1
|
Wang C, Gamage PL, Jiang W, Mudalige T. Excipient-related impurities in liposome drug products. Int J Pharm 2024; 657:124164. [PMID: 38688429 DOI: 10.1016/j.ijpharm.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.
Collapse
Affiliation(s)
- Changguang Wang
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Prabhath L Gamage
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
2
|
Dualde P, Miralles P, Peris-Martínez C, Yusà V, Coscollà C. Untargeted analysis and tentative identification of unknown substances in human tears by ultra-high performance liquid chromatography-high resolution mass spectrometry: Pilot study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123832. [PMID: 37478724 DOI: 10.1016/j.jchromb.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In this work, a new approach for the identification of unknown compounds in human tears has been developed and validated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) linked to an intelligent data acquisition mode (AcquireX DS-dd-MS2) coupled to an automated data processing software (Compound Discoverer™ 3.2). As a pilot research study, four human tear samples from volunteers were analyzed. Data were acquired in both positive and negative ionization modes and exact mass, isotope pattern, and MS2 spectra match were used for the tentative identification. Following this approach, 58 substances were identified, 47 in positive mode and 11 in negative mode, with an estimated concentration ranging from 0.1 to 9000 ng mL-1. Most of them were amino acids, hormones, metabolites, and pharmaceuticals. In order to validate the proposed method, the system suitability was evaluated and 29 commercial analytical standards of the tentatively identified substances were analyzed, of which 28 were confirmed obtaining a high identification accuracy (96.6 %). These results confirm that the screening tool presented in this work can facilitate the discovery of new metabolites, novel potential biomarkers, and substances to which the person is exposed, such as pollutants.
Collapse
Affiliation(s)
- Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain.
| | - Cristina Peris-Martínez
- FISABIO-Medical Ophthalmology (FOM), Valencia, Spain; Department of Surgery (Ophthalmology), University of Valencia, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| |
Collapse
|
3
|
Liu X, Sun J, Ji P, Yang C, Wu F, Cheng N, El-Seedi HR, Zhao H, Cao W. Hydroxy Fatty Acids as Novel Markers for Authenticity Identification of the Honey Entomological Origin Based on the GC-MS Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7163-7173. [PMID: 37096970 DOI: 10.1021/acs.jafc.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The authenticity of honey is generally a worldwide concern, and there is a pressing need to establish a suitable entomological method to identify the authenticity of Apis cerana cerana (A. cerana) and Apis mellifera ligustica (A. mellifera) honey. Hydroxy fatty acids as bee-derived components are known to widely exist in honey and other biosamples. Herein, we present an identification strategy for hydroxy fatty acids based on the relative quantification with reference to royal jelly and targeted quantification combined with multivariate statistical analysis to identify the honey entomological origin. Multivariate statistical analysis was used to further determine differential hydroxy fatty acids between A. cerana honey and A. mellifera honey. Results showed that 8-hydroxyoctanoic acid (96.20-253.34 versus 0-32.46 mg kg-1) and 3,10-dihydroxydecanoic acid (1.96-6.56 versus 0-0.35 mg kg-1) could be used as markers for accurate identification of the honey entomological origin, while the three fraud honey samples were recognized using this method. This study provides the novel marker hydroxy fatty acids to identify A. cerana honey and A. mellifera honey from the perspective of bee-derived component differences.
Collapse
Affiliation(s)
- Xiaotong Liu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Jing Sun
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Peirong Ji
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Chenchen Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
4
|
Kyselová L, Vítová M, Řezanka T. Very long chain fatty acids. Prog Lipid Res 2022; 87:101180. [PMID: 35810824 DOI: 10.1016/j.plipres.2022.101180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Very long chain fatty acids (VLCFAs) are important components of various lipid classes in most organisms, from bacteria to higher plants and mammals, including humans. VLCFAs, or very long chain polyunsaturated fatty acids (VLCPUFAs), can be defined as fatty acids with 23 or more carbon atoms in the molecule. The main emphasis in this review is on the analysis of these acids, including obtaining standards from natural sources or their synthesis. Furthermore, the occurrence and analysis of these compounds in both lower (bacteria, invertebrates) and higher organisms (flowering plants or mammals) are discussed in detail. Attention is paid to their biosynthesis, especially the elongation of very long chain fatty acids protein (ELOVL4). This review deals with papers describing these very interesting compounds, whose chemical, biochemical and biological properties have not been fully explored.
Collapse
Affiliation(s)
- Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic.
| | - Milada Vítová
- Institute of Botany, Czech Academy of Sciences, Centre for Phycology, Dukelská 135, 379 01 Třeboň, Czech Republic.
