1
|
Tsui HW, Wang YJ, Wu PJ. Conformational changes in polysaccharide-based chiral selectors induced by mobile phase composition: Effects on enantioselective retention and enantiomer elution order reversal. J Chromatogr A 2025; 1742:465660. [PMID: 39799868 DOI: 10.1016/j.chroma.2025.465660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG. The effect of mobile phase composition on enantioselective retention was examined using four acyloin-type chiral solutes in normal-phase mode. For pantolactone (PL) and methyl mandelate (MM), reversals in enantiomer elution order were observed with ID and IG sorbents, respectively, at 2 vol.% isopropanol (iPrOH). As the iPrOH concentration increased, the adsorption of MM enantiomers reached an energetic barrier at this concentration, causing discontinuities in the enthalpy-entropy compensation. Conversely, while the reversal behavior of PL was also attributed to conformational changes in the ID polymer, it did not encounter an energetic barrier and thus remained in line with the enthalpy-entropy compensation. For the IF sorbent, no significant changes in enantioselective retention or enthalpic curves were noted. Nevertheless, a reversal was observed for benzoin (B) enantiomers on the IF sorbent at 10 vol.% iPrOH. It was postulated that the IF sorbent contains two chiral sites with opposing recognition abilities, and their relative contributions to the apparent enantioselectivity of B are influenced by the iPrOH concentration. These findings highlight the importance of conformational changes in chiral selectors, driven by mobile phase composition, in chiral recognition mechanisms. Understanding these effects is crucial for developing predictive models of chiral retention and enhancing optimization of chiral separation processes.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Jiun Wang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan
| | - Pei-Jia Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan
| |
Collapse
|
2
|
Wang F, Wang W, Wang Y, Zhang L, Okamoto Y, Shen J. Cellulose/amylose derivatives bearing bulky substituents as reversible fluorescent sensors for detection of Fe 3. Carbohydr Polym 2023; 320:121249. [PMID: 37659827 DOI: 10.1016/j.carbpol.2023.121249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
Two novel cellulose and amylose derivatives bearing bulky tris(2-benzothienylformate) pendants (Cel-3 and Amy-3) were expeditiously prepared by one-step esterification. The fluorescent sensing performance of six polysaccharide derivatives, including Cel-3/Amy-3, and other four previously prepared benzothienyl- or benzofuranyl-phenylcarbamates of cellulose and amylose (Cel-1/Amy-1, Cel-2/Amy-2), were carefully evaluated using eight metal ions, including Co2+, K+, Na+, Li+, Hg2+, Ni2+, Ca2+ and Fe3+. All six derivatives exhibited excellent fluorescence quenching property to Fe3+ ions with high sensitivity and selectivity. Especially, the limit of detection of Amy-2 with benzofuranylphenylcarbamates for Fe3+ was 3.0 μM, much lower than the maximum contaminant level for Fe3+ in the drinking water. Additionally, the six bulky derivatives displayed the interesting fluorescence "turn-off" and "turn-on" observation, indicating a desirable reversibility for Fe3+ detection. The high anti-interference ability was also observed for detection of Fe3+ on the benzothienyl/benzofuranyl derivatives of cellulose and amylose in the combined system containing Co2+, K+, Na+, Li+, Hg2+, Ni2+ and Ca2+. It suggested that the obtained polysaccharide derivatives with bulky chromophores possessed good potentials for detection of Fe3+ as high-efficient fluorescent sensors in diverse applications. The sensing mechanism for detection of Fe3+ was further proposed based on the Stern-Volmer plots and fluorescence titration analysis.
