming to modulate bacterial composition or function as "phage rehabilitation." By delineating phage rehab from phage therapy, we believe it will enable greater nuance and understanding of these new phage-based technologies.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zachary Robert Baker
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hollyn Claire Franklin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bryan Boen Hsu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
39
|
Zhou F, Shao Q, Jia L, Cai C. Gut Microbiota Variations between Henoch-Schonlein Purpura and Henoch-Schonlein Purpura Nephritis. Gastroenterol Res Pract 2022; 2022:4003491. [PMID: 35462986 PMCID: PMC9023217 DOI: 10.1155/2022/4003491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background In China, little is known regarding the differences between children with Henoch-Schonlein purpura (HSP) and Henoch-Schonlein purpura nephritis (HSPN) concerning their gut microbiota. Methods We recruited 25 children with HSP, 25 children with HSPN, and 25 healthy children to investigate the differences. Fecal samples were collected and analyzed by sequencing the V3-V4 region of the 16S rRNA gene. The diversity of the fecal gut microbiota was compared between the patient groups. Results Rarefaction curves showed that the gut microbial diversity between the three groups differed significantly (P = 0.0224). The top five most abundant gut microbial genera were Bacteroides, Faecalibacterium, Prevotella, Ruminococcaceae, and Megamonas in children with HSP; Bacteroides, Faecalibacterium, Prevotella, Bifidobacterium, and Ruminococcaceae in children with HSPN; and Bacteroides, Prevotella, Faecalibacterium, Ruminococcaceae, and Bifidobacterium in healthy children. Children with HSP had the lowest Bifidobacterium abundance among the three groups (P < 0.05). Children with HSPN had a lower abundance of Akkermansia than children with HSP (P < 0.05), whereas children with HSPN had a higher Alistipes abundance than children with HSP (P < 0.05). Fecal microbial community composition did not differ significantly between groups (ANOSIM, R = -0.002, P = 0.46). Despite the small sample size, our results indicate that children with HSP or HSPN displayed dysbiosis of the gut microbiota. Conclusion This study provides valuable insights that will benefit the development of future microbe-based therapies to improve clinical outcomes or prevent the incidence of HSP or HSPN in children.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Rheumatoid Immune Nephrology, Hangzhou Children's Hospital, Hangzhou, 310014 Zhejiang, China
| | - Qimin Shao
- Department of Rheumatoid Immune Nephrology, Hangzhou Children's Hospital, Hangzhou, 310014 Zhejiang, China
| | - Lihong Jia
- Department of Rheumatoid Immune Nephrology, Hangzhou Children's Hospital, Hangzhou, 310014 Zhejiang, China
| | - Chunyan Cai
- Department of Rheumatoid Immune Nephrology, Hangzhou Children's Hospital, Hangzhou, 310014 Zhejiang, China
| |
Collapse
|
40
|
De Sordi L. Gut bacteriophages and the pinball challenge. Cell Host Microbe 2022; 30:431-434. [PMID: 35421337 DOI: 10.1016/j.chom.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Five years ago, my first study on the mechanisms that govern the coexistence of intestinal bacteria and bacteriophages was published in Cell Host & Microbe. In this commentary, I use the following evolutionary steps of my career to discuss the larger frame of bacteriophage biology in gut health and disease.
Collapse
Affiliation(s)
- Luisa De Sordi
- Sorbonne Université, INSERM, Centre de Recherche St Antoine, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France.
| |
Collapse
|
41
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Titécat M, Pédron T, Sismeiro O, Legendre R, Varet H, Coppée JY, Bérard M, De Sordi L, Debarbieux L. The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host Microbe 2022; 30:556-569.e5. [PMID: 35421351 DOI: 10.1016/j.chom.2022.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Lorenzo Chaffringeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titécat
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, Centre de Gnotobiologie, 75724 Paris, France
| | - Luisa De Sordi
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France.
