1
|
Luo Y, Zhao S, Wang H, Bai H, Hu Q, Zhao L, Ma T, Fan Z, Wang Y. Effect of sodium selenite on the synthesis of glucosinolates and antioxidant capacity in Chinese cabbage ( Brassica rapa L.ssp. pekinensis). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1643-1657. [PMID: 39506997 PMCID: PMC11534961 DOI: 10.1007/s12298-024-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is a globally cultivated and consumed leafy vegetable due to its abundant plant secondary metabolites and antioxidant compounds, including flavonoids, ascorbic acids, glucosinolates, and vitamins, which have been reported to confer health-promoting effects. Glucosinolates components in leaves of Chinese cabbage plantlets under different concentrations of sodium selenite (0, 30, and 50 μmol/L) were analyzed. Seven glucosinolates were identified and quantified using UHPLC-QTOF-MS. Finally, treatments with 30 and 50 μmol/L Na2SeO3 solution significantly increased the levels of total selenium content as well as total phenols, flavonoids, anthocyanins, and DPPH free radical scavenging ability in Chinese cabbage seedlings. Our results revealed that 30 μmol/L Na2SeO3 effectively enhanced aliphatic glucosinolate levels and total glucosinolate content while causing a significant reduction in indole glucosinolates. Furthermore, downregulation was observed for BrCYP79F1, BrBCAT4, and BrMAM1 genes associated with aliphatic glucosinolate synthesis. Conversely, BrMYB28 and BrCYP83A1 genes exhibited significant upregulation. Thus, the positive influence of Na2SeO3 on glucosinolate biosynthesis in Chinese cabbage can be attributed to the upregulation of key genes related to this process.
Collapse
Affiliation(s)
- Yafang Luo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Shuang Zhao
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006 China
| | - Huixia Bai
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Qi Hu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Linlin Zhao
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Tianyi Ma
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Zhenyu Fan
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Yushu Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| |
Collapse
|
2
|
Choi D, Kim SH, Choi DM, Moon H, Kim JI, Huq E, Kim DH. ELONGATED HYPOCOTYL 5 interacts with HISTONE DEACETYLASE 9 to suppress glucosinolate biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1340-1355. [PMID: 38753298 DOI: 10.1093/plphys/kiae284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024]
Abstract
Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e. circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type (WT) plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants.
Collapse
Affiliation(s)
- Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
3
|
Sadowska-Rociek A, Doniec J, Kusznierewicz B, Dera T, Filipiak-Florkiewicz A, Florkiewicz A. The Influence of Different Hydrothermal Processes Used in the Preparation of Brussels Sprouts on the Availability of Glucosinolates to Humans. Foods 2024; 13:2988. [PMID: 39335916 PMCID: PMC11431553 DOI: 10.3390/foods13182988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cruciferous vegetables represent a valuable source of bioactive compounds. However, there is currently a deficiency of information regarding the extent to which these compounds remain bioaccessible to the body following thermal treatment and digestion processes within the digestive tract. Accordingly, the aim of this study was to evaluate the impact of heat treatment and in vitro digestion on the level of selected bioactive compounds in Brussels sprouts. The Brussels sprouts samples were subjected to a range of thermal processing techniques, which were then followed by a simulated in vitro digestion. The investigated compounds were analyzed using UV-Vis spectrometry and liquid chromatography coupled with mass spectrometry (LC-MS). The findings revealed that the sous-vide method of cooking Brussels sprouts resulted in significantly higher losses of glucosinolates (GLS) in comparison to conventional cooking methods. No significant differences were observed with regard to isothiocyanates and indoles. The analysis of GLS following digestion revealed that the process was more effective after sous vide and traditional cooking, and slightly less effective after steam cooking. With regard to individual compounds, glucoraphanin (GRA), glucoraphenin (GIV), and gluconasturtiin (GNS) were found to be completely degraded, whereas methoxyglucobrassicin (metGBS) was the most resistant to digestion in both the sous vide and steamed Brussels sprouts. The results indicated that the process of simulating digestion had no significant impact on isothiocyanates and indoles. This suggests that, if present in the heat-treated samples, these compounds remained stable during the in vitro digestion procedure.
Collapse
Affiliation(s)
- Anna Sadowska-Rociek
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 31-120 Krakow, Poland
| | - Joanna Doniec
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 31-120 Krakow, Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Tomasz Dera
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 31-120 Krakow, Poland
| | - Agnieszka Filipiak-Florkiewicz
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 31-120 Krakow, Poland
| | - Adam Florkiewicz
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Krakow, 31-120 Krakow, Poland
| |
Collapse
|
4
|
Sabin O, Pop RM, Bocșan IC, Chedea VS, Ranga F, Grozav A, Levai AM, Buzoianu AD. The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents. Molecules 2024; 29:3448. [PMID: 39124854 PMCID: PMC11313733 DOI: 10.3390/molecules29153448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigates the anti-inflammatory, analgesic, and antioxidant properties of polyphenols extracted from Brassica oleracea var. capitata (cabbage) ethanolic extract (BOE). Given the historical use of cabbage in traditional medicine for treating various ailments, this research aims to validate these effects scientifically. The study involved the characterization of BOE's bioactive compounds using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography-Diode Array Detection-Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI MS) analysis. We assessed the anti-inflammatory and analgesic effects of topical and oral BOE administration on rodent models with acute and subacute inflammation. Additionally, the antioxidant capacity of orally administered BOE was evaluated. The results showed that BOE possesses significant levels of phenolic compounds with a potent antioxidant activity. The topical administration of BOE demonstrated notable anti-inflammatory effects in the tested rodent models, which were comparable with nonsteroidal anti-inflammatory drugs. These findings suggest that BOE could be a valuable natural remedy for inflammation-related conditions, supporting its traditional uses and highlighting its potential for further pharmacological development.
Collapse
Affiliation(s)
- Octavia Sabin
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| | - Raluca Maria Pop
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| | - Ioana Corina Bocșan
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania;
| | - Floricuța Ranga
- Food Science and Technology, Department of Food Science, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur, No. 3-5, 400372 Cluj-Napoca, Romania;
| | - Adriana Grozav
- Department of Organic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Antonia-Mihaela Levai
- Obstetrics and Gynecology, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| |
Collapse
|
5
|
Truong TQ, Park YJ, Jeon JS, Choi J, Koo SY, Choi YB, Huynh PK, Moon J, Kim SM. Myrosinase isogenes in wasabi (Wasabia japonica Matsum) and their putative roles in glucosinolate metabolism. BMC PLANT BIOLOGY 2024; 24:353. [PMID: 38693493 PMCID: PMC11061951 DOI: 10.1186/s12870-024-05057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.
Collapse
Affiliation(s)
- To Quyen Truong
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Yun Ji Park
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Je-Seung Jeon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Jaeyoung Choi
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Song Yi Koo
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Yeong Bin Choi
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Phuong Kim Huynh
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Jinyoung Moon
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Sang Min Kim
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea.