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
5
|
Wang FH, Guo XF, Fan YC, Tang HB, Liang W, Wang H. Determination of trans-fatty acids in food samples based on the pre-column fluorescence derivatization by high performance liquid chromatography. J Sep Sci 2022; 45:1425-1433. [PMID: 35112469 DOI: 10.1002/jssc.202100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Abstract
Trans-fatty acids are unsaturated fatty acids that are considered to have health risks. 1,3,5,7-Tetramethyl-8-butyrethylenediamine-difluoroboradiaza-s-indacene is a highly-sensitive fluorescent labeling reagent for carboxylic acids developed by our lab. In this study, using this pre-column fluorescent derivatization reagent, a rapid and accurate high-performance liquid chromatography-fluorescence detection method was developed for the determination of two trans-fatty acids in food samples. Under the optimized derivative conditions, two trans-fatty acids were tagged with the fluorescent labeling reagent in the presence of 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide at 25 °C for 30 min. Then, the baseline separation of trans- and cis-fatty acids and their saturated fatty acid with similar structures was achieved with less interference using a reversed-phased C18 column with isocratic elution in 14 min. With fluorescence detection at λex /λem = 490 nm/510 nm, the linear range of the trans-fatty acids was 1.0-200 nM with low detection limits in the range of 0.1-0.2 nM (signal-to-noise ratio = 3). In addition, the proposed approach was successfully applied for the detection of trans-fatty acids in food samples, and the recoveries using this method ranged from 96.02% to 109.22% with low relative standard deviations of 1.2-4.3% (n = 6). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fei-Hua Wang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Xiao-Feng Guo
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yao-Cheng Fan
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China.,State University of Chinese Academy of Sciences, Beijing, 10039, P. R. China
| | - Hai-Bin Tang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China.,State University of Chinese Academy of Sciences, Beijing, 10039, P. R. China
| | - Wei Liang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Hong Wang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Watanabe Y, Kasuga K, Tokutake T, Kitamura K, Ikeuchi T, Nakamura K. Alterations in Glycerolipid and Fatty Acid Metabolic Pathways in Alzheimer's Disease Identified by Urinary Metabolic Profiling: A Pilot Study. Front Neurol 2021; 12:719159. [PMID: 34777195 PMCID: PMC8578168 DOI: 10.3389/fneur.2021.719159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
An easily accessible and non-invasive biomarker for the early detection of Alzheimer's disease (AD) is needed. Evidence suggests that metabolic dysfunction underlies the pathophysiology of AD. While urine is a non-invasively collectable biofluid and a good source for metabolomics analysis, it is not yet widely used for this purpose. This small-scale pilot study aimed to examine whether the metabolic profile of urine from AD patients reflects the metabolic dysfunction reported to underlie AD pathology, and to identify metabolites that could distinguish AD patients from cognitively healthy controls. Spot urine of 18 AD patients (AD group) and 18 age- and sex-matched, cognitively normal controls (control group) were analyzed by mass spectrometry (MS). Capillary electrophoresis time-of-flight MS and liquid chromatography–Fourier transform MS were used to cover a larger range of molecules with ionic as well as lipid characteristics. A total of 304 ionic molecules and 81 lipid compounds of 12 lipid classes were identified. Of these, 26 molecules showed significantly different relative concentrations between the AD and control groups (Wilcoxon's rank-sum test). Moreover, orthogonal partial least-squares discriminant analysis revealed significant discrimination between the two groups. Pathway searches using the KEGG database, and pathway enrichment and topology analysis using Metaboanalyst software, suggested alterations in molecules relevant to pathways of glycerolipid and glycerophospholipid metabolism, thermogenesis, and caffeine metabolism in AD patients. Further studies of urinary metabolites will contribute to the early detection of AD and understanding of its pathogenesis.