Collapse
Affiliation(s)
- Fan Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Weiqi Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuqing Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lili Zhang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Yoshio Okamoto
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jun Shen
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
3
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
5
|
Horváth S, Nguyen Thuy HH, Eke Z, Németh G. Exploitation of the enantioselectivity space of coated amylose tris(3,5-dimethylphenylcarbamate) in mixtures of 2-propanol and acetonitrile. J Chromatogr A 2023; 1705:464161. [PMID: 37352691 DOI: 10.1016/j.chroma.2023.464161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Chiral stationary phases (CSPs) with coated amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) selector have long been recognized for their excellent chiral recognition ability in liquid chromatography. The conformational versatility behind this feature is the source of their known hysteretic behavior, which has been previously observed in polar organic (PO) mode eluents containing 2-propanol (IPA). Mixtures of IPA and acetonitrile (MeCN), a typical PO mode eluent system, have not been examined in this aspect yet, even though hysteresis is promising for finding unique unexplored enantioselectivities. Not only was the hysteresis detectable on ADMPC using mixtures of IPA and MeCN, but it was the typical behavior in a diverse set of test compounds. The difference in the retention time of the same analyte under conditions which only differed in the eluent history on the column can go up to 20-fold. The assumed hindered conformational changes of the selector were reflected in retention drift at certain eluent compositions. On the two sides of the transitions, distinct, useful states of the selector were detected. A series of IPA - MeCN compositions with defined pretreatment was selected and recommended as an extension of the preliminary, first choice method screening set that used only alcohols. The incorporation of a solvent possessing substantially different characteristics enhances the potential in practical applications, while keeping the technical simplicity. Stability and robustness of the additional states of the CSP were characterized. The examined columns of different brands shared the observed behavior. Kinetic stability of a column state is adequate for successful application. The evaluated states of ADMPC provide multiple enantiorecognition potential by using mixtures of IPA and MeCN also considering the pretreatment of the column. Unprecedented double and triple elution order reversals along the composition range supported the versatility of the available states. Our findings further enhance the usefulness of ADMPC-containing CSPs. We provide instructions for the application of the widespread chiral selector in common eluent mixtures to avoid pitfalls regarding reproducibility and robustness.
Collapse
Affiliation(s)
- Simon Horváth
- Drug Substance Development Division, Egis Pharmaceuticals PLC, P.O. Box 100, Budapest H-1475, Hungary.
| | - Hong Ha Nguyen Thuy
- Drug Substance Development Division, Egis Pharmaceuticals PLC, P.O. Box 100, Budapest H-1475, Hungary
| | - Zsuzsanna Eke
- Joint Research and Training Laboratory on Separation Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, Budapest H-1117, Hungary
| | - Gábor Németh
- Drug Substance Development Division, Egis Pharmaceuticals PLC, P.O. Box 100, Budapest H-1475, Hungary.
| |
Collapse
|
6
|
Tsui HW, Huang SX, Tseng TH. Heterogenous adsorption mechanisms for describing enantioselective retention in normal-phase liquid chromatography. J Chromatogr A 2023; 1704:464140. [PMID: 37315447 DOI: 10.1016/j.chroma.2023.464140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
In this study, the enantioselective retention behaviors of methyl mandelate (MM) and benzoin (B) were investigated using Chiralpak IB as a sorbent and ethanol, 1-propanol, and 1-butanol as solvent modifiers in the normal-phase mode. For both MM and B, similar chiral recognition mechanisms were observed, potentially involving at least two types of chiral adsorption sites. With a retention model describing local retention behaviors, an enantioselectivity model based on a three-site model was proposed to describe the data. Fitted parameters were also used to analyze the contributions of each type of adsorption site to the apparent retention behavior. Combining the local retention model with the three-site model provided a qualitative and quantitative explanation for the correlation between modifier concentration and enantioselectivity. Overall, our results indicated that heterogeneous adsorption mechanisms are a key aspect in understanding enantioselective retention behaviors. Distinct local adsorption sites contribute differently to apparent retention behaviors, with these contributions being influenced by the mobile phase composition to varying degrees. Hence, enantioselectivity changes with variations in modifier concentration.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan.