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
6
|
Polozsányi Z, Galádová H, Kaliňák M, Jopčík M, Kaliňáková B, Breier A, Šimkovič M. The Antimicrobial Effects of Myrosinase Hydrolysis Products Derived from Glucosinolates Isolated from Lepidium draba. PLANTS (BASEL, SWITZERLAND) 2024; 13:995. [PMID: 38611524 PMCID: PMC11013450 DOI: 10.3390/plants13070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Jopčík
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 969, 949 01 Nitra, Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
7
|
Zeng W, Yang J, He Y, Zhu Z. Bioactive compounds in cruciferous sprouts and microgreens and the effects of sulfur nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7323-7332. [PMID: 37254614 DOI: 10.1002/jsfa.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Cruciferous sprouts and microgreens are a good source of bioactive compounds for human health as they are rich in glucosinolates, polyphenols, carotenoids, and vitamins. Glucosinolates - sulfur-containing bioactive phytochemicals - have anti-cancer effects. They mainly exist in cruciferous vegetables. Sulfur is one of the essential elements for plants and is an indispensable component of glucosinolates. This paper summarizes the nutritional value of cruciferous spouts and microgreens, along with the effects of sulfur nutrition on bioactive phytochemical compounds of cruciferous sprouts and microgreens, especially glucosinolates, with the aim of providing information about the dietary effects of cruciferous sprouts and microgreens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjing Zeng
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- College of Environmental and Resource Science, Zhejiang A&F University, Hangzhou, China
| | - Jing Yang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Yin X, Yang D, Zhao Y, Yang X, Zhou Z, Sun X, Kong X, Li X, Wang G, Duan Y, Yang Y, Yang Y. Differences in pseudogene evolution contributed to the contrasting flavors of turnip and Chiifu, two Brassica rapa subspecies. PLANT COMMUNICATIONS 2023; 4:100427. [PMID: 36056558 PMCID: PMC9860189 DOI: 10.1016/j.xplc.2022.100427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudogenes are important resources for investigation of genome evolution and genomic diversity because they are nonfunctional but have regulatory effects that influence plant adaptation and diversification. However, few systematic comparative analyses of pseudogenes in closely related species have been conducted. Here, we present a turnip (Brassica rapa ssp. rapa) genome sequence and characterize pseudogenes among diploid Brassica species/subspecies. The results revealed that the number of pseudogenes was greatest in Brassica oleracea (CC genome), followed by B. rapa (AA genome) and then Brassica nigra (BB genome), implying that pseudogene differences emerged after species differentiation. In Brassica AA genomes, pseudogenes were distributed asymmetrically on chromosomes because of numerous chromosomal insertions/rearrangements, which contributed to the diversity among subspecies. Pseudogene differences among subspecies were reflected in the flavor-related glucosinolate (GSL) pathway. Specifically, turnip had the highest content of pungent substances, probably because of expansion of the methylthioalkylmalate synthase-encoding gene family in turnips; these genes were converted into pseudogenes in B. rapa ssp. pekinensis (Chiifu). RNA interference-based silencing of the gene encoding 2-oxoglutarate-dependent dioxygenase 2, which is also associated with flavor and anticancer substances in the GSL pathway, resulted in increased abundance of anticancer compounds and decreased pungency of turnip and Chiifu. These findings revealed that pseudogene differences between turnip and Chiifu influenced the evolution of flavor-associated GSL metabolism-related genes, ultimately resulting in the different flavors of turnip and Chiifu.
Collapse
Affiliation(s)
- Xin Yin
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Danni Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjie Zhao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Xingyu Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Zhou
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xudong Sun
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiong Li
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guangyan Wang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanwen Duan
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
9
|
Steward RA, Epanchin‐Niell RS, Boggs CL. Novel host unmasks heritable variation in plant preference within an insect population. Evolution 2022; 76:2634-2648. [PMID: 36111364 PMCID: PMC9827926 DOI: 10.1111/evo.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/19/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
Introductions of novel plant species can disturb the historical resource environment of herbivorous insects, resulting in strong selection to either adopt or exclude the novel host. However, an adaptive response depends on heritable genetic variation for preference or performance within the targeted herbivore population, and it is unclear how heritability of host-use preference may differ between novel and historical hosts. Pieris macdunnoughii butterflies in the Rocky Mountains lay eggs on the nonnative mustard Thlaspi arvense, which is lethal to their offspring. Heritability analyses revealed considerable sex-linked additive genetic variation in host preference within a population of this butterfly. This was contrary to general predictions about the genetic basis of preference variation, which are hypothesized to be sex linked between populations but autosomal within populations. Evidence of sex linkage disappeared when butterflies were tested on methanol-based chemical extracts, suggesting these chemicals in isolation may not be the primary driver of female choice among available host plants. Although unexpected, evidence for within-population sex-linked genetic variation in preference for T. arvense over native hosts indicates that persistent maladaptive oviposition on this lethal plant must be maintained by alternative evolutionary dynamics such as migration- or drift-selection balance or pleiotropic constraints.
Collapse
Affiliation(s)
- Rachel A. Steward
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth Carolina29208,Rocky Mountain Biological LaboratoryCrested ButteColorado81224,Department of ZoologyStockholm UniversitySE‐10691StockholmSweden29208
| | - Rebecca S. Epanchin‐Niell
- Rocky Mountain Biological LaboratoryCrested ButteColorado81224,College of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkMaryland20742
| | - Carol L. Boggs
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth Carolina29208,Rocky Mountain Biological LaboratoryCrested ButteColorado81224,School of the Earth, Ocean, and EnvironmentUniversity of South CarolinaColumbiaSouth Carolina29208
| |
Collapse
|
10
|
Seljåsen R, Kusznierewicz B, Bartoszek A, Mølmann J, Vågen IM. Effects of Post-Harvest Elicitor Treatments with Ultrasound, UV- and Photosynthetic Active Radiation on Polyphenols, Glucosinolates and Antioxidant Activity in a Waste Fraction of White Cabbage ( Brassica oleracea var. capitata). Molecules 2022; 27:5256. [PMID: 36014498 PMCID: PMC9414070 DOI: 10.3390/molecules27165256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Biosynthesis of phytochemicals in leaves of Brassica can be initiated by abiotic factors. The aim of the study was to investigate elicitor treatments to add value to waste of cabbage. A leaf waste fraction from industrial trimming of head cabbage was exposed to UV radiation (250-400 nm, 59 and 99 kJ∙m-2, respectively), photosynthetic active radiation (PAR, 400-700 nm, 497 kJ∙m-2), and ultrasound in water bath (35 kHz, at 15, 30 and 61 kJ∙l-1 water), in order to improve nutraceutical concentration. UV was more effective than PAR to increase the level of flavonols (2 to 3-fold higher) and hydroxycinnamate monosaccharides (1 to 10-fold higher). PAR was three times as effective as UV to increase anthocyanins. Interaction of PAR + UV increased antioxidant activity (30%), the content of five phenolics (1.4 to 10-fold higher), and hydroxycinnamic monosaccharides (compared with PAR or UV alone). Indoles were reduced (40-52%) by UV, but the other glucosinolates (GLS) were unaffected. Ultrasound did not influence any parameters. The results are important for white cabbage by-products by demonstrating that UV + PAR can be successfully used as an effectual tool to increase important phenolics and antioxidant activity of waste fraction leaves without an adverse effect on the main GLS.