Collapse
Affiliation(s)
- Yumi Watanabe
- Division of Preventive Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Khanal S, Bai Y, Ngo W, Nichols KK, Wilson L, Barnes S, Nichols JJ. Human Meibum and Tear Film Derived (O-Acyl)-Omega-Hydroxy Fatty Acids as Biomarkers of Tear Film Dynamics in Meibomian Gland Dysfunction and Dry Eye Disease. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34236383 PMCID: PMC8267210 DOI: 10.1167/iovs.62.9.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the association between precorneal tear film (PCTF)- and meibum-derived (O-Acyl)-omega-hydroxy fatty acids (OAHFAs) and PCTF thinning in meibomian gland health and dysfunction. Methods Of 195 eligible subjects (18-84 years, 62.6% female), 178 and 170 subjects provided both PCTF optical coherence tomography (OCT) imaging and mass spectrometry data for tears (n = 178) and meibum (n = 170). The PCTF thinning rate was measured in the right eye using an ultra-high-resolution, custom-built OCT. Tear and meibum samples from the right eye were infused into the SCIEX 5600 TripleTOF mass spectrometer in the negative ion mode. Intensities (m/z) of preidentified OAHFAs were measured with Analyst 1.7TF and LipidView 1.3 (SCIEX). Principal component (PC) analyses and Spearman's correlations (ρ) were performed to evaluate the association between OAHFAs and PCTF thinning rates. Results In meibum and tear samples, 76 and 78 unique OAHFAs were detected, respectively. The first PC scores of the meibum-derived OAHFAs had statistically significant correlations with PCTF thinning rates (ρ = 0.18, P = 0.016). Among 10 OAHFAs with the highest first PC loadings, six OAHFAs had negative correlations with PCTF thinning rate (18:2/16:2, ρ = -0.19, P = 0.01; 18:2/30:1, ρ = -0.21, P = 0.008; 18:1/28:1, ρ = -0.22, P = 0.004; 18:1/30:1, ρ = -0.22, P = 0.005; 18:1/25:0, ρ = 0.22, P = 0 .006; and 18:1/26:1, ρ = -0.22, P = 0.006), while one OAHFA had a positive correlation with PCTF thinning rate (18:2/18:1, ρ = 0.48, P = 0.006). Tear film-derived OAHFAs had no association with the PCTF thinning rate. Conclusions Several human meibum-derived OAHFAs showed significant associations with PCTF thinning, suggesting that these OAHFAs could be implicated in the mechanism underlying the stabilization and thinning of the PCTF. The tear-film derived OAHFAs were, however, independent of the rate of PCTF thinning.
Collapse
Affiliation(s)
- Safal Khanal
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yuqiang Bai
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - William Ngo
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong
| | - Kelly K Nichols
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Landon Wilson
- Department of Pharmacology and Toxicology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jason J Nichols
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
8
|
Khanal S, Ngo W, Nichols KK, Wilson L, Barnes S, Nichols JJ. Human meibum and tear film derived (O-acyl)-omega-hydroxy fatty acids in meibomian gland dysfunction. Ocul Surf 2021; 21:118-128. [PMID: 34052415 DOI: 10.1016/j.jtos.2021.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/22/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The molecular basis of the tear film and lipid layer alterations in meibomian gland dysfunction (MGD) is unknown. This study aimed to identify and compare (O-acyl)-omega-hydroxy fatty acids (OAHFAs) derived from human meibum and tears in MGD. METHODS Of 195 eligible subjects (18-84 years, 62.6% female), 183 and 174 provided samples for tears and meibum, respectively. Subjects were classified into four groups: Normal, Asymptomatic MGD, MGD, and Mixed. Samples from the right eye of each subject were infused into the SCIEX 5600 TripleTOF mass spectrometer in negative ion mode. Lipid intensities identified with Analyst1.7 TF and SCIEX LipidView1.3 were normalized by an internal standard and total ion current, then statistically compared in MetaboAnalyst 4.0. RESULTS In meibum and tears, 76 and 78 unique OAHFAs were identified, respectively. The five most frequent and abundant OAHFAs were 18:2/16:2, 18:1/32:1, 18:1/30:1, 18:2/32:1, and 18:1/34:1. Two OAHFAs, 18:2/20:2 and 18:2/20:1, were identified only in tears. Initial univariate analysis revealed three differently regulated OAHFAs in meibum and eight in tears. Partial Least Square Discriminant Analysis showed 18:1/32:1, 18:2/16:2, 18:1/34:1 and 18:0/32:1 in tears, and 18:2/16:2, 18:1/32:1 and 18:2/32:2 in meibum, had variable importance in projection scores >1.5 and contributed the most to the separation of groups. In both meibum and tears, all OAHFAS except 18:2/16:2 were reduced in MGD compared to the normal group. CONCLUSION MGD is accompanied by differential expression of specific OAHFAs in meibum and tears. These results suggest OAHFAs play a role in the altered biochemical profile of the tear film lipid layer in humans with MGD.