| |
Collapse
|
42
|
Xu X, Chen J, Lv H, Xi Y, Ying A, Hu X. Molecular mechanism of Pyrrosia lingua in the treatment of nephrolithiasis: Network pharmacology analysis and in vivo experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153929. [PMID: 35104754 DOI: 10.1016/j.phymed.2022.153929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence exists reporting that Pyrrosia lingua (PL, Xinhui Pharmaceutical, Polypodiaceae) alleviates nephrolithiasis in rat models. The precipitation of calcium oxalate may result in kidney stones, and the intestinal microbiota is critical for oxalate metabolism. Therefore, we attempt to delineate the molecular mechanism underlying the effect of PL on nephrolithiasis and its association with gut microbiota. METHODS Following differential flora analysis in gutMEGA, the network relationship of PL and nephrolithiasis was analyzed based on the TCMSP, DisGeNET and STRING databases. Moreover, the kidney stone model rats were fed with different doses of PL powder and PL extract. In addition, metabolomics technology was employed to identify the active ingredients in PL extract and the microbial metabolites in rat feces. RESULTS The effect of PL on the nephrolithiasis was based on quercetin and kaempferol by mediating the toll-like receptor signaling pathway and regulating the expression levels of interleukin 6, tumor necrosis factor, mitogen activated protein kinase 8, and secreted phosphoprotein 1. PL significantly reduced the levels of urine oxalic acid, urine calcium, and osteopontin (OPN) levels in rat models of nephrolithiasis. Notably, PL extract decreased these two indicators to lower levels. Furthermore, contents of Oxalobacter formigenes, Bacteriodetes, Bifidobacterium and Fecalibacterium were obviously reduced after treatment with PL extract. CONCLUSION PL powder and its active extracts reduce the oxalate level in urine by regulating oxalate metabolism, thus ameliorating the damage of kidney tissues and preventing kidney stone formation. This study suggests the use of PL and its extracts as an alternative source of promising agents that might directly or indirectly inhibit the progression of kidney stone diseases.
Collapse
Affiliation(s)
- Xiangwei Xu
- Department of Pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, PR China
| | - Jun Chen
- Department of Pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, PR China
| | - Haiou Lv
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China
| | - Yiyuan Xi
- School of Pharmacy, Wenzhou Medical University, PR China
| | - Aiying Ying
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China
| | - Xiang Hu
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China.
| |
Collapse
|
43
|
Nagase N, Ikeda Y, Tsuji A, Kitagishi Y, Matsuda S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J Diabetes 2022; 13:150-160. [PMID: 35432750 PMCID: PMC8984564 DOI: 10.4239/wjd.v13.i3.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are insufficient. The number of patients with DN has been increasing in Asian countries because of westernization of dietary lifestyle, which may be associated with the following changes in gut microbiota. Alterations in the gut microbiota composition can lead to an imbalanced gastrointestinal environment that promotes abnormal production of metabolites and/or inflammatory status. Functional microenvironments of the gut could be changed in the different stages of DN. In particular, altered levels of short chain fatty acids, D-amino acids, and reactive oxygen species biosynthesis in the gut have been shown to be relevant to the pathogenesis of the DN. So far, evidence suggests that the gut microbiota may play a key role in determining networks in the development of DN. Interventions directing the gut microbiota deserve further investigation as a new protective therapy in DN. In this review, we discuss the potential roles of the gut microbiota and future perspectives in the protection and/or treatment of kidneys.