Collapse
Affiliation(s)
- Randi Seljåsen
- Department of Horticulture, Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway
| | - Barbara Kusznierewicz
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Agnieszka Bartoszek
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Jørgen Mølmann
- Department of Horticulture, Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway
| | - Ingunn M. Vågen
- Department of Horticulture, Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway
| |
Collapse
|
11
|
Zayed A, Sheashea M, Kassem IAA, Farag MA. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit Rev Food Sci Nutr 2022; 63:7025-7042. [PMID: 35174750 DOI: 10.1080/10408398.2022.2040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Red and white cabbages (Brassica oleracea var. capitata f. alba and rubra, respectively) are two of the most commercially valued vegetables in crucifers, well-recognized for their unique sensory and nutritive attributes in addition to a myriad of health-promoting benefits. The current review addressed the differential qualitative/quantitative phytochemical make-ups for the first time for better utilization as nutraceuticals and to identify potential uses based on the chemical makeup of both cultivars (cvs.). In addition, extraction methods are compared highlighting their advantages and/or limitations with regards to improving yield and stability of cabbage bioactives, especially glucosinolates. Besides, the review recapitulated detailed action mechanism and safety of cabbage bioactives, as well as processing technologies to further improve their effects are posed as future perspectives. White and red cabbage cvs. revealed different GLSs profile which affected by food processing, including enzymatic hydrolysis, thermal breakdown, and leaching. In addition, the red cultivar provides high quality pigment for industrial applications. Moreover, non-conventional modern extraction techniques showed promising techniques for the recovery of their bioactive constituents compared to solvent extraction. All these findings pose white and red cabbages as potential candidates for inclusion in nutraceuticals and/or to be commercialized as functional foods prepared in different culinary forms.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Extraction, Chemical Characterization, In Vitro Antioxidant, and Antidiabetic Activity of Canola (Brassica napus L.) Meal. SEPARATIONS 2022. [DOI: 10.3390/separations9020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Canola (Brassica napus L.) meal is a by-product after oil extraction from canola seed and is of relatively low value. This meal may have additional value in the biotechnology, food, and pharmaceutical industries if health-promoting useful bioactive compounds can be identified. Hence, seven canola meal extracts (CMEs) were generated using different organic solvents for two genotypes. HPLC and LCMS analyses were employed for the determination of the phenolic and antioxidant activity of meal extracts, including recovery of major biological compounds. When comparing genotype-1 with genotype-2, the latter had higher antioxidant activity in acetone extract (AE). This study also indicated seven major glucosinolates in CMEs in which water (WE) appeared to be the best solvent for the recovery of glucosinolates. Higher quantities of phenolic, glucosinolate, and antioxidant were present in genotype-2 compared with genotype-1. Using HPLC-DAD and LC-MS analysis 47 compounds were detected. We could identify 32 compounds in canola meal extracts: nine glucosinolates and twenty-three phenolic derivatives. Phenolic compounds in canola meal were conjugates and derivatives of hydroxycinnamic acid (sinapic, ferulic, and caffeic acids). Among phenolics, kaempherol as conjugate with sinapic acid was found; sinapine and trans-sinapic acid were the most abundant, as well as major contributors to the antioxidant and free radical scavenging activities of canola meal extracts. Some samples exhibited mild to moderate in-vitro antidiabetic activity in a Dipeptidyl Peptidase-IV inhibition assay.
Collapse
|
13
|
Kapusta-Duch J, Kusznierewicz B. Young Shoots of White and Red Headed Cabbages Like Novel Sources of Glucosinolates as Well as Antioxidative Substances. Antioxidants (Basel) 2021; 10:1277. [PMID: 34439525 PMCID: PMC8389310 DOI: 10.3390/antiox10081277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
Most literature data indicate that the diet rich in plant products reduces the risk of developing chronic non-communicable diseases and cancer. Brassica vegetables are almost exclusively synthesizing glucosinolates. Glucosinolates are higher in sprouts than in mature plants, being related to the activity of the specific myrosinase involved in the degradation of glucosinolates during developmental stages. This study compares the content of total glucosinolates with their profile and, rare in the literature, also with products of their degradation. Average amounts of total glucosinolates in young shoots of white and red headed cabbage were 26.23 µmol/g d.m. and 27.93 µmol/g d.m., respectively. In addition, antioxidative properties of 21-day-old shoots of white and red headed cabbage were assessed. The area of negative peaks after post-column derivatization with the ABTS reagent, indicating antioxidant activity of young red cabbage shoots, was 20185, compared to the value determined for young white cabbage shoots (3929). The results clearly indicate that, regardless of the vegetable species, young shoots of white and red headed cabbage can be an important source of bioactive substances in the diet, thus being an important element of cancer chemoprevention.
Collapse
Affiliation(s)
- Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Faculty of Chemistry, Technology and Biotechnology, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland;
| |
Collapse
|
14
|
Dong M, Tian Z, Ma Y, Yang Z, Ma Z, Wang X, Li Y, Jiang H. Rapid screening and characterization of glucosinolates in 25 Brassicaceae tissues by UHPLC-Q-exactive orbitrap-MS. Food Chem 2021; 365:130493. [PMID: 34247049 DOI: 10.1016/j.foodchem.2021.130493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023]
Abstract
Glucosinolates (GSLs) are secondary plant metabolites that occur mainly in the Brassicaceae plants, which are desirable compounds in human foods due to their diverse biological activities. In this study, we developed an integrated data filtering and identification strategy to characterize the GSLs. An in-depth GSLs profiling was performed on 25 commonly Brassicaceae tissues in Jinan, China. By comparison with the reference standards and previous researches, we tentatively identified 47 GSLs including 8 unknown ones. The GSLs profiles of 25 Brassicaceae tissues were established, and 11 markers of GSLs could be used to distinguish the Brassica and Raphanus. This approach enables accurately characterization the GSLs of Brassicaceae tissues, and demonstrates the potential of GSLs profiles for Brassicaceae species discrimination.
Collapse
Affiliation(s)
- Meiyue Dong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenhua Tian
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanni Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhongyi Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoming Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; TCM Clinical Research Base for Hypertension, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Haiqiang Jiang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
15
|
Thakur M, Nanda V. Screening of Indian bee pollen based on antioxidant properties and polyphenolic composition using UHPLC-DAD-MS/MS: A multivariate analysis and ANN based approach. Food Res Int 2020; 140:110041. [PMID: 33648267 DOI: 10.1016/j.foodres.2020.110041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/18/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
The present investigation aims to examine the polyphenolic composition and antioxidant capacity of bee pollen samples procured from various regions of India. Total phenolic (TPC) and flavonoid (TFC) content ranged from 15.50 ± 1.25-25.63 ± 1.42 mg GAE/g and 9.72 ± 0.28-15.61 ± 0.74 mg RE/g, respectively. Coriander pollen showed the significantly (p < 0.05) higher antioxidant activity than other samples, demonstrated by DPPH radical scavenging activity (93.75 ± 0.05%), ferric reducing antioxidant power (103.98 ± 0.82 mmol Fe2+/g), ABTS+• radical scavenging activity (96.58 ± 0.65%) and metal chelating activity (84.62 ± 4.37%). The observed antioxidant properties were strongly correlated with TPC and effectively predicted using artificial neural network. Sixty polyphenolic compounds including 38 flavonoids and derivatives, 21 phenolic acid and derivatives and one glucosinolates were identified using UHPLC-DAD-MS/MS wherein the presence of daidzein and sinigrin was acknowledged for the first time. Further, principal component analysis identified three principal components, illustrating 91.24% of total variation to differentiate the pollen samples which were also classified by hierarchical cluster analysis.
Collapse
Affiliation(s)
- Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (Deemed-to-be-University), Longowal 148106, Punjab, India.
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (Deemed-to-be-University), Longowal 148106, Punjab, India
| |
Collapse
|
16
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
17
|
Drozdowska M, Leszczyńska T, Koronowicz A, Piasna-Słupecka E, Domagała D, Kusznierewicz B. Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03593-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractCruciferous vegetables are a valuable source of ingredients with health benefits. The most characteristic compounds of cruciferous vegetables with identified anticancer properties are glucosinolates. Young shoots and sprouts of red cabbage are becoming a popular fresh food rich in nutrients and bioactive compounds. The objective of this research was to determine, for the first time in a comprehensive approach, whether young shoots of red headed cabbage are a better source of selected nutrients and glucosinolates in the human diet in comparison to the vegetable at full maturity. The proximate composition (protein, fat, digestible carbohydrates, fiber), fatty acids profile, minerals (calcium, magnesium, potassium, sodium, iron, zinc, manganese, copper), as well as glucosinolates were examined. The red headed cabbage was characterized by a significantly larger amount of dry matter, and total and digestible carbohydrates in comparison to young shoots. The ready-to-eat young shoots, which are in the phase of intensive growth, are a better source of protein, selected minerals, and especially glucosinolates. The level of some nutrients can be enhanced and the intake of pro-healthy glucosinolates can be significantly increased by including young shoots of red cabbage into the diet.
