1
|
Najarzadekan H, Kamboh MA, Sereshti H, Ahmad I, Sridewi N, Shahabuddin S, Rashidi Nodeh H. Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane-Polysulfone. Polymers (Basel) 2022; 14:3760. [PMID: 36145908 PMCID: PMC9504830 DOI: 10.3390/polym14183760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber’s unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method’s application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.
Collapse
Affiliation(s)
- Hamid Najarzadekan
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Muhammad Afzal Kamboh
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh 67450, Pakistan
| | - Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Nanthini Sridewi
- Department of Maritime Science and Technology, Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Syed Shahabuddin
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar 382426, India
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj 3174734563, Iran
| |
Collapse
|
2
|
Kardani F, Mirzajani R. Electrospun polyacrylonitrile /MIL-53(Al) MOF@ SBA-15/ 4, 4ʹ-bipyridine nanofibers for headspace solid-phase microextraction of benzene homologues in environmental water samples with GC-FID detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Saraji M, Nobakht G. Sponge-like porous manganese(II, III) oxide as a coating for solvent-assisted solid-phase microextraction of polycyclic aromatic hydrocarbons followed by gas chromatography-mass spectrometry. J Chromatogr A 2022; 1669:462947. [PMID: 35298937 DOI: 10.1016/j.chroma.2022.462947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Abstract
A nanostructure sponge-like porous manganese(II, III) oxide was synthesized and applied as a new fiber coating for solvent-assisted solid-phase microextraction. The synthesized material was characterized via Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and N2 adsorption/desorption techniques. To investigate the extraction performance of the prepared material, direct immersion solid-phase microextraction followed by gas chromatography-mass spectrometry was used for the determination of the selected polycyclic aromatic hydrocarbons in wastewater samples. Three polycyclic aromatic hydrocarbons including 1-methylnaphthalene, anthracene, and pyrene were selected as model analytes. To maximize the sensitivity of the method, key experimental factors affecting the extraction efficiency of the analytes such as ionic strength, extraction solvent, stirring rate, extraction temperature and time, and desorption temperature and time were optimized. The applicability of the new coating material for the extraction of the selected analytes from wastewater samples was evaluated. Under the optimum conditions, detection limits between 0.7 and 1.5 ng L-1 were obtained for the model analytes. The linear dynamic range was 5.0-3.0 × 103 ng L-1 for all the analytes. Relative standard deviations were between 2 and 11%. In the case of real sample analysis, the extraction recoveries of the analytes were obtained in the range of 77-111%.
Collapse
Affiliation(s)
- Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Ghazal Nobakht
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
4
|
Yue SW, Zhou YL, Peng XT, Zhao Q. Application of a novel nylon needle filter-based solid-phase extraction device to determination of 1-hydroxypyrene in urine. J Sep Sci 2022; 45:1262-1272. [PMID: 35029014 DOI: 10.1002/jssc.202100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/12/2022]
Abstract
In this work, a simple and miniaturized solid-phase extraction device was constructed by connecting a commercial nylon needle filter to a syringe, which was applied for extracting 1-hydroxypyrene from urine sample via hydrophobic and hydrogen bond interactions. The nylon membrane in the needle filter acted as the solid-phase extraction adsorbent, meanwhile, it filtered the particles in the urine sample. To obtain high extraction efficiency, key parameters influencing extraction recovery were investigated. The entire pretreatment process was accomplished within 5 min under the optimal conditions. By coupling HPLC-UV, a rapid, low-cost, and convenient nylon needle filter-based method was established for the analysis of 1-hydroxypyrene in complex urine matrix. Within the linearity range of 0.2-1000 μg/L, the method exhibited a satisfactory correlation coefficient (R = 0.9999). The limit of detection was 0.06 μg/L, and the recoveries from urine sample spiked with three concentrations (5, 20, and 100 μg/L) ranged from 105.8% to 113.1% with the relative standard deviations less than 6.7% (intra-day, n = 6) and 8.9% (inter-day, n = 4). Finally, the proposed method was successfully applied for detecting 1-hydroxypyrene in urine samples from college students, smokers, gas station workers, and chip factory workers. The detected concentration in actual urine samples ranged from 0.46 to 5.26 μg/L. Taken together, this simple and cost-effective nylon needle filter-based solid-phase extraction device showed an excellent application potential for pretreating hydrophobic analytes from aqueous samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shi-Wen Yue
