1
|
Borja-Martínez M, Pedreño MA, Sabater-Jara AB. Broccoli Byproduct Extracts Attenuate the Expression of UVB-Induced Proinflammatory Cytokines in HaCaT Keratinocytes. Antioxidants (Basel) 2024; 13:1479. [PMID: 39765808 PMCID: PMC11673147 DOI: 10.3390/antiox13121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Broccoli byproducts are an important source of bioactive compounds, which provide important benefits for human skin due mainly to their antioxidant and anti-inflammatory properties. The primary target of UVB radiation is the basal layer of cells in the epidermis, with keratinocytes being the most abundant cell population in this layer. Given the wide range of side effects caused by exposure to UVB radiation, reducing the amount of UV light that penetrates the skin and strengthening the protective mechanisms of the skin are interesting strategies for the prevention of skin disorders. This work aims to evaluate the protective mechanisms triggered by broccoli by-products extract (BBE) on HaCaT keratinocytes exposed to UVB radiation as well as the study of the regenerative effect of these extracts on the barrier of skin keratinocytes damaged by superficial wounds as a strategy to revalorize this agricultural waste. The results obtained revealed that the BBEs exhibited a high cytoprotective effect on the HaCaT exposed to UVB light, allowing it to effectively reduce the intracellular content of ROS, as well as effectively attenuating the increase in proinflammatory cytokines (IL-1β, IL-6, IL-78, TNF-α) and COX-2 induced by this type of radiation. Furthermore, the BBE could be an excellent regenerative agent for skin wound repair, accelerating the migration capacity of keratinocytes thus contributing to the valorization of this byproduct as a valuable ingredient in cosmetic formulations.
Collapse
Affiliation(s)
| | | | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain; (M.B.-M.); (M.A.P.)
| |
Collapse
|
2
|
Yun J, Kim JE. Broccoli Sprout Extract Suppresses Particulate-Matter-Induced Matrix-Metalloproteinase (MMP)-1 and Cyclooxygenase (COX)-2 Expression in Human Keratinocytes by Direct Targeting of p38 MAP Kinase. Nutrients 2024; 16:4156. [PMID: 39683550 DOI: 10.3390/nu16234156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter (PM) is an environmental pollutant that negatively affects human health, particularly skin health. In this study, we investigated the inhibitory effects of broccoli sprout extract (BSE) on PM-induced skin aging and inflammation in human keratinocytes. METHODS HaCaT keratinocytes were pretreated with BSE before exposure to PM. Cell viability was assessed using the MTT assay. The expression of skin aging and inflammation markers (MMP-1, COX-2, IL-6) was measured using Western blot, ELISA, and qRT-PCR. Reactive oxygen species levels were determined using the DCF-DA assay. Kinase assays and pull-down assays were conducted to investigate the interaction between BSE and p38α MAPK. RESULTS Our findings demonstrate that BSE effectively suppressed the expression of MMP-1, COX-2, and IL-6-critical skin aging and inflammation markers-by inhibiting p38 MAPK activity. BSE binds directly to p38α without competing with ATP, thereby selectively inhibiting its activity and downstream signaling pathways, including MSK1/2, AP-1, and NF-κB. CONCLUSIONS These results suggest that BSE is a potential functional ingredient in skincare products to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Jaehyeok Yun
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| |
Collapse
|
3
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
4
|
Ioniuc IK, Lupu A, Dragan F, Tarnita I, Alexoae MM, Streanga V, Mitrofan C, Thet AA, Nedelcu AH, Salaru DL, Burlea SL, Mitrofan EC, Lupu VV, Azoicai AN. Oxidative Stress and Antioxidants in Pediatric Asthma's Evolution and Management. Antioxidants (Basel) 2024; 13:1331. [PMID: 39594473 PMCID: PMC11590961 DOI: 10.3390/antiox13111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Within the pediatric population, bronchial asthma is one of the most prevalent chronic respiratory system diseases. The number of exacerbations, severity, and duration of symptoms all have a significant impact on children's life quality. In the last decades, the prevention and management strategies of this pathology have focused on maintaining or even increasing the pulmonary function to maximum levels in early childhood, as it has been demonstrated that functional deficits at this level occurring before school age cause pathological manifestations later, in adulthood. The epithelium of the airways and implicitly that of the lung is the first barrier against the lesions caused by pro-oxidative factors. Both oxidative and antioxidative factors can be of endogenous origin (produced by the body) or exogenous (from the environment or diet). Good functioning of antioxidant defense mechanisms from the molecular level to the tissue level, and a balance between pro-oxidative factors and anti- oxidative factors, influence the occurrence of compensatory mechanisms at the level of the respiratory epithelium, causing the delay of local responses to the stress induced by chronic inflammation (bronchial remodeling, thickening of airway smooth muscles, bronchoconstriction, bronchial hyper-reactivity). These mechanisms underlie the pathophysiological changes in asthma. Numerous studies carried out among the pediatric population inclusively have demonstrated the effectiveness of antioxidants in the prophylaxis, slowing down and preventing the progression of this pathology. This review complements the scientific articles, aiming at emphasizing the complexity of oxidative physio-pathological pathways and their importance in the occurrence, development, and therapeutic response in asthma, providing a good understanding of the relationship between oxidative and antioxidative factors, and being a source of future therapeutic strategies.