Collapse
|
18
|
Methyl Jasmonate Treatment of Broccoli Enhanced Glucosinolate Concentration, Which Was Retained after Boiling, Steaming, or Microwaving. Foods 2020; 9:foods9060758. [PMID: 32521670 PMCID: PMC7353551 DOI: 10.3390/foods9060758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022] Open
Abstract
Exogenous methyl jasmonate (MeJA) treatment was known to increase the levels of neoglucobrassicin and their bioactive hydrolysis products in broccoli (Brassica oleracea var. italica), but the fate of MeJA-induced glucosinolates (GSLs) after various cooking methods was unknown. This study measured the changes in GSLs and their hydrolysis compounds in broccoli treated with MeJA and the interaction between MeJA and cooking treatments. All cooked MeJA-treated broccoli contained significantly more GSLs than untreated broccoli (p < 0.05). After 5 min of cooking (boil, steam, microwave), MeJA-treated broccoli still contained 1.6- to 2.3-fold higher GSL content than untreated broccoli. Neoglucobrassicin hydrolysis products were also significantly greater in steamed and microwaved MeJA-treated broccoli. The results show that exogenous MeJA treatment increases neoglucobrassicin and its hydrolysis compounds in broccoli even after cooking. Once the positive and negative effects of these compounds are better understood, the results of this experiment can be a valuable tool to help food scientists, nutrition scientists, and dieticians determine how to incorporate raw or cooked broccoli and Brassica vegetables in the diet.
Collapse
|
19
|
Steward RA, Boggs CL. Experience may outweigh cue similarity in maintaining a persistent host‐plant‐based evolutionary trap. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rachel A. Steward
- Department of Biological Sciences University of South Carolina 715 Sumter Street Columbia South Carolina 29208 USA
- Rocky Mountain Biological Laboratory PO Box 519 Crested Butte Colorado 81224 USA
| | - Carol L. Boggs
- Department of Biological Sciences University of South Carolina 715 Sumter Street Columbia South Carolina 29208 USA
- Rocky Mountain Biological Laboratory PO Box 519 Crested Butte Colorado 81224 USA
- School of the Earth, Ocean, & Environment University of South Carolina 701 Sumter Street Columbia South Carolina 29208 USA
| |
Collapse
|
20
|
Camp A, Croxford AE, Ford CS, Baumann U, Clements PR, Hiendleder S, Woolford L, Netzel G, Boardman WSJ, Fletcher MT, Wilkinson MJ. Dual-locus DNA metabarcoding reveals southern hairy-nosed wombats (Lasiorhinus latifrons Owen) have a summer diet dominated by toxic invasive plants. PLoS One 2020; 15:e0229390. [PMID: 32142513 PMCID: PMC7059939 DOI: 10.1371/journal.pone.0229390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/05/2020] [Indexed: 11/23/2022] Open
Abstract
Habitat degradation and summer droughts severely restrict feeding options for the endangered southern hairy-nosed wombat (SHNW; Lasiorhinus latifrons). We reconstructed SHNW summer diets by DNA metabarcoding from feces. We initially validated rbcL and ndhJ diet reconstructions using autopsied and captive animals. Subsequent diet reconstructions of wild wombats broadly reflected vegetative ground cover, implying local rather than long-range foraging. Diets were all dominated by alien invasives. Chemical analysis of alien food revealed Carrichtera annua contains high levels of glucosinolates. Clinical examination (7 animals) and autopsy (12 animals) revealed that the most degraded site also contained most individuals showing signs of glucosinolate poisoning. We infer that dietary poisoning through the ingestion of alien invasives may have contributed to the recent population crashes in the region. In floristically diverse sites, individuals appear to be able to manage glucosinolate intake by avoidance or episodic feeding but this strategy is less tractable in the most degraded sites. We conclude that recovery of the most affected populations may require effective Carrichtera management and interim supplementary feeding. More generally, we argue that protection against population decline by poisoning in territorial herbivores requires knowledge of their diet and of those food plants containing toxic principles.
Collapse
Affiliation(s)
- Amanda Camp
- School of Animal and Veterinary Science and Davies Research Centre, The University of Adelaide, Adelaide, SA, Australia
| | - Adam E. Croxford
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Ute Baumann
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Peter R. Clements
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Stefan Hiendleder
- School of Animal and Veterinary Science and Davies Research Centre, The University of Adelaide, Adelaide, SA, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Science and Davies Research Centre, The University of Adelaide, Adelaide, SA, Australia
| | - Gabrielle Netzel
- Centre for Animal Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Wayne S. J. Boardman
- School of Animal and Veterinary Science and Davies Research Centre, The University of Adelaide, Adelaide, SA, Australia
| | - Mary T. Fletcher
- Centre for Animal Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Mike J. Wilkinson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Nugroho ABD, Han N, Pervitasari AN, Kim DH, Kim J. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. PLANT MOLECULAR BIOLOGY 2020; 102:171-184. [PMID: 31792713 DOI: 10.1007/s11103-019-00939-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Thus study found the temporal and spatial relationship between production of aliphatic glucosinolate compounds and the expression profile of glucosinolate-related genes during growth and development in radish, Chinese cabbage, and their intergeneric hybrid baemoochae plants. Glucosinolates (GSLs) are one of major bioactive compounds in Brassicaceae plants. GSLs play a role in defense against microbes as well as chemo-preventative activity against cancer, which draw attentions from plant scientists. We investigated the temporal relationship between production of aliphatic Glucosinolate (GSLs) compounds and the expression profile of GSL related genes during growth and development in radish, Chinese cabbage, and their intergeneric hybrid, baemoochae. Over the complete life cycle, Glucoraphasatin (GRH) and glucoraphanin (GRE) predominated in radish, whereas gluconapin (GNP), glucobrassicanapin (GBN), and glucoraphanin (GRA) abounded in Chinese cabbage. Baemoochae contained intermediate levels of all GSLs studied, indicating inheritance from both radish and Chinese cabbage. Expression patterns of BCAT4, CYP79F1, CYP83A1, UGT74B1, GRS1, FMOgs-ox1, and AOP2 genes showed a correlation to their corresponding encoded proteins in radish, Chinese cabbage, and baemoochae. Interestingly, there is a sharp change in gene expression pattern involved in side chain modification, particularly GRS1, FMOgs-ox1, and AOP2, among these plants during the vegetative and reproductive stage. For instance, the GRS1 was strongly expressed during leaf development, while both of FMOgs-ox1 and AOP2 was manifested high in floral tissues. Furthermore, expression of GRS1 gene which is responsible for GRH production was predominantly expressed in leaf tissues of radish and baemoochae, whereas it was only slightly detected in Chinese cabbage root tissue, explaining why radish has an abundance of GRH compared to other Brassica plants. Altogether, our comprehensive and comparative data proved that aliphatic GSLs biosynthesis is dynamically and precisely regulated in a tissue- and development-dependent manner in Brassicaceae family members.