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430074, China
| | - Yi-Lian Zhou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430074, China
| | - Xi-Tian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, 430074, China
| | - Qin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Qiu Q, Wu Y, Yan X, Li Y, Li J, Chen Y, Wu D. Porous electrospun microfibers for low flow-resistant solid phase extraction of fluoroquinolones in tap water, egg and milk samples. J Chromatogr A 2021; 1661:462719. [PMID: 34894436 DOI: 10.1016/j.chroma.2021.462719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022]
Abstract
In this work, porous electrospun microfibers (PEMFs) were prepared using a polyimide/polyvinylpyrrolidone/polyethylene glycol (PI/PVP/PEG) solution mixture with coaxial ultrasonic water vapor spraying. After removing PVP and PEG by ultrasonic water washing, the PEMFs were successfully demonstrated as adsorbents for solid phase extraction (SPE). Most non-porous electrospun nanofibers are hundreds of nanometers in diameter, with a specific surface area of dozens of square meters per gram. In contrast, the diameter of the as-prepared PEMFs was tuned between 3 and 8 μm, the specific surface area was 76 m2g-1 and the pore size was ca 25 nm. Therefore, the flow resistance of the PEMF-SPE cartridges was similar to those of conventional commercial SPE cartridges, and much lower than those of SPE cartridges packed with electrospun nanofibers. Using the PEMF-SPE cartridges with ultra-performance liquid chromatography-fluorescence detector (UPLC-FLD), five fluoroquinolones (FQs) in tap water, egg and milk samples were extracted and quantified successfully. After optimizing the extraction conditions, FQs in water samples were extracted and eluted with high recoveries of 84.8-114.8%. The inter-batch and intra-batch relative standard deviation (RSD) values for the FQs were in the range of 1.9-9.5% (n=3), and the limits of detection were between 0.0024-0.014 μg L-1. The method was linear in the concentration range of 0.005-10 μg L-1. The reliability of the developed method was validated by analyzing tap water, egg and milk samples, and the recovery values were found to be in the range of 74.8-116.6% under the optimized conditions.
Collapse
Affiliation(s)
- Qiankun Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiulong Li
- Ningbo Zhongjin Petrochemical Co., Ltd.(,) Ningbo, 315040, China
| | - Yuanbo Chen
- Mérieux Nutrisciences (China), Ningbo, 315040, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
6
|
Manufacturing and Characterization of Coatings from Polyamide Powders Functionalized with Nanosilica. Polymers (Basel) 2020; 12:polym12102298. [PMID: 33049946 PMCID: PMC7600192 DOI: 10.3390/polym12102298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
Polyamide coatings are thermoplastics with great advantages such as a good corrosion protection of the base metal and wear resistance. Their application as powder coatings is an environmentally friendly option that is currently attracting growing interest. However, during their life service, they can sometimes be exposed to conditions that they are unable to stand. In this work, a polyamide 11 (PA11) powder was reinforced with different percentages of silica nanoparticles (1–3 wt. %). Powder mixtures were prepared through extrusion followed by compression molding processes to manufacture coatings. For the coatings under study, the effect of 500 h xenon exposure was studied in order to know their ultraviolet (UV) resistance. Attenuated total reflection-Fourier transform infrared spectroscopy (FTIR-ATR) and differential scanning calorimetry (DSC) tests were performed to study changes in polymer structure and if they are affected by nanoparticles. The effect of nanoadditions and xenon exposure on hardness and stiffness were also evaluated. Furthermore, reciprocal wear tests were performed before and after irradiation, and the wear tracks were analyzed using optoelectronic microscopy and scanning electron microscopy (SEM). Finally, the aesthetic properties were measured. The results reveal improvements in mechanical and wear properties when 1% nanosilica is added to the PA11, which then become more relevant after xenon radiation exposure.