Collapse
Affiliation(s)
- Ileana Katerina Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Irina Tarnita
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Monica Mihaela Alexoae
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Violeta Streanga
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Aye Aung Thet
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Stefan Lucian Burlea
- Public Health and Management Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Alice Nicoleta Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| |
Collapse
|
5
|
AlJuhaimi F, Mohamed Ahmed IA, Özcan MM, Uslu N, Albakry Z. Quantitative Determination of Biogenic Element Contents and Phytochemicals of Broccoli ( Brassica oleracea var. italica) Cooked Using Different Techniques. PLANTS (BASEL, SWITZERLAND) 2024; 13:1283. [PMID: 38794354 PMCID: PMC11124966 DOI: 10.3390/plants13101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
In this study, the effect of different cooking techniques on broccoli moisture, total phenolic, total flavonoid, and radical scavenging capacity results, polyphenol contents, and their quantitative values was investigated. The total phenolic quantities of fresh and cooked broccoli samples were assessed to be between 36.32 (conventional boiling) and 423.39 mg GAE/100 g (microwave heating). The radical scavenging activities of the broccoli samples were reported between 2.55 (conventional boiling) and 4.99 mmol/kg (microwave heating). In addition, catechin and rutin quantities of the fresh and cooked broccoli samples were measured to be between 2.24 (conventional boiling) and 54.48 mg/100 g (microwave heating), and between 0.55 (conventional boiling) and 16.33 mg/100 g (microwave heating), respectively. The most abundant elements in fresh and cooked broccoli samples were K, Ca, P, S, and Mg. The results showed some changes depending on cooking techniques compared to the control. The bioactive properties of broccoli samples cooked by means of conventional boiling, boiling in vacuum bag, and high-pressure boiling were established to be lower compared to the fresh sample. Catechin, 3,4-dihydroxybenzoic acid, rutin, and gallic acid were the key phenolic compounds of fresh and cooked broccoli samples. The phenolic components of broccoli were significantly affected by the applied cooking techniques. The highest protein in broccoli samples was determined in the broccoli sample cooked by boiling in a vacuum bag. There were statistically significant changes among the mineral results of broccoli cooked with different cooking methods.
Collapse
Affiliation(s)
- Fahad AlJuhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (I.A.M.A.)
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (I.A.M.A.)
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya 42031, Turkey;
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya 42031, Turkey;
| | - Zainab Albakry
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| |
Collapse
|
6
|
Mantzourani C, Mesimeri ID, Kokotou MG. Free Fatty Acid Determination in Broccoli Tissues Using Liquid Chromatography-High-Resolution Mass Spectrometry. Molecules 2024; 29:754. [PMID: 38398506 PMCID: PMC10891939 DOI: 10.3390/molecules29040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Broccoli (Brassica oleracea L. var. italica Plenck) is a widely consumed vegetable, very popular due to its various nutritional and bioactive components. Since studies on the lipid components of broccoli have been limited so far, the aim of the present work was the study of free fatty acids (FFAs) present in different broccoli parts, aerial and underground. The direct determination of twenty-four FFAs in broccoli tissues (roots, leaves, and florets) was carried out, using a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method in a 10 min single run. Linolenic acid was found to be the most abundant FFA in all different broccoli parts in quantities ranging from 0.76 to 1.46 mg/g, followed by palmitic acid (0.17-0.22 mg/g) and linoleic acid (0.06-0.08 mg/g). To extend our knowledge on broccoli's bioactive components, for the first time, the existence of bioactive oxidized fatty acids, namely hydroxy and oxo fatty acids, was explored in broccoli tissues adopting an HRMS-based lipidomics approach. 16- and 2-hydroxypalmitic acids were detected in all parts of broccoli studied, while ricinoleic acid was detected for the first time as a component of broccoli.
Collapse
Affiliation(s)
- Christiana Mantzourani
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Irene-Dimitra Mesimeri
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
7
|
Wahid A, Giri SK, Kate A, Tripathi MK, Kumar M. Enhancing phytochemical parameters in broccoli through vacuum impregnation and their prediction with comparative ANN and RSM models. Sci Rep 2023; 13:15579. [PMID: 37730709 PMCID: PMC10511536 DOI: 10.1038/s41598-023-41930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Amidst increasing demand for nutritious foods, the quest for effective methods to enhance health-promoting attributes has intensified. Vacuum impregnation (VI) is a promising technique to augment produce properties while minimizing impacts on biochemical attributes. In light of broccoli's growing popularity driven by its nutritional benefits, this study explores the impact of VI using ascorbic acid and calcium chloride as impregnation agents on enhancing its phytochemical properties. Response surface methodology (RSM) was used for optimization of the vacuum impregnation process with Vacuum pressure (0.6, 0.4, 0.2 bar), vacuum time (3, 7, 11 min), restoration time (5, 10, 15 min), and concentrations (0.5, 1.0, 1.5%) as independent parameters. The influence of these process parameters on six targeted responses viz. total phenolic content (TPC), total flavonoid content (TFC), ascorbic acid content (AAC), total chlorophyll content (TCC), free radical scavenging activity (FRSA), and carotenoid content (CC) were analysed. Levenberg-Marquardt back propagated neural network (LMB-ANN) was used to model the impregnation process. Multiple response optimization of the vacuum impregnation process indicated an optimum condition of 0.2 bar vacuum pressure, 11 min of vacuum time, 12 min of restoration time, and 1.5% concentration of solution for vacuum impregnation of broccoli. The values of TPC, TFC, AAC, TCC, FRSA, and CC obtained at optimized conditions were 291.20 mg GAE/100 g, 11.29 mg QE/100 g, 350.81 mg/100 g, 1.21 mg/100 g, 79.77 mg, and 8.51 mg, respectively. The prediction models obtained through ANN was found suitable for predicting the responses with less standard errors and higher R2 value as compared to RSM models. Instrumental characterization (FTIR, XRD and SEM analysis) of untreated and treated samples were done to see the effect of impregnation on microstructural and morphological changes in broccoli. The results showed enhancement in the TPC, TFC, AAC, TCC, FRSA, and CC values of broccoli florets with impregnation. The FTIR and XRD analysis also supported the results.