Collapse
Affiliation(s)
- Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Narae Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | | | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Jongkee Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
23
|
Park W, Lee YH, Kim KS, Cha YL, Moon YH, Song YS, Kwon DE, Lee JE. The optimal mixing ratio of Brassica napus and Brassica juncea meal improve nematode Meloidogyne hapla effects. PLANT SIGNALING & BEHAVIOR 2019; 14:1678369. [PMID: 31610733 PMCID: PMC6867183 DOI: 10.1080/15592324.2019.1678369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The use of rapeseed (Brassica napus L.) or leaf mustard (Brassica juncea L. Czern) meal or both as organic fertilizer not only improves the soil environment and crop productivity by supplying nutrients but also has nematicidal effects. This study aimed to establish the optimal application levels of rapeseed and leaf mustard meal for stronger nematode control in tomato. Tomato is one of the most important solanaceous crops which is severely damaged by nematodes. At first, meal (120 g of varying mixing ratios of rapeseed and leaf mustard meal) was mixed with sterilized soil (1 kg). The optimal ratio of rapeseed:leaf mustard meal for effective nematode control was 20:100 g/kg of soil. Progoitrin and gluconapin were the most abundant glucosinolates found in rapeseed meal, while sinigrin was the most abundant in leaf mustard meal. The amount of sinigrin increased if the leaf mustard meal proportion increased in the meal mixture. Although the content of sinigrin in optimal ratio mixture of rapeseed and leaf mustard meal is lower than only leaf mustard meal, it is presumed that nematocidal effects of the mixture are better than that of the single component due to the high contents of progoitrin and gluconapin. So, we propose that rapeseed and leaf mustard meal mixture at an appropriate ratio can be used as an environmentally friendly nematocide.
Collapse
Affiliation(s)
- Won Park
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Yong-Hwa Lee
- Division for Korea Program on International Agriculture (KOPIA), Rural Development Administration, Jeonju, Republic of Korea
| | - Kwang-Soo Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Young-Lok Cha
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Youn-Ho Moon
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Yeon-Sang Song
- Planning & Coordination Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Da-Eun Kwon
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Ji-Eun Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| |
Collapse
|
24
|
Koss-Mikołajczyk I, Kusznierewicz B, Wiczkowski W, Płatosz N, Bartoszek A. Phytochemical composition and biological activities of differently pigmented cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis) varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5499-5507. [PMID: 31099412 DOI: 10.1002/jsfa.9811] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Brassica plants contain a wide spectrum of bioactive components that are responsible for their health-promoting potential such as vitamins, polyphenols and glucosinolates. This study attempted to relate the composition of bioactive phytochemicals and chosen biological activities (antioxidant, cytotoxic, anti-genotoxic, and influence on enzymatic activities) for extracts from differently pigmented cabbage (white and red) and cauliflower (white and purple) varieties. The assumption was that tested varieties of the same plant would exhibit similar chemical composition differing mostly in anthocyanin content and that the latter will be reflected in biological activity. RESULTS Profiles of antioxidants obtained using post-column derivatization with ABTS radical confirmed, that the content and composition of anthocyanins is strongly correlated with the antioxidant capacity of tested plant extracts measured by spectrophotometric methods (ABTS, FC, DPPH, FRAP), and Cellular Antioxidant Activity (CAA) test. The results of determinations of other biological activities showed that opposite to purified bioactive phytochemicals, in the case of actual plant foods, there was no simple relationship between anthocyanin content and chemopreventive potential. CONCLUSION Obtained results suggest that there must be some kind of interaction between different phytochemicals, which decides on the final health promoting activity of edible plants as suggested by for example the food synergy concept. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Natalia Płatosz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
25
|
Chiu YC, Matak K, Ku KM. Methyl jasmonate treated broccoli: Impact on the production of glucosinolates and consumer preferences. Food Chem 2019; 299:125099. [PMID: 31299513 DOI: 10.1016/j.foodchem.2019.125099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/04/2023]
Abstract
Applying methyl jasmonate can mimic the defense response to insect damage in broccoli and enhances the production of glucosinolates, especially inducible indolyl GS-neoglucobrassicin. Previous studies have suggested that glucosinolates and their hydrolysis products are anti-carcinogenic. Therefore, MeJA treatment may increase the nutritional quality of broccoli. However, there are few reports on the sensory evaluation and consumer acceptance of MeJA-treated broccoli. In this study, an untrained consumer panel could not detect any taste differences between steamed MeJA-treated and untreated broccoli, even though the steamed MeJA-treated broccoli contained 50% more glucosinolates than untreated broccoli. The partial least square-regression model suggested that neoglucobrassicin-derived hydrolysis compounds were the major metabolites that determined overall preference for raw MeJA-treated broccoli potentially due to their potential negative sensory qualities. The results imply that MeJA treatment can increase the nutritional quality of broccoli without sacrificing taste in precooked meals or frozen vegetables.
Collapse
Affiliation(s)
- Yu-Chun Chiu
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; Department of Horticulture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61886, Republic of Korea.
| |
Collapse
|
26
|
Müller-Maatsch J, Gurtner K, Carle R, Björn Steingass C. Investigation into the removal of glucosinolates and volatiles from anthocyanin-rich extracts of red cabbage. Food Chem 2019; 278:406-414. [DOI: 10.1016/j.foodchem.2018.10.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
|
27
|
Dall'Acqua S, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M. Selenium Biofortification Differentially Affects Sulfur Metabolism and Accumulation of Phytochemicals in Two Rocket Species ( Eruca Sativa Mill. and Diplotaxis Tenuifolia) Grown in Hydroponics. PLANTS 2019; 8:plants8030068. [PMID: 30884867 PMCID: PMC6473880 DOI: 10.3390/plants8030068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Biofortification can be exploited to enrich plants in selenium (Se), an essential micronutrient for humans. Selenium as selenate was supplied to two rocket species, Eruca sativa Mill. (salad rocket) and Diplotaxis tenuifolia (wild rocket), at 0–40 μM in hydroponics and its effects on the content and profile of sulphur (S)-compounds and other phytochemicals was evaluated. D. tenuifolia accumulated more total Se and selenocysteine than E. sativa, concentrating up to ~300 mg Se kg−1 dry weight from 10–40 μM Se. To ensure a safe and adequate Se intake, 30 and 4 g fresh leaf material from E. sativa grown with 5 and 10–20 μM Se, respectively or 4 g from D. tenuifolia supplied with 5 μM Se was estimated to be optimal for consumption. Selenium supplementation at or above 10 μM differentially affected S metabolism in the two species in terms of the transcription of genes involved in S assimilation and S-compound accumulation. Also, amino acid content decreased with Se in E. sativa but increased in D. tenuifolia and the amount of phenolics was more reduced in D. tenuifolia. In conclusion, selenate application in hydroponics allowed Se enrichment of rocket. Furthermore, Se at low concentration (5 μM) did not significantly affect accumulation of phytochemicals and plant defence S-metabolites.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Andrea Ertani
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | | | - Marta Fabrega-Prats
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
28
|
Ye JH, Huang LY, Terefe NS, Augustin MA. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem 2019; 286:616-623. [PMID: 30827654 DOI: 10.1016/j.foodchem.2019.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
This study investigated the effect of lactic acid bacteria (LAB) fermentation on the chemical profile of autoclaved broccoli puree, using 7 broccoli-derived LAB isolates (named F1-F5, BF1 and BF2). The total concentrations of glucosinolates (glucoiberin, progoitrin and glucoraphanin) and 10 major phenolics significantly increased from trace level and 289 μg total phenolics/g dry weight (DW) respectively in autoclaved broccoli to 55 to ∼359 μg/g DW and 903 to ∼3105 μg/g DW respectively in LAB fermented broccoli puree. Differential impacts of LAB isolates on the chemical composition of autoclaved broccoli were observed, with the major differences being the significant increase in phloretic acid after fermentation by F1-F5 and an elevated glucoraphanin level in ferments by F1 and BF2. LAB fermentation is a promising way to increase the content of glucosinolates and polyphenolic compounds in broccoli, making the ferments attractive for use as functional ingredients or as a whole functional food.