Collapse
Affiliation(s)
- Safal Khanal
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Ngo
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Kelly K Nichols
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon Wilson
- Department of Pharmacology and Toxicology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Nichols
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Fatty Acyl Esters of Hydroxy Fatty Acid (FAHFA) Lipid Families. Metabolites 2020; 10:metabo10120512. [PMID: 33348554 PMCID: PMC7766670 DOI: 10.3390/metabo10120512] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
Fatty Acyl esters of Hydroxy Fatty Acids (FAHFA) encompass three different lipid families which have incorrectly been classified as wax esters. These families include (i) Branched-chain FAHFAs, involved in the regulation of glucose metabolism and inflammation, with acylation of an internal branched-chain hydroxy-palmitic or -stearic acid; (ii) ω-FAHFAs, which function as biosurfactants in a number of biofluids, are formed via acylation of the ω-hydroxyl group of very-long-chain fatty acids (these lipids have also been designated as o-acyl hydroxy fatty acids; OAHFA); and (iii) Ornithine-FAHFAs are bacterial lipids formed by the acylation of short-chain 3-hydroxy fatty acids and the addition of ornithine to the free carboxy group of the hydroxy fatty acid. The differences in biosynthetic pathways and cellular functions of these lipid families will be reviewed and compared to wax esters, which are formed by the acylation of a fatty alcohol, not a hydroxy fatty acid. In summary, FAHFA lipid families are both unique and complex in their biosynthesis and their biological actions. We have only evaluated the tip of the iceberg and much more exciting research is required to understand these lipids in health and disease.
Collapse
|
10
|
Analysis of (O-acyl) alpha- and omega-hydroxy fatty acids in vernix caseosa by high-performance liquid chromatography-Orbitrap mass spectrometry. Anal Bioanal Chem 2020; 412:2291-2302. [PMID: 31907593 DOI: 10.1007/s00216-019-02348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Fatty acid esters of long-chain hydroxy fatty acids or (O-acyl)-hydroxy fatty acids (OAHFAs) were identified for the first time in vernix caseosa and characterized using chromatography and mass spectrometry. OAHFAs were isolated from the total lipid extract by a two-step semipreparative TLC. The general structure of OAHFAs was established using high-resolution and tandem mass spectrometry of intact lipids and their transesterification and derivatization products. Two isomeric lipid classes were identified: O-acyl esters of ω-hydroxy fatty acids (ωOAHFA) and O-acyl esters of α-hydroxy fatty acids (αOAHFAs). To the best of our knowledge, αOAHFAs have never been detected in any biological sample before. Chromatographic separation and identification of OAHFAs species were achieved using non-aqueous reversed-phase HPLC coupled to electrospray ionization hybrid linear ion trap-Orbitrap mass spectrometry. The lipid species were detected as deprotonated molecules, and their structures were elucidated using data-dependent fragmentation in the negative ion mode. More than 400 OAHFAs were identified in this way. The most abundant ωOAHFAs species were 28:0/ω-18:2, 29:0/ω-18:2, 30:0/ω-18:2, 32:0/ω-18:2, and 30:0/ω-18:3, while αOAHFAs comprised saturated species 21:0/α-24:0, 22:0/α-24:0, 23:0/α-24:0, 24:0/α-24:0, and 26:0/α-24:0. OAHFAs were estimated to account for approximately 0.04% of vernix caseosa lipids. Graphical Abstract.
Collapse
|
11
|
Rapid screening of very long-chain fatty acids from microorganisms. J Chromatogr A 2019; 1605:460365. [DOI: 10.1016/j.chroma.2019.460365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
|
12
|
Chen J, Panthi S. Lipidomic analysis of meibomian gland secretions from the tree shrew: Identification of candidate tear lipids critical for reducing evaporation. Chem Phys Lipids 2019; 220:36-48. [PMID: 30660743 DOI: 10.1016/j.chemphyslip.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Lipids secreted from the meibomian glands form the outermost layer of the tear film and reduce its evaporation. Abnormal changes in the quantities or compositions of lipids present in meibomian gland secretions (meibum) are known to lead to dry eye disease, although the underlying mechanism is not yet well understood. The tree shrew is the non-primate mammal most closely related to humans. To assess the utility of the tree shrew as a model for the study of dry eye disease, we analyzed the lipid profile of tree shrew meibum using an untargeted ESI-MS and MS/MSall shotgun approach. The resulting lipidome shared many similarities with human meibum, while displaying some interesting differences. For example, several classes of lipids, including wax esters, cholesteryl esters, diesters, and (O-acyl)-ω-hydroxy fatty acids, had relatively longer chain lengths in tree shrew meibum. These increases in length may promote more effective reduction of tear evaporation in the tree shrew, which likely underlies the much longer blinking interval of this mammal. Our results suggest that the tree shrew could be an effective model for the study of dry eye.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Shyam Panthi
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
13
|
Basic eluent for rapid and comprehensive analysis of fatty acid isomers using reversed-phase high performance liquid chromatography/Fourier transform mass spectrometry. J Chromatogr A 2019; 1585:113-120. [DOI: 10.1016/j.chroma.2018.11.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/27/2018] [Accepted: 11/07/2018] [Indexed: 11/20/2022]