Collapse
Affiliation(s)
- Aseeya Wahid
- ICAR-Central Institute of Agricultural Engineering, Bhopal, 462038, India
| | - Saroj Kumar Giri
- ICAR-Central Institute of Agricultural Engineering, Bhopal, 462038, India.
| | - Adinath Kate
- ICAR-Central Institute of Agricultural Engineering, Bhopal, 462038, India
| | | | - Manoj Kumar
- ICAR-Central Institute of Agricultural Engineering, Bhopal, 462038, India
| |
Collapse
|
8
|
Structure-function relationships of pectic polysaccharides from broccoli by-products with in vitro B lymphocyte stimulatory activity. Carbohydr Polym 2023; 303:120432. [PMID: 36657866 DOI: 10.1016/j.carbpol.2022.120432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
To study structure-function relationships of pectic polysaccharides with their immunostimulatory activity, broccoli by-products were used. Pectic polysaccharides composed by 64 mol% uronic acids, 18 mol% Ara, and 10 mol% Gal, obtained by hot water extraction, activated B lymphocytes in vitro (25-250 μg/mL). To disclose active structural features, combinations of ethanol and chromatographic fractionation and modification of the polysaccharides were performed. Polysaccharides insoluble in 80 % ethanol (Et80) showed higher immunostimulatory activity than the pristine mixture, which was independent of molecular weight range (12-400 kDa) and removal of terminal or short Ara side chains. Chemical sulfation did not promote B lymphocyte activation. However, the action of pectin methylesterase and endo-polygalacturonase on hot water extracted polysaccharides produced an acidic fraction with a high immunostimulatory activity. The de-esterified homogalacturonan region seem to be an important core to confer pectic polysaccharides immunostimulatory activity. Therefore, agri-food by-products are a source of pectic polysaccharide functional food ingredients.
Collapse
|
9
|
Cicio A, Serio R, Zizzo MG. Anti-Inflammatory Potential of Brassicaceae-Derived Phytochemicals: In Vitro and In Vivo Evidence for a Putative Role in the Prevention and Treatment of IBD. Nutrients 2022; 15:nu15010031. [PMID: 36615689 PMCID: PMC9824272 DOI: 10.3390/nu15010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of intestinal disorders, of unknown etiology, characterized by chronic inflammation within the gut. They are gradually becoming critical because of the increasing incidence worldwide and improved diagnosis. Due to the important side effects observed during conventional therapy, natural bioactive components are now under intense investigation for the prevention and treatment of chronic illnesses. The Brassicaceae family comprises vegetables widely consumed all over the world. In recent decades, a growing body of literature has reported that extracts from the Brassicaceae family and their purified constituents have anti-inflammatory properties, which has generated interest from both the scientific community and clinicians. In this review, data from the literature are scrutinized and concisely presented demonstrating that Brassicaceae may have anti-IBD potential. The excellent biological activities of Brassicacea are widely attributable to their ability to regulate the levels of inflammatory and oxidant mediators, as well as their capacity for immunomodulatory regulation, maintenance of intestinal barrier integrity and intestinal flora balance. Possible future applications of bioactive-derived compounds from Brassicaceae for promoting intestinal health should be investigated.
Collapse
Affiliation(s)
- Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
10
|
Improve the functional properties of dietary fibre isolated from broccoli by-products by using different technologies. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ares AM, Tapia JA, González-Porto AV, Higes M, Martín-Hernández R, Bernal J. Glucosinolates as Markers of the Origin and Harvesting Period for Discrimination of Bee Pollen by UPLC-MS/MS. Foods 2022; 11:1446. [PMID: 35627016 PMCID: PMC9141840 DOI: 10.3390/foods11101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bee pollen is currently one of the most commonly consumed food supplements, as it is considered to be a good source of bioactive substances and energy. It contains various health-promoting compounds, such as proteins, amino acids, lipids, as well as glucosinolates. In the present study, the glucosinolate content was determined, by means of ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass detector, in 72 bee pollen samples from four different apiaries in Guadalajara (Spain), harvested in three different periods. In addition, 11 commercial multifloral samples from different Spanish regions were also analyzed. The aim was to verify the suitability of these compounds as biomarkers of their geographical origin, and to test their potential for distinguishing the harvesting period. By means of a canonical discriminant analysis, it was possible to differentiate the apiary of origin of most of the samples, and these could also be clearly differentiated from the commercial ones, simply as a result of the glucosinolate content. In addition, it was also demonstrated for the first time that bee pollen samples were capable of being differentiated according to the time of harvesting and their glucosinolate content.
Collapse
Affiliation(s)
- Ana M. Ares
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.M.A.); (J.A.T.)
| | - Jesús A. Tapia
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.M.A.); (J.A.T.)
- Department of Statistics and Operations Research, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Amelia V. González-Porto
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Apícola y Agroambiental (CIAPA), Camino de San Martín, s/n, 19180 Marchamalo, Spain; (A.V.G.-P.); (M.H.); (R.M.-H.)
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Apícola y Agroambiental (CIAPA), Camino de San Martín, s/n, 19180 Marchamalo, Spain; (A.V.G.-P.); (M.H.); (R.M.-H.)
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Apícola y Agroambiental (CIAPA), Camino de San Martín, s/n, 19180 Marchamalo, Spain; (A.V.G.-P.); (M.H.); (R.M.-H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-EFS/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| | - José Bernal
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.M.A.); (J.A.T.)
| |
Collapse
|
12
|
Ewert J, Eisele T, Stressler T. Enzymatic production and analysis of antioxidative protein hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
14
|
Zeb A, Khan S, Ercişli S. Characterization of carotenoids, chlorophylls, total phenolic compounds, and antioxidant activity of Brassica oleracea L var. botrytis leaves from Pakistan. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00905-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Luo X, Dong Y, Gu C, Zhang X, Ma H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front Nutr 2021; 8:727181. [PMID: 34805239 PMCID: PMC8595947 DOI: 10.3389/fnut.2021.727181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Increased demand for a more balanced, healthy, and safe diet has accelerated studies on natural bee products (including honey, bee bread, bee collected pollen royal jelly, propolis, beeswax, and bee venom) over the past decade. Advanced food processing techniques, such as ultrasonication and microwave and infrared (IR) irradiation, either has gained popularity as alternatives or combined with conventional processing techniques for diverse applications in apiculture products at laboratory or industrial scale. The processing techniques used for each bee products have comprehensively summarized in this review, including drying (traditional drying, infrared drying, microwave-assisted traditional drying or vacuum drying, and low temperature high velocity-assisted fluidized bed drying), storage, extraction, isolation, and identification; the assessment methods related to the quality control of bee products are also fully mentioned. The different processing techniques applied in bee products aim to provide more healthy active ingredients largely and effectively. Furthermore, improved the product quality with a shorter processing time and reduced operational cost are achieved using conventional or emerging processing techniques. This review will increase the positive ratings of the combined new processing techniques according to the needs of the bee products. The importance of the models for process optimization on a large scale is also emphasized in the future.