| | - Si-Xian Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| | - Ting-Hsien Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| |
Collapse
|
7
|
Wang F, Wang W, Wang Y, Zheng W, Zheng T, Zhang L, Okamoto Y, Shen J. Synthesis of amylose and cellulose derivatives bearing bulky pendants for high-efficient chiral fluorescent sensing. Carbohydr Polym 2023; 311:120769. [PMID: 37028880 DOI: 10.1016/j.carbpol.2023.120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Three novel amylose and cellulose phenylcarbamate derivatives bearing bulky para-substituted benzothienyl or benzofuranyl pendants were successfully synthesized as chiral fluorescent sensors through carbamoylation followed by Suzuki-Miyaura coupling reactions. The bulky derivatives showed good enantioselective fluorescent sensing properties toward a total of eight chiral quenchers in this study. Especially, a high enantiomeric fluorescence difference ratio (ef = 164.35) was achieved on amylose benzofuranylphenylcarbamates (Amy-2) to the 3-amino-3-phenylpropan-1-ol (Q5), an important chiral drug intermediate. It indicated that a favorable chiral environment was effectively constructed by arrangement of bulky π-conjugated benzothienyl or benzofuranyl pendants on the phenylcarbamate moieties surrounding the helical backbone, which is crucial for high-efficient chiral fluorescent sensing. As chiral stationary phases for high-performance liquid chromatography, the bulky benzothienylphenylcarbamates of amylose and cellulose also showed good resolution powers to thirteen racemates, including metal tris(acetylacetonate) complexes, chiral drugs, analytes with axial chirality and chiral aromatic amines, which were difficult to be efficiently separated even on the popular Chiralpak AD and Chiralcel OD. The excitation-dependent chiral fluorescent sensing probably followed different mechanisms from that for chromatographic enantioseparation relying on the dynamic collision of molecules in the ground state. The structure of the bulky derivatives was also investigated by CD spectra and POM microscopy.
Collapse
Affiliation(s)
- Fan Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Weiqi Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuqing Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wei Zheng
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ting Zheng
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Lili Zhang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Yoshio Okamoto
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jun Shen
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
8
|
Guo M, Li Q, Xiao R, Liu D, Cai Y, Peng J, Xue Y, Song T. Macroscopic Spiral Patterns of Cholesteric Cellulose Nanocrystals Induced by Chiral Doping and Vortex Flowing. Biomacromolecules 2023; 24:640-651. [PMID: 36689602 DOI: 10.1021/acs.biomac.2c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Negatively surface-charged sulfate cellulose nanocrystals (CNCs) are always slowly self-assembled into left-handed cholesteric mesophases. In this work, macroscopic spiral patterns induced by counterclockwise vortex flowing or chiral doping were investigated. Results show that iridescent patterns of the arithmetic spiral, rose spiral, or latitude ripples were generated under the vortex rotation, indicating a severe microphase separation of CNCs. Moreover, the spiral pattern and rotational symmetry were highly correlated to the twisting and flowability of CNCs as well as chiral dopants. Alternatively, the cholesteric pitch and maximum reflective wavelength (λmax) of CNCs were strongly increased by sinistral dopants other than the dextral ones, indicating an enhanced torsion of left-handed CNC mesophases by the dextral dopants. In addition, macroscopic spiral patterns distinctly existed in dextrally doped CNCs owing to a synergistic chiral enhancement. Therefore, the mechanochiral or chemical chiral transition from microscopic twisting to macroscopic spiral provides a potential inspiration for chiral self-organization of biological macromolecules.
Collapse
Affiliation(s)
- Mengna Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Qin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Ruimin Xiao
- Department of Materials, Faculty of Science and Engineering, University of Manchester, Oxford Rd., ManchesterM13 9PL, UK
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Yongqing Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Jinnan Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Yongjun Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Tianyou Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| |
Collapse
|
9
|
Tsui HW, Hsieh CH, Zhan CF. Effect of mobile-phase modifiers on the enantioselective retention behavior of methyl mandelate with an amylose 3,5-dimethylphenylcarbamate chiral stationary phase under reversed-phase conditions. J Sep Sci 2023; 46:e2200651. [PMID: 36401614 DOI: 10.1002/jssc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