Collapse
Affiliation(s)
- Jian-Hui Ye
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Long-Yue Huang
- Zhejiang University Tea Research Institute, 388 Yuhangtang Road, Hangzhou 310058, China
| | | | - Mary Ann Augustin
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| |
Collapse
|
29
|
A Simple Method for On-Gel Detection of Myrosinase Activity. Molecules 2018; 23:molecules23092204. [PMID: 30200303 PMCID: PMC6225493 DOI: 10.3390/molecules23092204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Myrosinase is an enzyme present in many functional foods and spices, particularly in Cruciferous vegetables. It hydrolyses glucosinolates which thereafter rearrange into bioactive volatile constituents (isothiocyanates, nitriles). We aimed to develop a simple reversible method for on-gel detection of myrosinase. Reagent composition and application parameters for native PAGE and SDS-PAGE gels were optimized. The proposed method was successfully applied to detect myrosinase (or sulfatase) on-gel: the detection solution contains methyl red which gives intensive red bands where the HSO₄- is enzymatically released from the glucosinolates. Subsequently, myrosinase was successfully distinguished from sulfatase by incubating gel bands in a derivatization solution and examination by LC-ESI-MS: myrosinase produced allyl isothiocyanate (detected in conjugate form) while desulfo-sinigrin was released by sulfatase, as expected. After separation of 80 µg protein of crude extracts of Cruciferous vegetables, intensive color develops within 10 min. On-gel detection was found to be linear between 0.031⁻0.25 U (pure Sinapis alba myrosinase, R² = 0.997). The method was successfully applied to detection of myrosinase isoenzymes from horseradish, Cruciferous vegetables and endophytic fungi of horseradish as well. The method was shown to be very simple, rapid and efficient. It enables detection and partial characterization of glucosinolate decomposing enzymes without protein purification.
Collapse
|
30
|
Chiu YC, Juvik JA, Ku KM. Targeted Metabolomic and Transcriptomic Analyses of "Red Russian" Kale (Brassicae napus var. pabularia) Following Methyl Jasmonate Treatment and Larval Infestation by the Cabbage Looper (Trichoplusia ni Hübner). Int J Mol Sci 2018; 19:E1058. [PMID: 29614820 PMCID: PMC5979517 DOI: 10.3390/ijms19041058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Methyl jasmonate (MeJA), synthesized in the jasmonic acid (JA) pathway, has been found to upregulate glucosinolate (GS) biosynthesis in plant species of the Brassicaceae family. Exogenous application of MeJA has shown to increase tissue GS concentrations and the formation of myrosinase-mediated GS hydrolysis products (GSHPs). In vitro and in vivo assays have demonstrated the potential health-promoting effects of certain GSHPs. MeJA is also known to elicit and induce genes associated with defense mechanisms to insect herbivory in Brassica species. To investigate the relationship between MeJA-induced GS biosynthesis and insect defense, three treatments were applied to "Red Russian" kale (Brassicae napus var. pabularia) seedlings: (1) a 250 µM MeJA leaf spray treatment; (2) leaf infestation with larvae of the cabbage looper (Trichoplusia ni (Hübner)); (3) control treatment (neither larval infestation nor MeJA application). Samples of leaf tissue from the three treatments were then assayed for changes in GS and GSHP concentrations, GS gene biosynthesis expression, and myrosinase activity. Major differences were observed between the three treatments in the levels of GS accumulation and GS gene expression. The insect-damaged samples showed significantly lower aliphatic GS accumulation, while both MeJA and T. ni infestation treatments induced greater accumulation of indolyl GS. The gene expression levels of CYP81F4, MYB34, and MYB122 were significantly upregulated in samples treated with MeJA and insects compared to the control group, which explained the increased indolyl GS concentration. The results suggest that the metabolic changes promoted by MeJA application and the insect herbivory response share common mechanisms of induction. This work provides potentially useful information for kale pest control and nutritional quality.
Collapse
Affiliation(s)
- Yu-Chun Chiu
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
31
|
Singh J, Jayaprakasha GK, Patil BS. Rapid and Efficient Desulfonation Method for the Analysis of Glucosinolates by High-Resolution Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11100-11108. [PMID: 29161816 DOI: 10.1021/acs.jafc.7b04662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The goal of our present research was to develop a simple and rapid method for the quantitation of desulfoglucosinolates (desulfoGLS) without using column chromatography. The proposed method involves extraction, concentration, incubation of glucosinolates with a sulfatase enzyme, and HPLC analysis. Identification of desulfoGLS in green kohlrabi was performed by LC-HR-ESI-QTOF-MS in positive-ionization mode. A total of 11 desulfoGLS were identified with neoglucobrassicin (3.32 ± 0.05 μmol/g DW) as the predominant indolyl, whereas progoitrin and sinigrin were the major aliphatic desulfoGLS. The levels of the aliphatic desulfoGLS glucoiberin, progoitrin, and glucoerucin at 7 h were found to be 3.6-, 1.9-, and 1.6-fold higher, respectively, than those produced through the conventional method. This technique was successfully applied in the identification of desulfoGLS from cabbage. The developed method has fewer unit operations, has maximum recovery, and is reproducible in the determination of desulfoGLS in a large number of Brassicaceae samples in a short time.
Collapse
Affiliation(s)
- Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , 1500 Research Parkway, Suite A120, College Station, Texas 77845, United States
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , 1500 Research Parkway, Suite A120, College Station, Texas 77845, United States
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , 1500 Research Parkway, Suite A120, College Station, Texas 77845, United States
| |
Collapse
|
32
|
Shi H, Zhao Y, Sun J, Yu L(L, Chen P. Chemical profiling of glucosinolates in cruciferous vegetables-based dietary supplements using ultra-high performance liquid chromatography coupled to tandem high resolution mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Maldini M, Foddai M, Natella F, Petretto GL, Rourke JP, Chessa M, Pintore G. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules 2017; 22:E1065. [PMID: 28672860 PMCID: PMC6152207 DOI: 10.3390/molecules22071065] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022] Open
Abstract
Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVAL, UVAH) or UVB (UVBL, UVBH) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v/v) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVBH treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVAL radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4-O-caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVBH Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico.
| |
Collapse
|
35
|
Mohammadin S, Nguyen TP, van Weij MS, Reichelt M, Schranz ME. Flowering Locus C (FLC) Is a Potential Major Regulator of Glucosinolate Content across Developmental Stages of Aethionema arabicum (Brassicaceae). FRONTIERS IN PLANT SCIENCE 2017; 8:876. [PMID: 28603537 PMCID: PMC5445170 DOI: 10.3389/fpls.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/10/2017] [Indexed: 05/08/2023]
Abstract
The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species Aethionema arabicum is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution. Glucosinolates (GS) are essentially Brassicales-specific metabolites involved in plant defense. Using two Ae. arabicum accessions (TUR and CYP) we identify substantial differences in glucosinolate profiles and quantities between lines, tissues and developmental stages. We find tissue specific side-chain modifications in aliphatic GS: methylthioalkyl in leaves, methylsulfinylalkyl in fruits, and methylsulfonylalkyl in seeds. We also find large differences in absolute glucosinolate content between the two accessions (up to 10-fold in fruits) that suggest a regulatory factor is involved that is not part of the quintessential glucosinolate biosynthetic pathway. Consistent with this hypothesis, we identified a single major multi-trait quantitative trait locus controlling total GS concentration across tissues in a recombinant inbred line population derived from TUR and CYP. With fine-mapping, we narrowed the interval to a 58 kb region containing 15 genes, but lacking any known GS biosynthetic genes. The interval contains homologs of both the sulfate transporter SULTR2;1 and FLOWERING LOCUS C. Both loci have diverse functions controlling plant physiological and developmental processes and thus are potential candidates regulating glucosinolate variation across the life-cycle of Aethionema. Future work will investigate changes in gene expression of the candidates genes, the effects of GS variation on insect herbivores and the trade-offs between defense and reproduction.