Collapse
Affiliation(s)
- Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
44
|
Vera-Mansilla J, Sánchez P, Silva-Valenzuela CA, Molina-Quiroz RC. Isolation and Characterization of Novel Lytic Phages Infecting Multidrug-Resistant Escherichia coli. Microbiol Spectr 2022; 10:e0167821. [PMID: 35171030 PMCID: PMC8849078 DOI: 10.1128/spectrum.01678-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) are the second most frequent bacterial infections worldwide, with Escherichia coli being the main causative agent. The increase of antibiotic-resistance determinants among isolates from clinical samples, including UTIs, makes the development of novel therapeutic strategies a necessity. In this context, the use of bacteriophages as a therapeutic alternative has been proposed, due to their ability to efficiently kill bacteria. In this work, we isolated and characterized three novel bacteriophages, microbes laboratory phage 1 (MLP1), MLP2, and MLP3, belonging to the Chaseviridae, Myoviridae, and Podoviridae families, respectively. These phages efficiently infect and kill laboratory reference strains and multidrug-resistant clinical E. coli isolates from patients with diagnosed UTIs. Interestingly, these phages are also able to infect intestinal pathogenic Escherichia coli strains, such as enteroaggregative E. coli and diffusely adherent E. coli. Our data show that the MLP phages recognize different regions of the lipopolysaccharide (LPS) molecule, an important virulence factor in bacteria that is also highly variable among different E. coli strains. Altogether, our results suggest that these phages may represent an interesting alternative for the treatment of antibiotic-resistant E. coli. IMPORTANCE Urinary tract infections affect approximately 150 million people annually. The current antibiotic resistance crisis demands the development of novel therapeutic alternatives. Our results show that three novel phages, MLP1, MLP2, and MLP3 are able to infect both laboratory and multidrug-resistant clinical isolates of Escherichia coli. Since these phages (i) efficiently kill antibiotic-resistant clinical isolates of uropathogenic Escherichia coli (UPEC), (ii) recognize different portions of the LPS molecule, and (iii) are able to efficiently infect intestinal pathogenic Escherichia coli hosts, we believe that these novel phages are good candidates to be used as a therapeutic alternative to treat antibiotic-resistant E. coli strains generating urinary tract and/or intestinal infections.
Collapse
|
45
|
Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and evolution. THE ISME JOURNAL 2021; 15:3119-3128. [PMID: 34127803 PMCID: PMC8528888 DOI: 10.1038/s41396-021-01012-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
Bacteria-phage symbioses are ubiquitous in nature and serve as valuable biological models. Historically, the ecology and evolution of bacteria-phage systems have been studied in either very simple or very complex communities. Although both approaches provide insight, their shortcomings limit our understanding of bacteria and phages in multispecies contexts. To address this gap, here we synthesize the emerging body of bacteria-phage experiments in medium-complexity communities, specifically those that manipulate bacterial community presence. Generally, community presence suppresses both focal bacterial (phage host) and phage densities, while sometimes altering bacteria-phage ecological interactions in diverse ways. Simultaneously, community presence can have an array of evolutionary effects. Sometimes community presence has no effect on the coevolutionary dynamics of bacteria and their associated phages, whereas other times the presence of additional bacterial species constrains bacteria-phage coevolution. At the same time, community context can alter mechanisms of adaptation and interact with the pleiotropic consequences of (co)evolution. Ultimately, these experiments show that community context can have important ecological and evolutionary effects on bacteria-phage systems, but many questions still remain unanswered and ripe for additional investigation.
Collapse
Affiliation(s)
- Michael Blazanin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Chaffringeon L, Lamy-Besnier Q, Debarbieux L, De Sordi L. The intestinal virome: lessons from animal models. Curr Opin Virol 2021; 51:141-148. [PMID: 34700287 DOI: 10.1016/j.coviro.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces in contact with the environment host specific microbiota. The intestinal tract harbours the most abundant and diverse bacterial and viral populations interacting with each other as well as with the host. Viruses of the microbiota are important components of this ecosystem, as shown by viral alterations associated with various pathologies. However, practical and ethical constraints limit functional studies of the virome in humans, making animal models invaluable experimental tools to understand its impact on intestinal physiology. In this review, we present the recent advances in the study of virome in animal models. We focus on the strategies used to characterise viral changes in disease models and approaches to modulate the microbiota using viruses. In reviewing the interplay between viruses, bacteria, and the animal host, we highlight the potential and limitations of these models in elucidating the role of the virome in determining human health and disease.
Collapse
Affiliation(s)
- Lorenzo Chaffringeon
- Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Department of Microbiology, Institut Pasteur, Paris, F-75015, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France
| | - Quentin Lamy-Besnier
- Department of Microbiology, Institut Pasteur, Paris, F-75015, France; Université de Paris, Paris, France
| | | | - Luisa De Sordi
- Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France.