In this study, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, acetone, and tert-butanol were used as organic modifiers in reversed-phase mode chiral liquid-chromatography to systematically investigate the effects of mobile phase components on the enantioselective retention behavior of methyl mandelate with immobilized amylose 3,5-dimethylphenylcarbamate-based sorbent called Chiralpak IA. A two-site enantioselective model was used to obtain information on the recognition mechanisms by observing the dependence of the enantioselectivity and retention factor difference on the modifier content. Similar enantioselective retention behaviors were observed for all modifiers, and characteristic modifier concentration points (PL , PM , and PH ) were identified. At modifier concentrations up to PM , the weakened hydrophobic environment resulted in polymer structural relaxation, which changed the recognition mechanisms. By contrast, at concentrations beyond PH , considerably different enantioselectivity behaviors were observed, indicating that the existence of dipole-dipole interaction, which was stronger at higher modifier concentrations, contributed to the retention mechanisms. The concentrations at which these characteristic points occurred were dependent on the carbon number of the modifier molecule. Modifiers with more carbon numbers facilitated the transition in the enantioselective behaviors. These results demonstrated that the proposed method can provide a physically consistent quantitative description of enantioselective retention behavior in reversed-phase mode.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Hung Hsieh
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chao-Fu Zhan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
10
|
Wagen CC, McMinn SE, Kwan EE, Jacobsen EN. Screening for generality in asymmetric catalysis. Nature 2022; 610:680-686. [PMID: 36049504 PMCID: PMC9645431 DOI: 10.1038/s41586-022-05263-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Research in the field of asymmetric catalysis over the past half century has resulted in landmark advances, enabling the efficient synthesis of chiral building blocks, pharmaceuticals and natural products1-3. A small number of asymmetric catalytic reactions have been identified that display high selectivity across a broad scope of substrates; not coincidentally, these are the reactions that have the greatest impact on how enantioenriched compounds are synthesized4-8. We postulate that substrate generality in asymmetric catalysis is rare not simply because it is intrinsically difficult to achieve, but also because of the way chiral catalysts are identified and optimized9. Typical discovery campaigns rely on a single model substrate, and thus select for high performance in a narrow region of chemical space. Here we put forth a practical approach for using multiple model substrates to select simultaneously for both enantioselectivity and generality in asymmetric catalytic reactions from the outset10,11. Multisubstrate screening is achieved by conducting high-throughput chiral analyses by supercritical fluid chromatography-mass spectrometry with pooled samples. When applied to Pictet-Spengler reactions, the multisubstrate screening approach revealed a promising and unexpected lead for the general enantioselective catalysis of this important transformation, which even displayed high enantioselectivity for substrate combinations outside of the screening set.
Collapse
Affiliation(s)
- Corin C Wagen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Eugene E Kwan
- Process Research and Development, Merck & Co. Inc, Boston, MA, USA.
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Cantatore C, Korb M, Lang H, Cirilli R. ON/OFF receptor-like enantioseparation of planar chiral 1,2-ferrocenes on an amylose-based chiral stationary phase: The role played by 2-propanol. Anal Chim Acta 2022; 1211:339880. [DOI: 10.1016/j.aca.2022.339880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023]
|
12
|
Pérez-Baeza M, Martín-Biosca Y, Escuder-Gilabert L, Medina-Hernández MJ, Sagrado S. Artificial neural networks to model the enantioresolution of structurally unrelated neutral and basic compounds with cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase and aqueous-acetonitrile mobile phases. J Chromatogr A 2022; 1672:463048. [DOI: 10.1016/j.chroma.2022.463048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
13
|
Comprehensive two-dimensional liquid chromatographic method (Chiral × Achiral) for the simultaneous resolution of pesticides. J Chromatogr A 2022; 1673:463126. [DOI: 10.1016/j.chroma.2022.463126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
14
|
Cao S, Zhou Y, Ma Q, Zhang J, Wang Z. Experimental and computational studies of enantioseparation of three profen enantiomers with a focus on quantification of the enantiomeric impurities present in the corresponding enantiopure S-profen drugs. J Chromatogr A 2022; 1673:463095. [DOI: 10.1016/j.chroma.2022.463095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
15
|
Onishi T, Ueda T, Yoshida K, Uosaki K, Ando H, Hamasaki R, Ohnishi A. Characteristic and complementary chiral recognition ability of four recently developed immobilized chiral stationary phases based on amylose and cellulose phenyl carbamates and benzoates. Chirality 2022; 34:925-940. [PMID: 35413148 PMCID: PMC9321961 DOI: 10.1002/chir.23446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
To date, various immobilized chiral stationary phases (CSPs) have been developed. The immobilized CSPs have opened up possibilities not only maintaining the high chiral recognition abilities as well as corresponding coated ones but also affording high durability to various mobile phase. This report directed to investigate enantioseparation of recently launched four immobilized CSPs with cellulose and amylose backbones under normal phase liquid chromatography conditions. Their chiral recognition abilities were compared with previously developed six immobilized CSPs. Particularly, we focused on the complementarity for chiral recognitions. Among them, amylose tris(3‐chloro‐5‐methylphenylcarbamate) CSP, namely, CHIRALPAK IG, showed notable chiral recognition abilities to various racemates. As expected, the investigated immobilized CSPs represented remarkable durability to wide range of mobile phases, whereas the corresponding coated CSPs could not be run due to the irreversible degradation. Taking advantage of unrestricted solvent compatibility, chiral separation selectivities were improved for some racemates.