|
14
|
Wood PL, Donohue MN, Cebak JE, Beckmann TG, Treece M, Johnson JW, Miller LMJ. Tear Film Amphiphilic and Anti-Inflammatory Lipids in Bovine Pink Eye. Metabolites 2018; 8:metabo8040081. [PMID: 30469369 PMCID: PMC6316582 DOI: 10.3390/metabo8040081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Tear film fluid serves as a dynamic barrier that both lubricates the eye and protects against allergens and infectious agents. However, a detailed analysis of a bacteria-induced immune response on the tear film lipidome has not been undertaken. Methods: We undertook a high-resolution mass spectrometry lipidomics analysis of endogenous anti-inflammatory and structural tear film lipids in bovine pink eye. Results: Bovine pink eye resulted in dramatic elevations in tear fluid levels of the anti-inflammatory lipids resolvin E2, cyclic phosphatidic acid 16:0, and cyclic phosphatidic acid 18:0. In addition, there were elevated levels of the structural lipids (O-acyl)-ω-hydroxy-fatty acids, cholesterol sulfate, ethanolamine plasmalogens, and sphingomyelins. Lipid peroxidation also was augmented in pink eye as evidenced by the hydroperoxy derivatives of ethanolamine plasmalogens. Conclusions: Ocular infections with Moraxella bovis result in the induction of a number of endogenous anti-inflammatory lipids and augmentation of the levels of structural glycerophospholipids and sphingolipids. Increased levels of hydroperoxy glycerophospholipids also indicate that this bacterial infection results in lipid peroxidation.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| | - Michelle N Donohue
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| | - John E Cebak
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
- Department of Medicine, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| | - Taylor G Beckmann
- Department of Medicine, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| | - MacKenzie Treece
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| | - Jason W Johnson
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| | - Lynda M J Miller
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate TN 37752, UK.
| |
Collapse
|
15
|
Chen J, Nichols KK. Comprehensive shotgun lipidomics of human meibomian gland secretions using MS/MS all with successive switching between acquisition polarity modes. J Lipid Res 2018; 59:2223-2236. [PMID: 30279222 PMCID: PMC6210907 DOI: 10.1194/jlr.d088138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
The lipid composition of human meibomian gland secretions (meibum) has been analyzed using both targeted and untargeted mass spectrometric approaches, each of which has its advantages and disadvantages. Herein we report the results of shotgun lipidomic profiling of human meibum using a new approach that combines the advantages of targeted and untargeted analyses to yield highly sensitive and comprehensive profiles. Samples containing an estimated 7-13 µg (8-16 nL) of human meibum lipids were analyzed using MS/MSall, an untargeted approach for MS/MS. Using MS/MSall with ESI and successive polarity switching, we obtained tandem mass spectra in both modes at every 1 Da step for all ions in the m/z 200-1,200 range. In approximately 12 min, a total of 2 MS spectra and 2,000 MS/MS spectra were acquired for each sample, from which targeted analysis information was extracted. This approach allowed for the comprehensive and highly sensitive detection of meibum lipids, including species low in abundance. Altogether, more than 600 unique lipid molecular species were identified in meibum, 3 times more than previously reported in untargeted analyses of meibum samples. This untargeted MS and MS/MSall approach may be extended to other biological systems for the detection of lipids with sensitivity comparable to targeted analysis.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kelly K Nichols
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
16
|
Wood PL, Ball BA, Scoggin K, Troedsson MH, Squires EL. Lipidomics of equine amniotic fluid: Identification of amphiphilic (O-acyl)-ω-hydroxy-fatty acids. Theriogenology 2018; 105:120-125. [DOI: 10.1016/j.theriogenology.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/26/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
|
17
|
Georgiev GA, Eftimov P, Yokoi N. Structure-function relationship of tear film lipid layer: A contemporary perspective. Exp Eye Res 2017; 163:17-28. [PMID: 28950936 DOI: 10.1016/j.exer.2017.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/29/2023]
Abstract
Tear film lipid layer (TFLL) stabilizes the air/tear surface of the human eye. Meibomian gland dysfunction (MGD) resulting in quantitative and qualitative modifications of TFLL major (>93%) component, the oily secretion of meibomian lipids (MGS), is the world leading cause of dry eye syndrome (DES) with up to 86% of all DES patients showing signs of MGD. Caused by intrinsic factors (aging, ocular and general diseases) and by extrinsic everyday influences like contact lens wear and extended periods in front of a computer screen, DES (resulting in TF instability, visual disturbances and chronic ocular discomfort) is the major ophthalmic public health disease of the present time affecting the quality of life of 10-30% of the human population worldwide. Therefore there is a pressing need to summarize the present knowledge, contradictions