Collapse
Affiliation(s)
- Xuan Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Santos FH, Siqueira LE, Cardoso GP, Molina G, Pelissari FM. Antioxidant packaging development and optimization using agroindustrial wastes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabiana Helen Santos
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Luana Elisa Siqueira
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Giselle Pereira Cardoso
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Franciele Maria Pelissari
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| |
Collapse
|
17
|
Effect of Red Cabbage Sprouts Treating with Organic Acids on the Content of Polyphenols, Antioxidant Properties and Colour Parameters. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, there has been a great deal of consumer interest in consuming vegetables in the form of sprouts, characterized by high nutritional value. The disadvantage of sprouts is the loss of bioactive compounds during storage and the relatively short shelf life, due to the fact that they are a good medium for microorganisms, especially yeasts and molds. The aim of the study was to compare the content of polyphenols, antioxidant properties, color and microbiological quality of red cabbage sprouts preserved by the use of mild organic acids: Citric, ascorbic, lactic, acetic and peracetic. In the study, the content of polyphenols and antioxidant properties of sprouts was examined using the spectrophotometric method, instrumental color measurement was done using an “electronic eye” and the content of mold, yeast and the total number of mesophilic microorganisms was determined using the plate inoculation method. Taking into account the content of polyphenols and the antioxidant potential of sprouts, it was found that the addition of all organic acids contributed to the preservation of the tested compounds during their 14-day storage under refrigerated conditions, depending on the type of organic acid used, from 71 to 86% for polyphenols and from 75 to 96% for antioxidant properties. The best results were obtained by treating the sprouts with peracetic acid and ascorbic acid, respectively, at a concentration of 80 ppm and 1%. The conducted research on the possibility of extending the storage life and preserving the bioactive properties of fresh sprouts showed that the use of peracetic acid in the form of an aqueous solution during pre-treatment allows to reduce the content of microorganisms by one logarithmic order. Ascorbic acid did not reduce the content of microorganisms in the sprout samples tested. Considering the content of bioactive ingredients, as well as the microbiological quality of fresh sprouts, it can be said that there is a great need to use mild organic acids during the pre-treatment of sprouts in order to maintain a high level of health-promoting ingredients during their storage, which may also contribute to their prolongation durability.
Collapse
|
18
|
Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants (Basel) 2020; 9:antiox9121195. [PMID: 33261112 PMCID: PMC7760773 DOI: 10.3390/antiox9121195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023] Open
Abstract
The agri-food industry is currently one of the main engines of economic development worldwide. The region of Murcia is a reference area in Europe for the cultivation of fruits and vegetables and produces the bulk of Spanish exports of broccoli (Brassica oleracea var. italica). The processing of fresh produce generates a huge number of by-products that represent an important economic and environmental problem when discarded. In this work, an advanced extraction technique using environmentally friendly solvents was applied to assess the revalorization of broccoli by-products, by performing a comparative analysis with conventional extraction. To achieve this goal, supercritical fluid extraction based on response surface methodology was performed using CO2 and ethanol as solvents. The results obtained showed that the supercritical fluid extracts were rich in β-carotene, phenolic compounds, chlorophylls and phytosterols. Moreover, in bioactivity assays, the supercritical fluid extracts exhibited a high antioxidant activity and a cytoprotective effect in a non-tumorigenic keratinocyte cell line exposed to ultraviolet B light. The results indicate that supercritical fluid extracts from broccoli by-products could potentially serve as an ingredient for cosmetic purposes.
Collapse
|
19
|
He R, Gao M, Shi R, Song S, Zhang Y, Su W, Liu H. The Combination of Selenium and LED Light Quality Affects Growth and Nutritional Properties of Broccoli Sprouts. Molecules 2020; 25:molecules25204788. [PMID: 33086545 PMCID: PMC7587582 DOI: 10.3390/molecules25204788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 μmol L−1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 μmol m−2 s−1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.
Collapse
|
20
|
Pectins from food waste: Characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105930] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Bochnak-Niedźwiecka J, Szymanowska U, Świeca M. Studies on the development of vegetable-based powdered beverages – Effect of the composition and dispersing temperature on potential bioaccessibility of main low-molecular antioxidants and antioxidant properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. PLANTS 2020; 9:plants9080946. [PMID: 32727144 PMCID: PMC7465980 DOI: 10.3390/plants9080946] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.
Collapse
|
23
|
Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM. Fruit and vegetable waste management: Conventional and emerging approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110510. [PMID: 32275240 DOI: 10.1016/j.jenvman.2020.110510] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Valorization of Fruit and Vegetable Wastes (FVW) is challenging owing to logistic-related problems, as well as to their perishable nature and heterogeneity, among other factors. In this work, the main existing routes for food waste valorization are critically reviewed. The study focuses on FVW because they constitute an important potential source for valuable natural products and chemicals. It can be concluded that FVW management can be carried out following different processing routes, though nowadays the best solution is to find an adequate balance between conventional waste management methods and some emerging valorization technologies. Presently, both conventional and emerging technologies must be considered in a coordinated manner to enable an integral management of FVW. By doing so, impacts on food safety and on the environment can be minimized whilst wasting of natural resources is avoided. Depending on the characteristics of FVW and on the existing market demand, the most relevant valorization options are extraction of bioactive compounds, production of enzymes and exopolysaccharides, synthesis of bioplastics and biopolymers and production of biofuels. The most efficient emergent processing technologies must be promoted in the long term, in detriment of the conventional ones used nowadays. In consequence, future integral valorization of FVW will probably comprise two stages: direct processing of FVW into value-added products, followed by processing of the residual streams, byproducts and leftover matter by means of conventional waste management technologies.