Collapse
Affiliation(s)
- Takafumi Onishi
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Takunori Ueda
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Kenichi Yoshida
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Kosuke Uosaki
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Hiroyuki Ando
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Ryota Hamasaki
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Atsushi Ohnishi
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| |
Collapse
|
16
|
A protocol to replace dedication to either normal phase or polar organic mode for chiral stationary phases containing amylose tris(3,5-dimethylphenylcarbamate). J Chromatogr A 2022; 1673:463052. [DOI: 10.1016/j.chroma.2022.463052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/03/2023]
|
17
|
De Gauquier P, Vanommeslaeghe K, Heyden YV, Mangelings D. Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: A review. Anal Chim Acta 2022; 1198:338861. [DOI: 10.1016/j.aca.2021.338861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
|
18
|
Francotte E, Huynh D. Immobilization of 3,5-dimethylphenyl carbamate of cellulose and amylose on silica by photochemical and thermal radical processes. Chirality 2022; 34:711-731. [PMID: 35174552 DOI: 10.1002/chir.23426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
The immobilization of cellulose 3,5-dimethylphenyl carbamate and amylose 3,5-dimethylphenyl carbamate on silica gel carrier was achieved by using photochemical and thermal processes. Both approaches provide an easy access to materials which were applied as chiral stationary phases (CSPs) for the chromatographic resolution of racemic molecules. The influence of parameters such as irradiation time and solvent on immobilization effectiveness was investigated. For the thermal processes, azo-bis-isobutyrontrile and di-tert-butyl peroxide were evaluated as radical initiators. The influence of parameters such as amount of radical initiator, solvent, temperature, and further handling operations on the immobilization rate was examined. The chiral recognition ability and the overall performance of the prepared immobilized phases were evaluated by injection of a series of racemic compounds onto packed HPLC columns. As there is almost no limitation of organic solvent types that can be used as mobile phases with the immobilized CSPs, they can be applied under chromatographic conditions which are prohibited with the corresponding non-bonded CSPs. This extended applicability considerably broadens the options for improving enantioselectivity and resolving chiral compounds which are not or only poorly soluble in the conventional mobile phases.
Collapse
Affiliation(s)
- Eric Francotte
- Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland
| | - Dan Huynh
- Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
19
|
Wang F, Wang Y, Min Y, Li J, Zhang L, Zheng T, Shen J, Okamoto Y. Preparation of cellulose derivative bearing bulky 4-(2-benzothienyl)phenylcarbamate substituents as chiral stationary phase for enantioseparation. Chirality 2022; 34:701-710. [PMID: 35174536 DOI: 10.1002/chir.23425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/06/2022]
Abstract
A novel cellulose derivative bearing bulky 4-(2-benzothienyl)phenylcarbamate substituents (Cel-1) was readily synthesized by carbamoylation followed by Suzuki-Miyaura coupling reaction. The corresponding coated-type chiral stationary phase (CSP) was prepared on basis of the derivative, and its chiral recognition ability was then evaluated by high-performance liquid chromatography (HPLC). The chiral recognition ability of the cellulose derivative was greatly influenced by introduction of the bulky benzothienyl pendants on the aromatic moieties of phenylcarbamates, compared with its analog with smaller groups. Many racemates, including the metal tris(acetylacetonate) complexes, chiral drug, and the analyte with axial chirality, were sufficiently separated with good enantioselectivities on Cel-1. Some of them were even higher than those on the commercially powerful Chiralcel OD, which is also a coated-type CSP derived from cellulose phenylcarbamate derivative containing smaller 3,5-dimethyl pendants. The 1 H NMR and circular dichroism (CD) spectra of Cel-1 indicated that the obtained derivative possessed a regular higher order structure, and a strong cotton effect was observed within the absorption range of π-conjugated pendant at 350-500 nm. Impressively, the cellulose derivative bearing the bulky 4-(2-benzothienyl)phenylcarbamates exhibited good enantioselective fluorescence quenching behavior to the enantiomer pair of 1-phenylethylamine, probably suggesting its potential for the application as a chiral fluorescent sensor with high efficiency. The combination of the arrangement of bulky π-conjugated benzothienyl pendants on the phenylcarbamate moieties surrounding the helical backbone and the regular higher order structure of the polymer itself probably played a key role for this high chiral fluorescent recognition ability of Cel-1. The interaction sites of bulky 4-(2-benzothienyl)phenylcarbamate pendants in its excited state can exhibit higher enantioselective discrimination via fluorescent response to the chiral compound Q1, whereas the chiral recognition ability of Cel-1 to the same compound in the ground state had no clear improvement.