Collapse
Affiliation(s)
- Setareh Mohammadin
- Biosystematics, Plant Sciences Group, Wageningen University and ResearchWageningen, Netherlands
| | - Thu-Phuong Nguyen
- Biosystematics, Plant Sciences Group, Wageningen University and ResearchWageningen, Netherlands
| | - Marco S. van Weij
- Biosystematics, Plant Sciences Group, Wageningen University and ResearchWageningen, Netherlands
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Michael E. Schranz
- Biosystematics, Plant Sciences Group, Wageningen University and ResearchWageningen, Netherlands
| |
Collapse
|
36
|
Kim MJ, Chiu YC, Kim NK, Park HM, Lee CH, Juvik JA, Ku KM. Cultivar-Specific Changes in Primary and Secondary Metabolites in Pak Choi (Brassica Rapa, Chinensis Group) by Methyl Jasmonate. Int J Mol Sci 2017; 18:E1004. [PMID: 28481284 PMCID: PMC5454917 DOI: 10.3390/ijms18051004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022] Open
Abstract
Glucosinolates, their hydrolysis products and primary metabolites were analyzed in five pak choi cultivars to determine the effect of methyl jasmonate (MeJA) on metabolite flux from primary metabolites to glucosinolates and their hydrolysis products. Among detected glucosinolates (total 14 glucosinolates; 9 aliphatic, 4 indole and 1 aromatic glucosinolates), indole glucosinolate concentrations (153-229%) and their hydrolysis products increased with MeJA treatment. Changes in the total isothiocyanates by MeJA were associated with epithiospecifier protein activity estimated as nitrile formation. Goitrin, a goitrogenic compound, significantly decreased by MeJA treatment in all cultivars. Changes in glucosinolates, especially aliphatic, significantly differed among cultivars. Primary metabolites including amino acids, organic acids and sugars also changed with MeJA treatment in a cultivar-specific manner. A decreased sugar level suggests that they might be a carbon source for secondary metabolite biosynthesis in MeJA-treated pak choi. The result of the present study suggests that MeJA can be an effective agent to elevate indole glucosinolates and their hydrolysis products and to reduce a goitrogenic compound in pak choi. The total glucosinolate concentration was the highest in "Chinese cabbage" in the control group (32.5 µmol/g DW), but indole glucosinolates increased the greatest in "Asian" when treated with MeJA.
Collapse
Affiliation(s)
- Moo Jung Kim
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Yu-Chun Chiu
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Na Kyung Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
37
|
Oh S, Tsukamoto C, Kim K, Choi M. Investigation of glucosinolates, and the antioxidant activity of Dolsan leaf mustard kimchi extract using HPLC and LC-PDA-MS/MS. J Food Biochem 2017. [DOI: 10.1111/jfbc.12366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- SunKyung Oh
- Department of Biomedical and Electronic Engineering; Chonnam National University; Yeosu 550-749 Korea
| | - Chigen Tsukamoto
- Department of Applied Biological Chemistry; Iwate University; Morioka 020-8550 Japan
| | - KiWoong Kim
- Department of Marine Bio Food Science; Chonnam National University; Yeosu 550-749 Korea
| | - MyeongRak Choi
- Department of Biomedical and Electronic Engineering; Chonnam National University; Yeosu 550-749 Korea
| |
Collapse
|
38
|
Identification and Quantification of Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Int J Anal Chem 2017; 2017:6753481. [PMID: 28298926 PMCID: PMC5337378 DOI: 10.1155/2017/6753481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
A novel and simple method for detecting five glucosinolates (glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, and 4-methoxyglucobrassicin) in kimchi was developed using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). The chromatographic peaks of the five glucosinolates were successfully identified by comparing their retention times, mass spectra. The mobile phase was composed of A (acetonitrile) and B (water). As for glucosinolate, the relative quantities were found through sinigrin, and five different compounds that have not been previously discovered in kimchi were observed. Monitoring was carried out on the glucosinolate in 20 kimchis distributed in markets, and this study examined the various quality and quantity compositions of the five components. The glucoalyssin content ranged from 0.00 to 7.07 μmol/g of day weight (DW), with an average content of 0.86 μmol/g of DW, whereas the gluconapin content ranged from 0.00 to 5.85 μmol/g of DW, with an average of 1.17 μmol/g of DW. The content of glucobrassicanapin varied between 0.00 and 11.87 μmol/g of DW (average = 3.03 μmol/g of DW), whereas that of glucobrassicin varied between 0.00 and 0.42 μmol/g of DW (average = 0.06 μmol/g of DW). The 4-methoxyglucobrassicin content ranged from 0.12 to 9.36 μmol/g of DW (average = 3.52 μmol/g of DW). A comparison of the contents revealed that, in most cases, the content of 4-methoxyglucobrassicin was the highest.
Collapse
|
39
|
|
40
|
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F. Glucosinolates in Food. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
41
|
Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. PHYTOCHEMISTRY 2016; 132:33-56. [PMID: 27743600 DOI: 10.1016/j.phytochem.2016.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 05/22/2023]
Abstract
As a basis for future investigations of evolutionary trajectories and biosynthetic mechanisms underlying variations in glucosinolate structures, we screened members of the crucifer tribe Cardamineae by HPLC-MS/MS, isolated and identified glucosinolates by NMR, searched the literature for previous data for the tribe, and collected HPLC-MS/MS data for nearly all glucosinolates known from the tribe as well as some related structures (70 in total). This is a considerable proportion of the approximately 142 currently documented natural glucosinolates. Calibration with authentic references allowed distinction (or elucidation) of isomers in many cases, such as distinction of β-hydroxyls, methylthios, methylsulfinyls and methylsulfonyls. A mechanism for fragmentation of secondary β-hydroxyls in MS was elucidated, and two novel glucosinolates were discovered: 2-hydroxy-3-methylpentylglucosinolate in roots of Cardamine pratensis and 2-hydroxy-8-(methylsulfinyl)octylglucosinolate in seeds of Rorippa amphibia. A large number of glucosinolates (ca. 54 with high structural certainty and a further 28 or more suggested from tandem MS), representing a wide structural variation, is documented from the tribe. This included glucosinolates apparently derived from Met, Phe, Trp, Val/Leu, Ile and higher homologues. Normal side chain elongation and side chain decoration by oxidation or methylation was observed, as well as rare abnormal side chain decoration (hydroxylation of aliphatics at the δ rather than β-position). Some species had diverse profiles, e.g. R. amphibia and C. pratensis (19 and 16 individual glucosinolates, respectively), comparable to total diversity in literature reports of Armoracia rusticana (17?), Barbarea vulgaris (20-24), and Rorippa indica (>20?). The ancestor or the tribe would appear to have used Trp, Met, and homoPhe as glucosinolate precursor amino acids, and to exhibit oxidation of thio to sulfinyl, formation of alkenyls, β-hydroxylation of aliphatic chains and hydroxylation and methylation of indole glucosinolates. Two hotspots of apparent biochemical innovation and loss were identified: C. pratensis and the genus Barbarea. Diversity in other species mainly included structures also known from other crucifers. In addition to a role of gene duplication, two contrasting genetic/biochemical mechanisms for evolution of such combined diversity and redundancy are discussed: (i) involvement of widespread genes with expression varying during evolution, and (ii) mutational changes in substrate specificities of CYP79F and GS-OH enzymes.