Collapse
Affiliation(s)
- Irene Esparza
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Fernando Bimbela
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| | - Luis M Gandía
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| |
Collapse
|
24
|
Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Res Int 2020; 132:109055. [DOI: 10.1016/j.foodres.2020.109055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
|
25
|
Rahmani R, Bouajila J, Jouaidi M, Debouba M. African mustard (Brassica tournefortii) as source of nutrients and nutraceuticals properties. J Food Sci 2020; 85:1856-1871. [DOI: 10.1111/1750-3841.15157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Rami Rahmani
- Unité de recherche « Valorisation des biomolécules actives », Institut Supérieur de Biologie Appliquée de Médenine, Route El Jorf – Km 22.5 ‐ 4119 MedenineUniversité de Gabès Gabès Tunisia
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPTUPS Toulouse France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPTUPS Toulouse France
| | - Marwa Jouaidi
- Unité de recherche « Valorisation des biomolécules actives », Institut Supérieur de Biologie Appliquée de Médenine, Route El Jorf – Km 22.5 ‐ 4119 MedenineUniversité de Gabès Gabès Tunisia
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPTUPS Toulouse France
| | - Mohamed Debouba
- Unité de recherche « Valorisation des biomolécules actives », Institut Supérieur de Biologie Appliquée de Médenine, Route El Jorf – Km 22.5 ‐ 4119 MedenineUniversité de Gabès Gabès Tunisia
| |
Collapse
|
26
|
Sánchez-Pujante PJ, Gionfriddo M, Sabater-Jara AB, Almagro L, Pedreño MA, Diaz-Vivancos P. Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153136. [PMID: 32120144 DOI: 10.1016/j.jplph.2020.153136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Elicited broccoli suspension-cultured cells (SCC) provide a useful system for obtaining bioactive compounds, including glucosinolates (GS) and phenolic compounds (PCs). In this work, coronatine (Cor) and methyl jasmonate (MJ) were used to increase the bioactive compound production in broccoli SCC. Although the use of Cor and MJ in secondary metabolite production has already been described, information concerning how elicitors affect cell metabolism is scarce. It has been suggested that Cor and MJ trigger defence reactions affecting the antioxidative metabolism. In the current study, the concentration of 0.5 μM Cor was the most effective treatment for increasing both the total antioxidant capacity (measured as ferulic acid equivalents) and glucosinolate content in broccoli SCC. The elicited broccoli SCC also showed higher polyphenol oxidase activity than the control cells. Elicitation altered the antioxidative metabolism of broccoli SCC, which displayed biochemical changes in antioxidant enzymes, a decrease in the glutathione redox state and an increase in lipid peroxidation levels. Furthermore, we studied the effect of elicitation on the protein profile and observed an induction of defence-related proteins. All of these findings suggest that elicitation not only increases bioactive compound production, but it also leads to mild oxidative stress in broccoli SCC that could be an important factor triggering the production of these compounds.
Collapse
Affiliation(s)
| | - Matteo Gionfriddo
- Department of Medicine, Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain
| | - Pedro Diaz-Vivancos
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain.
| |
Collapse
|
27
|
Berndtsson E, Andersson R, Johansson E, Olsson ME. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2406. [PMID: 32244813 PMCID: PMC7178181 DOI: 10.3390/ijerph17072406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
Human consumption of fruits and vegetables are generally below recommended levels. Waste from the production, e.g., of un-used parts such as broccoli leaves and stem when producing broccoli florets for food, is a sustainability issue. In this study, broccoli leaves were analyzed for the content of various dietary fibre and phenolics, applying the Uppsala method and HPLC analyses, respectively. The results showed that broccoli leaves had comparable levels of dietary fibre (26%-32% of dry weight (DW)) and phenolic compounds (6.3-15.2 mg/g DW) to many other food and vegetables considered valuable in the human diet from a health perspective. A significant positive correlation was found among soluble dietary fibre and phenolic acids indicating possible bindings between these components. Seasonal variations affected mainly the content of conjugated phenolics, and the content of insoluble dietary fibre. This study verified the importance of the use of broccoli production side streams (leaves) as they may contribute with health promoting components to the human diet and also socio-economic and environmental benefits to the bioeconomic development in the society.