Collapse
Affiliation(s)
- Fan Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Yuqing Wang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Yixuan Min
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Junqing Li
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Lili Zhang
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Ting Zheng
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Jun Shen
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Yoshio Okamoto
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China.,Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Ohji T, Ohnishi A, Ogasawara M. Application of Polysaccharide-Based Chiral High-Performance Liquid Chromatography Columns for the Separation of Regio-, E/ Z-, and Enantio-Isomeric Mixtures of Allylic Compounds. ACS OMEGA 2022; 7:5146-5153. [PMID: 35187330 PMCID: PMC8851445 DOI: 10.1021/acsomega.1c06187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Daicel Chiralpak IA, IB, and IC, which are the polysaccharide-based chiral stationary phase (CSP) columns for high-performance liquid chromatography (HPLC), were applied in the separation of the non-enantiomeric isomeric mixtures obtained by the various allylation reactions and were highly effective in separating the regio- and (E)/(Z)-isomers in the allylation products. Due to the close structural similarity of the isomeric allylic compounds in the reaction mixtures, separations of the isomers are laborious and could not be accomplished by the conventional methods such as silica gel column chromatography, silica gel HPLC, preparative GPC, distillation, and so forth. This study has shown potential advantages of using the polysaccharide-based CSP columns in the separation of not only enantiomeric but also non-enantiomeric isomeric mixtures.
Collapse
Affiliation(s)
- Takehito Ohji
- Department
of Natural Science, Graduate School of Science and Technology and
Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
| | - Atsushi Ohnishi
- Daicel
Corporation, CPI Company, Analytical Tools
BU, Research & Development Center, Arai 944-8550, Japan
| | - Masamichi Ogasawara
- Department
of Natural Science, Graduate School of Science and Technology and
Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
- Tokushima
International Science Institute, Tokushima
University, Tokushima 770-8501, Japan
| |
Collapse
|
21
|
Chankvetadze B. Our research cooperation with Professor Yoshio Okamoto. Chirality 2022; 34:630-645. [PMID: 35048410 DOI: 10.1002/chir.23418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
This article summarizes our cooperation with the research group of Prof. Yoshio Okamoto at Nagoya University during the period of time between 1992 and 2005. Although the text deals entirely with enantioseparations in high-performance liquid chromatography, capillary electrophoresis, and capillary electrochromatography, this is not a detailed review in any of these areas. The text highlights selected aspects of these techniques, which have been the subject of our joint research and in part their reflection in follow-up research by our and other research groups. Together with more systematically studied topics, aspects such as ultrafast separation of enantiomers, uncommonly high separation factor of enantiomers and other related issues are also addressed.