and open questions to be resolved in the field of TFLL composition/structure/functions relationship. The following major aspects are covered by the review: (i) Do we have a reliable mimic for TFLL: MGS vs contact lens lipid extracts (CLLE) vs lipid extracts from whole tears. Does TFLL truly consist of lipids only or it is important to keep in mind the TF proteins as well?; (ii) Structural properties of TFLL and of its mimics in health and disease in vitro and in vivo. How the TFLL uniformity and thickness ensures the functionality of the lipid layer (barrier to evaporation, surface properties, TF stability etc.); (iii) What are the main functions of the TFLL? In this aspect an effort is done to emphasize that there is no single main function of TFLL but instead it simultaneously fulfills plethora of functions: suppresses the evaporation (alone or probably in cooperation with other TF constituents) of the aqueous tears; stabilizes (due to its surface properties) the air/tear surface at eye opening and during the interblink interval; and even acts as a first line of defense against bacterial invasion due to its detergency action on the bacterial membranes. An effort is done to highlight how the concept on the importance of TFLL and TF viscoelasticity transpires from old and new studies and what are its clinical implications. An attempt is made to outline the future hot directions of research into the field ranging from quest for molecules that can significantly alter TFLL properties to addressing open questions on the contribution of TFLL to the overall performance of the TF.
Collapse
Affiliation(s)
- Georgi As Georgiev
- St. Kliment Ohridski University of Sofia, Department of Optics and Spectroscopy, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria.
| | - Petar Eftimov
- Department of Cytology, Histology and Embryology, Faculty of Biology, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Yassine MM, Dabek-Zlotorzynska E. Application of ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry for the characterization of organic aerosol: Searching for naphthenic acids. J Chromatogr A 2017; 1512:22-33. [DOI: 10.1016/j.chroma.2017.06.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
|
19
|
Meibomian glands, meibum, and meibogenesis. Exp Eye Res 2017; 163:2-16. [PMID: 28669846 DOI: 10.1016/j.exer.2017.06.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
Meibum is a lipid-rich secretion that is produced by fully differentiated meibocytes in the holocrine Meibomian glands (MG) of humans and most mammals. The secretion is a part of a defense mechanism that protects the ocular surface from hazardous environmental factors, and from desiccation. Meibomian lipids that have been identified in meibum are very diverse and unique in nature. The lipid composition of meibum is different from virtually any other lipid pool found in the human body. In fact, meibum is quite different from sebum, which is the closest secretion that is produced by anatomically, physiologically, and biochemically related sebaceous glands. However, meibum of mice have been shown to closely resemble that of humans, implying similar biosynthetic mechanisms in MG of both species. By analyzing available genomic, immunohistochemical, and lipidomic data, we have envisioned a unifying network of enzymatic reactions that are responsible for biosynthesis of meibum, which we call meibogenesis. Our current theory is based on an assumption that most of the biosynthetic reactions of meibogenesis are catalyzed by known enzymes. However, the main features that make meibum unique - the ratio of identified classes of lipids, the extreme length of its components, extensive ω-hydroxylation of fatty acids and alcohols, iso- and anteiso-branching of meibomian lipids (e.g. waxes), and the presence of rather unique complex lipids with several ester bonds - make it possible that either the activity of known enzymes is altered in MG, or some unknown enzymes contribute to the processes of meibogenesis, or both. Studies are in progress to elucidate meibogenesis on molecular level.
Collapse
|
20
|
Kalužíková A, Vrkoslav V, Harazim E, Hoskovec M, Plavka R, Buděšínský M, Bosáková Z, Cvačka J. Cholesteryl esters of ω-( O-acyl)-hydroxy fatty acids in vernix caseosa. J Lipid Res 2017; 58:1579-1590. [PMID: 28576934 DOI: 10.1194/jlr.m075333] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/22/2017] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl esters of ω-(O-acyl)-hydroxy FAs (Chl-ωOAHFAs) were identified for the first time in vernix caseosa and characterized using chromatography and MS. Chl-ωOAHFAs were isolated using adsorption chromatography on silica gel and magnesium hydroxide. Their general structure was established using high-resolution and tandem MS of intact lipids, and products of their transesterification and derivatizations. Individual molecular species were characterized using nonaqueous reversed-phase HPLC coupled to atmospheric pressure chemical ionization. The analytes were detected as protonated molecules, and their structures were elucidated in the negative ion mode using controlled thermal decomposition and data-dependent fragmentation. About three hundred molecular species of Chl-ωOAHFAs were identified in this way. The most abundant Chl-ωOAHFAs contained 32:1 ω-hydroxy FA (ω-HFA) and 14:0, 15:0, 16:0, 16:1, and 18:1 FAs. The double bond in the 32:1 ω-HFA was in the n-7 and n-9 positions. Chl-ωOAHFAs are estimated to account for approximately 1-2% of vernix caseosa lipids.