Collapse
Affiliation(s)
- Emilia Berndtsson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE- 750 07 Uppsala, Sweden;
| | - Eva Johansson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Marie E. Olsson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| |
Collapse
|
28
|
García‐Saldaña JS, Parra‐Delgado J, Campas‐Baypoli ON, Sánchez‐Machado DI, Cantú‐Soto EU, López‐Cervantes J. Changes in growth kinetics and motility characteristics of
Escherichia coli
in the presence of sulphoraphane isolated from broccoli seed meal. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jesús Santos García‐Saldaña
- Doctorado en Ciencias en Especialidad en Biotecnología Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000 Cd. Obregón Sonora México
| | - Julián Parra‐Delgado
- Maestría en Ciencias en Recursos Naturales Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000 Cd. Obregón Sonora México
| | - Olga Nydia Campas‐Baypoli
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| | - Dalia Isabel Sánchez‐Machado
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| | - Ernesto Uriel Cantú‐Soto
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| | - Jaime López‐Cervantes
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| |
Collapse
|
29
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
30
|
Le TN, Luong HQ, Li HP, Chiu CH, Hsieh PC. Broccoli ( Brassica oleracea L. var. italica) Sprouts as the Potential Food Source for Bioactive Properties: A Comprehensive Study on In Vitro Disease Models. Foods 2019; 8:foods8110532. [PMID: 31671614 PMCID: PMC6915343 DOI: 10.3390/foods8110532] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Broccoli sprouts are an excellent source of health-promoting phytochemicals such as vitamins, glucosinolates, and phenolics. The study aimed to investigate in vitro antioxidant, antiproliferative, apoptotic, and antibacterial activities of broccoli sprouts. Five-day-old sprouts extracted by 70% ethanol showed significant antioxidant activities, analyzed to be 68.8 μmol Trolox equivalent (TE)/g dry weight by 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic (ABTS) assay, 91% scavenging by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 1.81 absorbance by reducing power assay, and high phenolic contents by high-performance liquid chromatography (HPLC). Thereafter, sprout extract indicated considerable antiproliferative activities towards A549 (lung carcinoma cells), HepG2 (hepatocellular carcinoma cells), and Caco-2 (colorectal adenocarcinoma cells) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with IC50 values of 0.117, 0.168 and 0.189 mg/mL for 48 h, respectively. Furthermore, flow cytometry confirmed that Caco-2 cells underwent apoptosis by an increase of cell percentage in subG1 phase to 31.3%, and a loss of mitochondrial membrane potential to 19.3% after 48 h of treatment. Afterward, the extract exhibited notable antibacterial capacities against Bacillus subtilis and Salmonella Typhimurium with minimum inhibition concentration (MIC) values of 0.39 and 0.78 mg/mL, appropriately, along with abilities against Staphylococcus aureus and Escherichia coli with an MIC value of 1.56 mg/mL. Thus, broccoli sprouts were confirmed as a potential food source for consumers’ selection and functional food industry.
Collapse
Affiliation(s)
- Thanh Ninh Le
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Hong Quang Luong
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Hsin-Ping Li
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Pao-Chuan Hsieh
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| |
Collapse
|
31
|
Aranaz P, Navarro-Herrera D, Romo-Hualde A, Zabala M, López-Yoldi M, González-Ferrero C, Gil AG, Alfredo Martinez J, Vizmanos JL, Milagro FI, González-Navarro CJ. Broccoli extract improves high fat diet-induced obesity, hepatic steatosis and glucose intolerance in Wistar rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Scrob T, Hosu A, Cimpoiu C. The Influence of in Vitro Gastrointestinal Digestion of Brassica oleracea Florets on the Antioxidant Activity and Chlorophyll, Carotenoid and Phenolic Content. Antioxidants (Basel) 2019; 8:antiox8070212. [PMID: 31295817 PMCID: PMC6680745 DOI: 10.3390/antiox8070212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Brassica oleracea L. var. Italica is known to contain a wide variety of antioxidants and due to the protection against various diseases its consumption has been increasing over the years. Thus, knowledge of the changes that occur during the digestion process is of great interest. The aim of this study was to investigate the influence of in vitro gastrointestinal digestion of broccoli on antioxidant activity and on the chlorophyll, carotenoid and phenolic content. First, the ultrasound-assisted extraction of bioactive compounds was optimized and the kinetic model was evaluated. Then, the broccoli was subjected to a static simulated digestion. The antioxidant activity was monitored by ABTS [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] assay and the contents of target compounds were investigated by UV-Vis spectrophotometry and thin-layer chromatography. The optimum conditions were: solvent-ethanol; time-20 min and temperature-30 °C, and a second order kinetic model was found to describe the mechanism of extraction. The antioxidant activity and carotenoid, chlorophyll and total phenolic content was significantly decreased after simulated gastric and intestinal digestion. The gastric digestion considerably decreased carotenoid and chlorophyll content, meanwhile the intestinal digestion significantly decreased the total phenolic content (TPC). The antioxidant activity was equally affected by both gastric and intestinal digestion.
Collapse
Affiliation(s)
- Teodora Scrob
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Anamaria Hosu
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
33
|
Danowska‐Oziewicz M, Narwojsz A, Draszanowska A, Marat N. The effects of cooking method on selected quality traits of broccoli and green asparagus. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marzena Danowska‐Oziewicz
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| | - Agnieszka Narwojsz
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| | - Anna Draszanowska
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| | - Natalia Marat
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| |
Collapse
|
34
|
Md Salim NS, Gariѐpy Y, Raghavan V. Effects of Processing on Quality Attributes of Osmo-Dried Broccoli Stalk Slices. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02282-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Shi M, Hlaing MM, Ying D, Ye J, Sanguansri L, Augustin MA. New food ingredients from broccoli by‐products: physical, chemical and technological properties. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng Shi
- Tea Research Institute of Zhejiang University Hangzhou 310058 China
| | | | - DanYang Ying
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| | - JianHui Ye
- Tea Research Institute of Zhejiang University Hangzhou 310058 China
| | - Luz Sanguansri
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| | - Mary Ann Augustin
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| |
Collapse
|
36
|
Liu M, Zhang L, Ser SL, Cumming JR, Ku KM. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018; 23:E900. [PMID: 29652847 PMCID: PMC6017511 DOI: 10.3390/molecules23040900] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
The phytonutrient concentrations of broccoli (Brassica oleracea var. italica) florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.
Collapse
Affiliation(s)
- Mengpei Liu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Lihua Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Suk Lan Ser
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| | - Jonathan R Cumming
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
37
|
Ferreira SS, Passos CP, Cardoso SM, Wessel DF, Coimbra MA. Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chem 2018; 246:386-393. [DOI: 10.1016/j.foodchem.2017.11.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/20/2017] [Accepted: 11/10/2017] [Indexed: 01/27/2023]
|
38
|
Suresh S, Waly MI, Rahman MS, Guizani N, Al-Kindi MAB, Al-Issaei HKA, Al-Maskari SNM, Al-Ruqaishi BRS, Al-Salami A. Broccoli ( Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats. Prev Nutr Food Sci 2017; 22:277-284. [PMID: 29333379 PMCID: PMC5758090 DOI: 10.3746/pnf.2017.22.4.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli (Brassica oleracea) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics (P<0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values (P<0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.