Collapse
Affiliation(s)
- Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
22
|
Li YS, Wang YT, Tseng WL, Lu CY. Peptide-based chiral derivatizing reagents in nano-scale liquid chromatography: Effect of the oxidation state of cysteine moiety on enantioseparation of ibuprofen. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Yerra S, Sharma H, B S, K MN, B VR. A novel stability-indicating HPLC method for the determination of enantiomeric purity of eluxadoline drug: Amylose tris(3,5-dichlorophenyl carbamate) stationary phase. Biomed Chromatogr 2021; 36:e5260. [PMID: 34623691 DOI: 10.1002/bmc.5260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 02/03/2023]
Abstract
A simple and sensitive stability-indicating chiral HPLC method has been developed and validated per International Conference on Harmonization guidelines for the determination of enantiomeric purity of eluxadoline (Exdl). The impact of different mobile phase compositions and chiral stationary phases on the separation of Exdl enantiomer along with process- and degradation-related impurities has been studied. Homogeneity of Exdl and stable results of Exdl enantiomer in all degraded samples reveal the fact that the proposed method was specific (stability indicating). Amylose tris(3,5-dichlorophenyl carbamate) stationary phase column Chiralpak IE-3 (150 × 4.6 mm, 3 μm) provided better resolution with polar organic solvents than cellulose derivative, crown ether, and zwitterion stationary phases and nonpolar solvents. The mobile phase consisted of acetonitrile, tetrahydrofuran, methanol, butylamine, and acetic acid in the ratio of 500:500:20:2:1.5 (v/v/v/v/v). Isocratic elution was performed at a flow rate of 1.0 mL/min, column temperature of 35°C, injection volume of 10 μL, and UV detection of 240 nm. The United States Pharmacopeia (USP) resolution of the Exdl enantiomer was found to be more than 4.0 within a 65-min run time. Exdl enantiomer detector response linearity over the concentration range of 0.859-4.524 μg/mL was found to be R2 = 0.9985. The limit of detection, limit of quantification, and average percentage recovery values were established as 0.283 μg/mL, 0.859 μg/mL, and 96.0, respectively.
Collapse
Affiliation(s)
- Sudhakar Yerra
- APL Research Centre-II (A Division of Aurobindo Pharma Ltd), Hyderabad, India.,Department of Organic Chemistry, AU College of Science and Technology, Visakhapatnam, India
| | - Hemantkumar Sharma
- APL Research Centre-II (A Division of Aurobindo Pharma Ltd), Hyderabad, India
| | - Sreenivasulu B
- APL Research Centre-II (A Division of Aurobindo Pharma Ltd), Hyderabad, India
| | - Mohana Naidu K
- APL Research Centre-II (A Division of Aurobindo Pharma Ltd), Hyderabad, India
| | - Venkateswara Rao B
- Department of Organic Chemistry, AU College of Science and Technology, Visakhapatnam, India
| |
Collapse
|
24
|
Rosetti A, Preda G, Villani C, Pierini M, Pasini D, Cirilli R. Triptycene derivatives as chiral probes for studying the molecular enantiorecognition on sub-2-μm particle cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. Chirality 2021; 33:883-890. [PMID: 34571576 DOI: 10.1002/chir.23358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
Two chiral triptycene derivatives were analyzed on the Chiralpak IB-U column packed with cellulose tris(3,5-dimethylphenylcarbamate)-based sub-2-μm diameter particles. Under normal-phase conditions, sub-minute baseline enantioseparations were obtained. Differences in structural elements and chromatographic behavior of the investigated compounds were evaluated to identify the interactions that drive the chiral discrimination process. From the evaluation of the experimental chromatographic data, it was found that hydrogen bond formation is essential for the separation of enantiomers.
Collapse
Affiliation(s)
- Alessia Rosetti
- Department of Chemistry and Drug Technology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Preda
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technology, Sapienza University of Rome, Rome, Italy
| | - Marco Pierini
- Department of Chemistry and Drug Technology, Sapienza University of Rome, Rome, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Roberto Cirilli
- National Center for the Control and Evaluation of Drugs, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Strategies for Preparation of Chiral Stationary Phases: Progress on Coating and Immobilization Methods. Molecules 2021; 26:molecules26185477. [PMID: 34576948 PMCID: PMC8472684 DOI: 10.3390/molecules26185477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022] Open
Abstract
Enantioselective chromatography is one of the most used techniques for the separation and purification of enantiomers. The most important issue for a specific successful enantioseparation is the selection of the suitable chiral stationary phase (CSP). Different synthetic approaches have been applied for the preparation of CSPs, which embrace coating and immobilization methods. In addition to the classical and broadly applied coating and immobilization procedures, innovating strategies have been introduced recently. In this review, an overview of different methods for the preparation of coated and immobilized CSPs is described. Updated examples of CSPs associated with the various strategies are presented. Considering that after the preparation of a CSP its characterization is fundamental, the methods used for the characterization of all the described CSPs are emphasized.