| |
Collapse
|
47
|
Abstract
Several human intestinal microbiota studies suggest that bacteriophages, viruses infecting bacteria, play a role in gut homeostasis. Currently, bacteriophages are considered a tool to precisely engineer the intestinal microbiota, but they have also attracted considerable attention as a possible solution to fight against bacterial pathogens resistant to antibiotics. These two applications necessitate bacteriophages to reach and kill their bacterial target within the gut environment. Unfortunately, exploitable clinical data in this field are scarce. Here, we review the administration of bacteriophages to target intestinal bacteria in mammalian experimental models. While bacteriophage amplification in the gut was often confirmed, we found that in most studies, it had no significant impact on the load of the targeted bacteria. In particular, we observed that the outcome of bacteriophage treatments is linked to the behavior of the target bacteria toward each animal model. Treatment efficacy ranges from poor in asymptomatic intestinal carriage to high in intestinal disease. This broad range of efficacy underlines the difficulties to reach a consensus on the impact of bacteriophages in the gut and calls for deeper investigations of key parameters that influence the success of such interventions before launching clinical trials.
Collapse
|
48
|
YAMAMOTO M, OHMORI H, TAKEI D, MATSUMOTO T, TAKEMOTO M, IKEDA M, SUMIMOTO R, KOBAYASHI T, OHDAN H. Clostridium butyricum affects nutrition and immunology by modulating gut microbiota. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2021; 41:30-36. [PMID: 35433162 PMCID: PMC8970657 DOI: 10.12938/bmfh.2021-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/29/2021] [Indexed: 11/05/2022]
Abstract
The gut microbiota has nutritional and protective functions. In patients with end-stage renal disease, changes in the gut microbiota disrupt their protective functions. Probiotics help maintain normal bowel function. However, their role in patients with end-stage renal disease is controversial. We investigated whether Clostridium butyricum affects the nutrition and immune function of patients with end-stage renal disease undergoing maintenance dialysis between 2014 and 2015; thirty-seven patients were included. The patients were divided into two groups: one in which C. butyricum was administered and one in which it was not. One tablet of the probiotics, which contained 20 mg of C. butyricum, was administered orally three times daily for 2 years in the C. butyricum group. The 16S rRNA genes were sequenced from stool samples of 14 (37.8%) patients in the C. butyricum group and 23 (62.2%) patients in the control group. The differences in the gut microbiota of the two groups were analyzed. The α-diversity index indicated that the C. butyricum group had significantly more operational taxonomic units and higher albumin and transferrin levels than the control group. The effector to target cell ratio was significantly higher in the C. butyricum group. In addition, interleukin-6 levels were significantly lower in the C. butyricum group, and inflammation was less severe in this group. The patients undergoing maintenance dialysis with C. butyricum had abundant gut microbiota. They also had a good nutritional status, low systemic inflammation, and a good immunological status.
Collapse
Affiliation(s)
- Masateru YAMAMOTO
- Department of Surgery, National Hospital Organization Yanai
Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
- Department of Gastroenterological and Transplant Surgery,
Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| | - Hiromitsu OHMORI
- Department of Pediatrics, National Hospital Organization
Yanai Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
| | - Daisuke TAKEI
- Department of Surgery, National Hospital Organization Yanai
Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
- Department of Gastroenterological and Transplant Surgery,
Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| | - Tomio MATSUMOTO
- Department of Surgery, National Hospital Organization Yanai
Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
| | - Masahiko TAKEMOTO
- Department of Surgery, National Hospital Organization Yanai
Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
| | - Masanobu IKEDA
- Department of Surgery, National Hospital Organization Yanai
Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
| | - Ryo SUMIMOTO
- Department of Surgery, National Hospital Organization Yanai
Medical Center, 95 Ihonoshou, Yanai-shi, Yamaguchi 742-1352, Japan
| | - Tsuyoshi KOBAYASHI
- Department of Gastroenterological and Transplant Surgery,
Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| | - Hideki OHDAN
- Department of Gastroenterological and Transplant Surgery,
Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| |
Collapse
|
49
|
de Sousa Figueiredo MB, Pradel E, George F, Mahieux S, Houcke I, Pottier M, Fradin C, Neut C, Daniel C, Bongiovanni A, Foligné B, Titécat M. Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms 2021; 9:microorganisms9091823. [PMID: 34576719 PMCID: PMC8465672 DOI: 10.3390/microorganisms9091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.
Collapse
Affiliation(s)
- Maria Beatriz de Sousa Figueiredo
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Séverine Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Isabelle Houcke
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Muriel Pottier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Chantal Fradin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE, F-59000 Lille, France;
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France;
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| |
Collapse
|
50
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|