Collapse
Affiliation(s)
- Sithara Suresh
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Mostafa Ibrahim Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Mohammad Shafiur Rahman
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Nejib Guizani
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | | | | | | | | |
Collapse
|
39
|
Thomas M, Badr A, Desjardins Y, Gosselin A, Angers P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem 2017; 245:1204-1211. [PMID: 29287343 DOI: 10.1016/j.foodchem.2017.11.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
The agrifood industry produces tons of waste and substandard products that are discarded at great expense. Valorization of industrial residues curbs issues related to food security and environmental problems. Broccoli (Brassica oleracea var. italica) is associated with varied beneficial health effects, but its production yields greater than 25% rejects. We aimed to characterize and quantify industrial broccoli by-products for their glucosinolate and polyphenol contents as a first step towards industrial bio-refining. Broccoli segments and rejected lots of 10 seed cultivars were analyzed using UPLC MS/MS. Variability in the contents of bioactive molecules was observed within and between the cultivars. Broccoli by-products were rich in glucosinolates (0.2-2% dry weight sample), predominantly glucoraphanin (32-64% of the total glucosinolates), whereas the polyphenolic content was less than 0.02% dry weight sample. Valorization of industrial residues facilitates the production of high value functional food ingredients along with socio-economic sustainability.
Collapse
Affiliation(s)
- Minty Thomas
- Department of Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada.
| | - Ashraf Badr
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Horticulture Department, Faculty of Agriculture, Zagazig University, Egypt.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Department of Phytology, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
| | - Andre Gosselin
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Department of Phytology, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
| | - Paul Angers
- Department of Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
40
|
Bell L, Wagstaff C. Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9379-9403. [PMID: 28968493 DOI: 10.1021/acs.jafc.7b03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucosinolates (GSLs) and isothiocyanates (ITCs) produced by Brassicaceae plants are popular targets for analysis due to the health benefits associated with them. Breeders aim to increase the concentrations in commercial varieties; however, there are few examples of this. The most well-known is Beneforté broccoli, which has increased glucoraphanin/sulforaphane concentrations compared to those of conventional varieties. It was developed through traditional breeding methods with considerations for processing, consumption, and health made throughout this process. Many studies presented in the literature do not take a holistic approach, and key points about breeding, cultivation methods, postharvest storage, sensory attributes, and consumer preferences are not properly taken into account. In this review, we draw together data for multiple species and address how such factors can influence GSL profiles. We encourage researchers and institutions to engage with industry and consumers to produce research that can be utilized in the improvement of Brassicaceae crops.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Carol Wagstaff
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
41
|
Ares AM, Valverde S, Bernal JL, Nozal MJ, Bernal J. Extraction and determination of bioactive compounds from bee pollen. J Pharm Biomed Anal 2017; 147:110-124. [PMID: 28851545 DOI: 10.1016/j.jpba.2017.08.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 01/04/2023]
Abstract
Since ancient times bee pollen has been considered a good source of bioactive substances and energy. Taking into account the current demand for healthy and natural foods, it is not surprising that bee pollen has been attracting commercial interest in recent years, making it one of the most widely consumed food supplements. It has been extensively reported that bee pollen contains several health-promoting compounds, such as proteins, amino acids, lipids, phenolic compounds, vitamins or minerals. Thus, this study aims to give an overview of the extraction and determination techniques of several of the above-mentioned compounds which have been published in the last few years (2011-2017). The design of the study is in accordance with the different families of bioactive compounds, and the extraction procedures together with the analytical techniques employed and their determination are discussed. A list of some of the most relevant applications is provided for each category, including a brief summary of the experimental conditions. The references included will provide the reader with a comprehensive overview of and insight into the analysis of bioactive compounds from bee pollen.
Collapse
Affiliation(s)
- Ana M Ares
- I.U. CINQUIMA, Analytical Chemistry Group, University of Valladolid, E. 47011 Valladolid, Spain
| | - Silvia Valverde
- I.U. CINQUIMA, Analytical Chemistry Group, University of Valladolid, E. 47011 Valladolid, Spain
| | - José L Bernal
- I.U. CINQUIMA, Analytical Chemistry Group, University of Valladolid, E. 47011 Valladolid, Spain
| | - María J Nozal
- I.U. CINQUIMA, Analytical Chemistry Group, University of Valladolid, E. 47011 Valladolid, Spain
| | - José Bernal
- I.U. CINQUIMA, Analytical Chemistry Group, University of Valladolid, E. 47011 Valladolid, Spain.
| |
Collapse
|
42
|
A comparative study of the antacid effect of some commonly consumed foods for hyperacidity in an artificial stomach model. Complement Ther Med 2017; 34:111-115. [PMID: 28917362 DOI: 10.1016/j.ctim.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The incorporation of certain alkalinizing vegetables, fruits, milk and its products in the diet has been known to alleviate hyperacidity. These foods help to restore the natural gastric balance and function, curb acid reflux, aid digestion, reduce the burning sensation due to hyperacidity and soothe the inflamed mucosa of the stomach. The present study evaluates and compares the antacid effect of broccoli, kale, radish, cucumber, lemon juice, cold milk and curd in an artificial stomach model. DESIGN The pH of the test samples and their neutralizing effect on artificial gastric acid was determined and compared with that of water, the active control sodium bicarbonate and a marketed antacid preparation ENO. A modified model of Vatier's artificial stomach was used to determine the duration of consistent neutralization of artificial gastric acid by the test samples. The neutralizing capacity of the test samples was determined in vitro using the classical titration method of Fordtran. RESULTS All test samples except lemon showed significantly higher (p<0.05 for cucumber and p<0.001 for the rest) acid neutralizing effect than water. All test samples also exhibited a significantly (p<0.001) higher duration of consistent neutralization and higher antacid capacity than water. Highest antacid activity was demonstrated by cold milk and broccoli which was comparable with ENO and sodium bicarbonate. CONCLUSION It may be concluded that the natural food ingredients used in this study exhibited significant antacid activity, justifying their use as essential dietary components to counter hyperacidity.