Collapse
Affiliation(s)
- Aneta Kalužíková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, CZ-128 43 Prague 2, Czech Republic; The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Vladimír Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Eva Harazim
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, CZ-128 43 Prague 2, Czech Republic; The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Michal Hoskovec
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Richard Plavka
- Department of Obstetrics and Gynecology, General Faculty Hospital and First Faculty of Medicine, Charles University in Prague, CZ-128 00 Prague 2, Czech Republic
| | - Miloš Buděšínský
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, CZ-128 43 Prague 2, Czech Republic
| | - Josef Cvačka
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, CZ-128 43 Prague 2, Czech Republic; The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Abstract
PURPOSE To study the epidemiology of meibomian gland (MG) dysfunction in an elderly, predominantly male population. METHODS Prospective study of 233 subjects seen in the Miami Veterans Affairs eye clinic. Patients underwent a complete ocular surface examination, including dry eye questionnaires and tear assessments (osmolarity, tear breakup time, corneal staining, Schirmer test). The main outcome measures were correlations between MG parameters and demographics, dry eye symptoms, and tear parameters. The studied MG parameters were eyelid vascularity and meibum quality; a score ≥2 for either parameter was considered abnormal. RESULTS Mean age of the 233 subjects was 63 years (SD = 11); 91% were male and 59% had at least 1 abnormal MG parameter (abnormal quality 55%; vascularity 17%). Demographically, patients with abnormal MG parameters were significantly older than their counterparts without these findings. Whites were more likely to have abnormal eyelid vascularity compared with blacks [n = 36 (31%) vs. n = 1 (1%), P < 0.0005] but no differences were noted between races with respect to meibum quality. Abnormal meibum quality, but not abnormal vascularity, was significantly associated with more severe dry eye symptoms. Similarly, abnormal meibum quality, but not eyelid vascularity, was significantly associated with worse dry eye signs, including decreased tear breakup time and increased corneal staining (P < 0.05 for all). CONCLUSIONS MG dysfunction is a frequent finding in an elderly, predominantly male population with racial differences noted in the frequency of abnormal eyelid vascularity but not in MG quality. Abnormal meibum quality was significantly associated with more severe dry eye symptoms and signs.
Collapse
|
22
|
Chang WQ, Zhou JL, Li Y, Shi ZQ, Wang L, Yang J, Li P, Liu LF, Xin GZ. An in vitro approach for lipolysis measurement using high-resolution mass spectrometry and partial least squares based analysis. Anal Chim Acta 2017; 950:138-146. [DOI: 10.1016/j.aca.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
23
|
Marshall DL, Saville JT, Maccarone AT, Ailuri R, Kelso MJ, Mitchell TW, Blanksby SJ. Determination of ester position in isomeric (O-acyl)-hydroxy fatty acids by ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2351-2359. [PMID: 27520617 DOI: 10.1002/rcm.7715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE (O-acyl)-hydroxy fatty acids (OAHFAs) are a recently discovered class of endogenous lipids, generating significant interest for their correlation with enhanced glucose tolerance. Structural variants that differ in the position of the ester linkage have been described, including the ω-OAHFA sub-class, that plays a key role in stabilizing the human tear film. Developing analytical tools for rapid and unambiguous structural elucidation of OAHFAs is essential to understanding their diverse physiological functions. METHODS Commercially available and synthesized OAHFA standards were dissolved in chloroform and subsequently diluted into methanol with 1.5 mM ammonium acetate. Negative ion collision-induced dissociation (CID) MSn spectra were acquired using chip-based nano-electrospray ionization (Advion TriVersa NanoMate) coupled to an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). RESULTS Major product ions observed during CID of [OAHFA - H]- ions readily identify the constituent fatty acid and hydroxy fatty acid; however, isomers are not easily distinguished. Interrogation of the hydroxy fatty acid and dehydrated hydroxy fatty acid product ions by MSn and ion-molecule reactions yielded diagnostic ions that readily pinpoint hydroxylation position and, thus, the OAHFA ester location. Conversely, these ions are characteristically absent in the MS3 spectra of ω-OAHFAs. Unimolecular dissociation mechanisms are proposed, which are shown to be consistent with prior isotopic labelling experiments. CONCLUSIONS A mechanistic rationale is provided to explain the unimolecular dissociation of [OAHFA - H]- ions in an ion trap mass spectrometer, thus enabling near-complete de novo structural elucidation of OAHFAs in shotgun lipidomics workflows, even if synthetic standards are unavailable for comparison. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Jennifer T Saville
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Alan T Maccarone