Collapse
|
7
|
Dowlatshah S, Saraji M. A silica-based three-dimensional molecularly imprinted coating for the selective solid-phase microextraction of difenoconazole from wheat and fruits samples. Anal Chim Acta 2020; 1098:37-46. [DOI: 10.1016/j.aca.2019.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022]
|
8
|
Hussain D, Raza Naqvi ST, Ashiq MN, Najam-ul-Haq M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020; 208:120413. [DOI: 10.1016/j.talanta.2019.120413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
9
|
Rezvani O, Baraazandeh M, Bagheri H. Toward higher extraction and enrichment factors via a double‐reservoirs microfluidic device as a micro‐extractive platform. J Sep Sci 2019; 42:2985-2992. [DOI: 10.1002/jssc.201801320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Omid Rezvani
- Environmental and Bio‐Analytical LaboratoriesDepartment of ChemistrySharif University of Technology Tehran Iran
| | - Maryam Baraazandeh
- Environmental and Bio‐Analytical LaboratoriesDepartment of ChemistrySharif University of Technology Tehran Iran
| | - Habib Bagheri
- Environmental and Bio‐Analytical LaboratoriesDepartment of ChemistrySharif University of Technology Tehran Iran
| |
Collapse
|
10
|
Electrospun nanofiber polymers as extraction phases in analytical chemistry – The advances of the last decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
In-situ decorated silver nanoparticles on electrospun poly (vinyl alcohol)/chitosan nanofibers as a plasmonic sensor for azathioprine determination. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Bagheri H, Golzari Aqda T, Enteshari Najafabadi M. Evaluation of prepared natural polymers in the extraction of chlorobenzenes from environmental samples: Sol–gel–based cellulose acetate-phenyltriethoxysilane fibers. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes. Mikrochim Acta 2018; 185:322. [DOI: 10.1007/s00604-018-2858-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
|
14
|
Facile synthesis of hierarchical porous carbon from crude biomass for high-performance solid-phase microextraction. J Chromatogr A 2018; 1548:1-9. [DOI: 10.1016/j.chroma.2018.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 01/09/2023]
|
15
|
Gu X, Li N, Cao J, Xiong J. Preparation of electrospun polyurethane/hydrophobic silica gel nanofibrous membranes for waterproof and breathable application. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24726] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xianyuan Gu
- College of Materials and Textile; Zhejiang Sci-Tech University; Hangzhou China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Zhejiang Sci-Tech University; Hangzhou China
| | - Ni Li
- College of Materials and Textile; Zhejiang Sci-Tech University; Hangzhou China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Zhejiang Sci-Tech University; Hangzhou China
- Department of Materials Engineering; University of British Columbia; Vancouver Canada
| | - Jin Cao
- College of Materials and Textile; Zhejiang Sci-Tech University; Hangzhou China
| | - Jie Xiong
- College of Materials and Textile; Zhejiang Sci-Tech University; Hangzhou China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Zhejiang Sci-Tech University; Hangzhou China
| |
Collapse
|
16
|
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 2017; 984:42-65. [PMID: 28843569 DOI: 10.1016/j.aca.2017.05.035] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
The development of new support and geometries of solid phase microextraction (SPME), including metal fiber assemblies, coated-tip, and thin film microextraction (TFME) (i.e. self-supported, fabric and blade supported), as well as their effects on diffusion and extraction rate of analytes were discussed in the current review. Application of main techniques widely used for preparation of a variety of coating materials of SPME, including sol-gel technique, electrochemical and electrospinning methods as well as the available commercial coatings, were presented. Advantages and limitations of each technique from several aspects, such as range of application, biocompatibility, availability in different geometrical configurations, method of preparation, incorporation of various materials to tune the coating properties, and thermal and physical stability, were also investigated. Future perspectives of each technique to improve the efficiency and stability of the coatings were also summarized. Some interesting materials including ionic liquids (ILs), metal organic frameworks (MOFs) and particle loaded coatings were briefly presented.
Collapse
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
17
|
Baktash MY, Bagheri H. Silica aerogel coated on metallic wire by phase separation of polystyrene for in–tube solid phase microextraction. J Chromatogr A 2017; 1500:69-75. [DOI: 10.1016/j.chroma.2017.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/03/2023]
|
18
|
Metal-organic aerogel as a coating for solid-phase microextraction. Anal Chim Acta 2017; 973:51-58. [DOI: 10.1016/j.aca.2017.04.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
|
19
|
Bagheri H, Manouchehri M, Allahdadlalouni M. A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Baktash MY, Bagheri H. A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2212-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Reyes-Gallardo EM, Lucena R, Cárdenas S. Silica nanoparticles–nylon 6 composites: synthesis, characterization and potential use as sorbent. RSC Adv 2017. [DOI: 10.1039/c6ra24739c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silica nanoparticle–nylon 6 composites are successfully synthesized following a simple and rapid procedure. After their characterization, the composites were evaluated as sorbents under a dispersive solid phase microextraction format.