Collapse
|
43
|
La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 2017; 100:28-52. [PMID: 28873689 DOI: 10.1016/j.foodres.2017.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Samperi
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
44
|
Assessment of glucosinolates, antioxidative and antiproliferative activity of broccoli and collard extracts. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Zhang Y, Jiang Z, Wang L, Xu L. Extraction optimization, antioxidant, and hypoglycemic activities in vitro of polysaccharides from broccoli byproducts. J Food Biochem 2017. [DOI: 10.1111/jfbc.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaojie Zhang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Zhenyu Jiang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Lizhi Wang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Lishan Xu
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| |
Collapse
|
46
|
Soares A, Carrascosa C, Raposo A. Influence of Different Cooking Methods on the Concentration of Glucosinolates and Vitamin C in Broccoli. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1930-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Mahn A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem 2017; 233:492-499. [PMID: 28530603 DOI: 10.1016/j.foodchem.2017.04.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Selenium (Se) exerts many effects beneficial to health. Broccoli is a Se-hyperaccumulator plant, with Se-fertilization increasing its potential as a functional food. We studied the effect of dose, and the developmental stage at the beginning of Se-fortification, on antioxidant capacity, phenolics, glucosinolates, sulphoraphane, Se-methyl selenocysteine and myrosinase in broccoli. Se-fortification decreased the antioxidant properties and sulphur-containing compounds, but increased Se-methyl-selenocysteine content. Regression models gave r>0.77 confirming that Se dose and developmental stage largely determine the behaviour of the system. Correlation models gave r>0.95, allowing estimation of saturation concentration of Se-methyl-selenocysteine in broccoli cv. Traditional (3.13µmolg-1DM) and the concentration (2-mmol sodium selenate) above which the content of phenolic compounds decreases significantly. Sulphoraphane and glucosinolates' dependence on total Se supply was consistent with myrosinase activity below 3.5-mmol sodium selenate. Our results would enable design of optimal fertilization strategies to enrich broccoli in Se with minimal impairment of antioxidants properties.
Collapse
Affiliation(s)
- Andrea Mahn
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile.
| |
Collapse
|
48
|
Visalli G, Facciolà A, Bertuccio MP, Picerno I, Di Pietro A. In vitro assessment of the indirect antioxidant activity of Sulforaphane in redox imbalance vanadium-induced. Nat Prod Res 2017; 31:2612-2620. [PMID: 28278681 DOI: 10.1080/14786419.2017.1286485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Owing to sulforaphane presence, a dietary consumption of Brassicaceae prevents chronic diseases. This hormetic compound induces adaptive stress response at subtoxic doses, while doses that exceed the cellular defence are toxic. In HepG2, Caco-2 and Vero cells, we investigated the sulforaphane (SFN) (5 μM) role in counteracting redox imbalance induced by VOSO4 [V(IV)]. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test showed a dose-dependent viability reduction (r < -0.95; p < 0.01) (range 5-80 μM). At 5 μM, SFN enhancement of mitochondrial activity was confirmed by Δψm (p < 0.05) both in basal condition and in redox-stressed cells. Intracellular ROS, DNA and lysosomal oxidative damages underlined the indirect antioxidant SFN activity, confirmed by the increase of GSH. The SFN empowering effects on mitochondrial function were imputable to the presence of mitochondrial proteins among the Nrf2-responsive phase II proteins. Considering the link between oxidative stress and chronic diseases, a long-term dietary intake of Brassicaceae could be strongly advisable.
Collapse
Affiliation(s)
- Giuseppa Visalli
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Alessio Facciolà
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Maria Paola Bertuccio
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Isa Picerno
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Angela Di Pietro
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| |
Collapse
|
49
|
Schäfer J, Stanojlovic L, Trierweiler B, Bunzel M. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems. Food Res Int 2016; 93:43-51. [PMID: 28290279 DOI: 10.1016/j.foodres.2016.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/24/2016] [Indexed: 11/15/2022]
Abstract
Storage related changes in the cell wall composition potentially affect the texture of plant-based foods and the physiological effects of cell wall based dietary fiber components. Therefore, a detailed characterization of cell wall polysaccharides and lignins from broccoli stems was performed. Freshly harvested broccoli and broccoli stored at 20°C and 1°C for different periods of time were analyzed. Effects on dietary fiber contents, polysaccharide composition, and on lignin contents/composition were much more pronounced during storage at 20°C than at 1°C. During storage, insoluble dietary fiber contents of broccoli stems increased up to 13%. Storage related polysaccharide modifications include an increase of the portions of cellulose, xylans, and homogalacturonans and a decrease of the neutral pectic side-chains arabinans and galactans. Broccoli stem lignins are generally rich in guaiacyl units. Lignins from freshly harvested broccoli stems contain slightly larger amounts of p-hydroxyphenyl units than syringyl units. Syringyl units are predominantly incorporated into the lignin polymers during storage, resulting in increased acetyl bromide soluble lignin contents. NMR-based analysis of the interunit linkage types of broccoli stem lignins revealed comparably large portions of resinol structures for a guaiacyl rich lignin. Incorporation of syringyl units into the polymers over storage predominantly occurs through β-O-4-linkages.
Collapse
Affiliation(s)
- Judith Schäfer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany.
| | - Luisa Stanojlovic
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany.
| | - Bernhard Trierweiler
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany.
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany.
| |
Collapse
|
50
|
Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|