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ramesh Ailuri
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Michael J Kelso
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
24
|
Wood PL, Scoggin K, Ball BA, Troedsson MH, Squires EL. Lipidomics of equine sperm and seminal plasma: Identification of amphiphilic (O-acyl)-ω-hydroxy-fatty acids. Theriogenology 2016; 86:1212-21. [DOI: 10.1016/j.theriogenology.2016.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/23/2022]
|
25
|
Arita R, Mori N, Shirakawa R, Asai K, Imanaka T, Fukano Y, Nakamura M. Linoleic acid content of human meibum is associated with telangiectasia and plugging of gland orifices in meibomian gland dysfunction. Exp Eye Res 2016; 145:359-362. [DOI: 10.1016/j.exer.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/07/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
26
|
Sanaki T, Inaba Y, Fujiwara T, Yoshioka T, Matsushima K, Minagawa K, Higashino K, Nakano T, Numata Y. A hybrid strategy using global analysis of oxidized fatty acids and bioconversion by Bacillus circulans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:751-762. [PMID: 26864527 DOI: 10.1002/rcm.7504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Targeted oxidized fatty acid analysis has been widely used to understand the roles of fatty acids in the development of diseases. However, because of the extensive structural diversity of fatty acids, it is considered that unknown lipid metabolites will remain undetected. Here, to discover and identify unknown lipid metabolites in biological samples, a global analytical system and a method of synthesizing lipid standards were investigated. METHODS Oxidized fatty acids in mouse lung tissues were extracted using mixed-mode spin columns. Separation was achieved via ultra-high-performance liquid chromatography, mass spectrometric (MS) analysis was conducted in full scan mode using a Q Exactive Plus instrument equipped with an electrospray ionization probe, and structure analysis was carried out by high-resolution data-dependent tandem mass spectrometry (dd-MS(2)). In addition, lipid standards, which are not commercially available, were synthesized by bioconversion using Bacillus circulans. RESULTS Oxidized fatty acids in mouse lung tissues were analyzed by high-resolution accurate-mass analysis, and multiple unknown molecules were discovered and tentatively identified using high-resolution dd-MS(2). Among these molecules, 21-hydroxydocosahexaenoic acid (21-HDoHE) and 22-HDoHE, which are not commercially available, were synthesized by bioconversion. By comparing the exact masses, retention times, and characteristic fragment ions of the synthesized standards, 21-HDoHE and 22-HDoHE were definitively identified in the mouse lung tissue. CONCLUSIONS Our strategy of global analysis and bioconversion can be used for the discovery and identification of unknown lipid molecules.
Collapse
Affiliation(s)
- Takao Sanaki
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoko Inaba
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Takuji Fujiwara
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Keisuke Matsushima
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Kazuyuki Minagawa
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Toru Nakano
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| |
Collapse
|
27
|
Butovich IA, McMahon A, Wojtowicz JC, Lin F, Mancini R, Itani K. Dissecting lipid metabolism in meibomian glands of humans and mice: An integrative study reveals a network of metabolic reactions not duplicated in other tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:538-53. [PMID: 27032494 DOI: 10.1016/j.bbalip.2016.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Lipids comprise the bulk of the meibomian gland secretion (meibum) which is produced by meibocytes. Complex arrays of lipogenic reactions in meibomian glands, which we collectively call meibogenesis, have not been explored on a molecular level yet. Our goals were to elucidate the possible biosynthetic pathways that underlie the generation of meibum, reveal similarities in, and differences between, lipid metabolism in meibomian glands and other organs and tissues, and integrate meibomian gland studies into the field of general metabolomics. Specifically, we have conducted detailed analyses of human and mouse specimens using genomic, immunohistochemical, and lipidomic approaches. Among equally highly expressed genes found in meibomian glands of both species were those related to fatty acid elongation, branching, desaturation, esterification, reduction of fatty acids to alcohols, and cholesterol biosynthesis. Importantly, corresponding lipid products were detected in meibum of both species using lipidomic approaches. For the first time, a cohesive, unifying biosynthetic scheme that connects genomic, lipidomic, and immunohistochemical observations is outlined and discussed.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Anne McMahon
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jadwiga C Wojtowicz
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Lin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ronald Mancini
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kamel Itani
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|