Collapse
Affiliation(s)
- E. M. Reyes-Gallardo
- Department of Analytical Chemistry
- Institute of Fine Chemistry and Nanochemistry
- Marie Curie Building
- University of Córdoba
- 14071 Córdoba
| | - R. Lucena
- Department of Analytical Chemistry
- Institute of Fine Chemistry and Nanochemistry
- Marie Curie Building
- University of Córdoba
- 14071 Córdoba
| | - S. Cárdenas
- Department of Analytical Chemistry
- Institute of Fine Chemistry and Nanochemistry
- Marie Curie Building
- University of Córdoba
- 14071 Córdoba
| |
Collapse
|
22
|
Reyes-Gallardo EM, Lucena R, Cárdenas S. Electrospun nanofibers as sorptive phases in microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Liu F, Song D, Huang X, Xu H. Electrospun polystyrene nanofibers as a novel adsorbent to transfer an organic phase from an aqueous phase. J Sep Sci 2016; 39:1326-30. [DOI: 10.1002/jssc.201501182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Feilong Liu
- Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; Wuhan China
| | - Dandan Song
- Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; Wuhan China
| | - Xueying Huang
- Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; Wuhan China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; Wuhan China
| |
Collapse
|
24
|
Bagheri H, Roostaie A. Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating. Anal Chim Acta 2015; 863:20-8. [DOI: 10.1016/j.aca.2015.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/10/2015] [Accepted: 01/16/2015] [Indexed: 11/24/2022]
|
25
|
Nodeh HR, Wan Ibrahim WA, Kamboh MA, Sanagi MM. Dispersive graphene-based silica coated magnetic nanoparticles as a new adsorbent for preconcentration of chlorinated pesticides from environmental water. RSC Adv 2015. [DOI: 10.1039/c5ra13450a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study describes the synthesis, characterization and application of new graphene-based silica coated magnetic nanoparticles (Fe3O4@SiO2–G) for the simultaneous preconcentration of four chlorinated pesticides from contaminated water.
Collapse
Affiliation(s)
- Hamid Rashidi Nodeh
- Separation Science and Technology Group
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor
| | - Wan Aini Wan Ibrahim
- Separation Science and Technology Group
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor
| | - Muhammad Afzal Kamboh
- Separation Science and Technology Group
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor
| | - Mohd Marsin Sanagi
- Ibnu Sina Institute for Scientific and Industrial Research
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| |
Collapse
|
26
|
Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating. J Chromatogr A 2015; 1375:8-16. [DOI: 10.1016/j.chroma.2014.11.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/09/2014] [Accepted: 11/22/2014] [Indexed: 11/20/2022]
|
27
|
Zeng J, Zhao C, Chen J, Subhan F, Luo L, Yu J, Cui B, Xing W, Chen X, Yan Z. Ordered mesoporous carbon/Nafion as a versatile and selective solid-phase microextraction coating. J Chromatogr A 2014; 1365:29-34. [PMID: 25249487 DOI: 10.1016/j.chroma.2014.08.094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022]
Abstract
In this study, ordered mesoporous carbon (OMC) with large surface area (1019m(2)g(-1)), uniform mesoporous structure (pore size distribution centering at 4.2nm) and large pore volume (1.46cm(3)g(-1)) was synthesized using 2D hexagonally mesoporous silica MSU-H as the hard template and sucrose as the carbon precursor. The as-synthesized OMC was immobilized onto a stainless steel wire using Nafion as a binder to prepare an OMC/Nafion solid-phase microextraction (SPME) coating. The extraction characteristics of the OMC/Nafion coating were extensively investigated using a wide range of analytes including non-polar (light petroleum and benzene homologues) and polar compounds (amines and phenols). The OMC/Nafion coating exhibited much better extraction efficiency towards all selected analytes than that of a multi-walled carbon nanotubes/Nafion coating with similar length and thickness, which is ascribed to its high surface area, well-ordered mesoporous structure and large pore volume. When the OMC/Nafion coating was used to extract a mixture containing various kinds of analytes, it possessed excellent extraction selectivity towards aromatic non-polar compounds. In addition, the feasibility of the OMC/Nafion coating for application in electrochemically enhanced SPME was demonstrated using protonated amines as model analytes.
Collapse
Affiliation(s)
- Jingbin Zeng
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China.
| | - Cuiying Zhao
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China
| | - Jingjing Chen
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China
| | - Fazle Subhan
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China; Department of chemistry, Abdul Wali Khan University, Mardan K.P.K, Pakistan
| | - Liwen Luo
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China
| | - Jianfeng Yu
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China
| | - Bingwen Cui
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China
| | - Wei Xing
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China.
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zifeng Yan
- State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China
| |
Collapse
|