Collapse
Affiliation(s)
- Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Xiao-Chen Huang
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Cecilie I C Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie Matthes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
42
|
Radziejewska-Kubzdela E, Olejnik A. Effects of pretreatment and modified atmosphere packaging on glucosinolate levels in coleslaw mix. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Bulgakov VP, Veremeichik GN, Grigorchuk VP, Rybin VG, Shkryl YN. The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:70-79. [PMID: 26913794 DOI: 10.1016/j.plaphy.2016.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
It is known that the rolB gene of Agrobacterium rhizogenes increases the production of secondary metabolites in transformed plant cells, but its mechanism of action remains unclear. In this report, we demonstrate that rolB expression in Arabidopsis thaliana calli led to the activation of most genes encoding secondary metabolism-specific MYB and bHLH transcription factors (TFs), such as MYB11, MYB12, MYB28, MYB76, MYB34, MYB51, MYB122, TT2 and TT8. Accordingly, a higher transcript abundance of main biosynthetic genes related to these factors was detected. The rolB-transformed calli produced 3-fold higher levels of indolic glucosinolates (GSs) compared with normal calli but did not produce secondary metabolites from other groups. Enhanced accumulation of indolic GSs was caused by activation of MYB34, MYB51 and MYB122, and the absence of aliphatic GSs in transformed calli was caused by the inability of rolB to induce MYB29. The inability of rolB-calli to produce flavonoids was caused by the lack of MYB111 expression, induced by the rolB-mediated conversion of MYB expression from cotyledon-specific to root-specific patterns. The high specificity of rolB on secondary metabolism-specific TFs was demonstrated for the first time.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok 690022, Russia; Far Eastern Federal University, Vladivostok 690950, Russia.
| | - Galina N Veremeichik
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok 690022, Russia
| | - Valeria P Grigorchuk
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok 690022, Russia
| | - Viacheslav G Rybin
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok 690059, Russia
| | - Yuri N Shkryl
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok 690022, Russia
| |
Collapse
|
44
|
Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Aziz M, Nadipalli RK, Xie X, Sun Y, Surowiec K, Zhang JL, Paré PW. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:458. [PMID: 27092166 PMCID: PMC4824779 DOI: 10.3389/fpls.2016.00458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/24/2016] [Indexed: 05/24/2023]
Abstract
Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant's growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03) transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm, BAW). In contrast, a previously characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against BAW feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.
Collapse
Affiliation(s)
- Mina Aziz
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
- Center for Plant Lipid Research, University of North Texas, DentonTX, USA
| | | | - Xitao Xie
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Yan Sun
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Jin-Lin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| |
Collapse
|
46
|
Yi G, Lim S, Chae WB, Park JE, Park HR, Lee EJ, Huh JH. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:61-70. [PMID: 26672790 DOI: 10.1021/acs.jafc.5b04575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Radish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC. The most abundant GL in radish roots was glucoraphasatin, a GL with four-carbon aliphatic side chain. The content of glucoraphasatin represented at least 84.5% of the total GL content. Indolyl GL represented only 3.1% of the total GL at its maximum. The principal component analysis of GL profiles with various root phenotypes showed that four different genotypes exist in the 71 accessions. Although no strong correlation with GL content and root phenotype was observed, the varied GL content levels demonstrate the genetic diversity of GL content, and the amount that GLs could be potentially improved by breeding in radishes.
Collapse
Affiliation(s)
| | | | - Won Byoung Chae
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration , Wanju-gun, Jeollabuk-do 55365, Korea
| | | | | | | | | |
Collapse
|
47
|
Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP. Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. PHYTOCHEMISTRY 2015; 115:130-142. [PMID: 25277803 DOI: 10.1016/j.phytochem.2014.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/25/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
Two distinct glucosinolate (GSL) chemotypes (P and G-types) of Barbarea vulgaris (Brassicaceae) were known from southern Scandinavia, but whether the types were consistent in a wider geographic area was not known. Populations (26) from Eastern and Central Europe were analyzed for GSLs in order to investigate whether the two types were consistent in this area. Most (21) could be attributed to one of the previously described GSL profile types, the P-type (13 populations) and the G-type (8 populations), based on differences in the stereochemistry of 2-hydroxylation, presence or absence of phenolic glucobarbarin derivatives, and qualitative differences in indole GSL decoration (tested for a subset of 8+6 populations only). The distinction agreed with previous molecular genetic analysis of the same individuals. Geographically, the P-type typically occurred in Eastern Europe while the G-type mainly occurred in Central Europe. Of the remaining five populations, minor deviations were observed in some individuals from two populations genetically assigned to the G-type, and a hybrid population from Finland contained an additional dihydroxyphenethyl GSL isomer attributed to a combinatorial effect of P-type and G-type genes. Major exceptions to the typical GSL profiles were observed in two populations: (1) A G-type population from Slovenia deviated by a high frequency of a known variant in glucobarbarin biosynthesis ('NAS form') co-occurring with usual G-type individuals. (2) A population from Caucasus exhibited a highly deviating GSL profile dominated by p-hydroxyphenethyl GSL that was insignificant in other accessions, as well as two GSLs investigated by NMR, m-hydroxyphenethylGSL and a partially identified m,p disubstituted hydroxy-methoxy derivative of phenethylGSL. Tandem HPLC-MS of seven NMR-identified desulfoGSLs was carried out and interpreted for increased certainty in peak identification and as a tool for partial structure elucidation. The distinct, geographically separated chemotypes and rare variants are discussed in relation to future taxonomic revision and the genetics and ecology of GSLs in B. vulgaris.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Christine Heimes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Stina Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
48
|
Radziejewska-Kubzdela E, Biegańska-Marecik R. A comparison of the composition and antioxidant capacity of novel beverages with an addition of red cabbage in the frozen, purée and freeze-dried forms. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Gonzales GB, Raes K, Vanhoutte H, Coelus S, Smagghe G, Van Camp J. Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. J Chromatogr A 2015; 1402:60-70. [PMID: 26008597 DOI: 10.1016/j.chroma.2015.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/16/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
Nonextractable polyphenol (NEP) fractions are usually ignored because conventional extraction methods do not release them from the plant matrix. In this study, we optimized the conditions for sonicated alkaline hydrolysis to the residues left after conventional polyphenol extraction of Brussels sprouts top (80°C, 4M NaOH, 30min) and stalks (60°C, 4M NaOH, 30min), and red cabbage waste streams (80°C, 4M NaOH, 45min) to release and characterize the NEP fraction. The NEP fractions of Brussels sprouts top (4.8±1.2mg gallic acid equivalents [GAE]/g dry waste) and stalks (3.3±0.2mg GAE/g dry waste), and red cabbage (11.5mg GAE/g dry waste) waste have significantly higher total polyphenol contents compared to their respective extractable polyphenol (EP) fractions (1.5±0.0, 2.0±0.0 and 3.7±0.0mg GAE/g dry waste, respectively). An LC-MS method combined with principal components analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to tentatively identify and discriminate the polyphenol and glucosinolate composition of the EP and NEP fractions. Results revealed that phenolic profiles of the EP and NEP fractions are different and some compounds are only found in either fraction in all of the plant matrices. This suggests the need to account both fractions when analyzing the polyphenol and glucosinolate profiles of plant matrices to attain a global view of their composition. This is the first report on the discrimination of the phenolic and glucosinolate profiles of the EP and NEP fractions using metabolomics techniques.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Industrial Biological Science, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Science, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Hanne Vanhoutte
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sofie Coelus
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
50
|
Korus A, Słupski J, Gębczyński P, Banaś A. Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|