Collapse
|
26
|
Fan X, Cao L, Geng L, Ma Y, Wei Y, Wang Y. Polysaccharides as separation media for the separation of proteins, peptides and stereoisomers of amino acids. Int J Biol Macromol 2021; 186:616-638. [PMID: 34242648 DOI: 10.1016/j.ijbiomac.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Reliable separation of peptides, amino acids and proteins as accurate as possible with the maximum conformation and biological activity is crucial and essential for drug discovery. Polysaccharide, as one of the most abundant natural biopolymers with optical activity on earth, is easy to be functionalized due to lots of hydroxyl groups on glucose units. Over the last few decades, polysaccharide derivatives are gradually employed as effective separation media. The highly-ordered helical structure contributes to complex, diverse molecular recognition ability, allowing polysaccharide derivatives to selectively interact with different analytes. This article reviews the development, application and prospects of polysaccharides as separation media in the separation of proteins, peptides and amino acids in recent years. The chiral molecules mechanism, advantages, limitations, development status and challenges faced by polysaccharides as separation media in molecular recognition are summarized. Meanwhile, the direction of its continued development and future prospects are also discussed.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Lilong Cao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Linna Geng
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| | - Yalu Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China.
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
27
|
Xu L, Wang H, Yi J, Meng M, Sun J, Yin X, Zhou X, Yin J, Wang Y, Hou J, Wei Q, Gong Y. Preparation and application of 3-(methylene-bis(1',4'-phenylene)dicarbamate-2,3-bis(3,5-dimethylphenylcarbamate)-amylose)-2-hydroxylpropoxy-propylsilyl-appended silica particles as chiral stationary phase for HPLC. J Chromatogr Sci 2021; 60:243-249. [PMID: 34160007 DOI: 10.1093/chromsci/bmab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 11/19/2020] [Accepted: 05/29/2021] [Indexed: 11/13/2022]
Abstract
3-(Methylene-bis(1',4'-phenylene) dicarbamate-2,3-bis(3,5-dimethylphenylcarbamate)-amylose)-2-hydroxylpropoxy-propylsilyl-appended silica particles (DMP-AM-HPS), a new type of 2, 3-regioselectively substituted amylose-immobilized chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC), have been prepared by treatment of 3-(2,3-dihydroxyl-propoxy)-propylsilyl silica particles with 2,3-bis(3,5-dimethylphenylcarbamate)-amylose and 4,4'-diphenylmethane diisocyanate. The chemical characterization of the bonded particles DMP-AM-HPS has been carried out by elemental analysis and Fourier transform infrared spectroscopic analysis. The chromatographic performance of the DMP-AM-HPS has been evaluated in HPLC under multi-mode conditions including normal phase, reversed phase, and polar organic mobile phase conditions. The DMP-AM-HPS phase has exhibited excellent selectivity in separating enantiomers of a wide range of chiral drug compounds. The result also suggests that unsubstituted C6 hydroxyl groups in the regioselectively substituted amylose not only have important contributions to chiral recognitions and chromatographic separations, but also allow the DMP-AM-HPS to be used as a new type of amylose-immobilized CSP under multi-mode mobile phase conditions in HPLC.
Collapse
Affiliation(s)
- Lu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Hui Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jingxuan Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Min Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jiahui Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jiale Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jasmine Hou
- ChiralTek Pte Ltd, 192 Westwood Crescent, 648559, Singapore
| | - Qunli Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Yinhan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China.,ChiralTek Pte Ltd, 192 Westwood Crescent, 648559, Singapore
| |
Collapse
|
28
|
Li G, Dai X, Min Y, Zhang L, Han S, Shen J, Okamoto Y. Influence of surfactants on the properties of cellulose derivative-based hybrid materials as chiral stationary phases. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Tsui HW, Zhang HL, Hsieh CH. Effect of 2-propanol content on solute retention mechanisms determined using amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase under normal- and reversed-phase conditions. J Chromatogr A 2021; 1650:462226. [PMID: 34087518 DOI: 10.1016/j.chroma.2021.462226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
The electrostatic interactions between chiral solutes and polysaccharide (PS)-based chiral selectors are the key to achieving chiral recognition; however, PS-based sorbents, derivatized of phenyl moieties, can exhibit considerably non-polar characteristics, and they are also useful for the separation of enantiomers in the reversed-phase mode. In this study, an immobilized amylose 3,5-dimethylphenylcarbamate-based sorbent was used to investigate the balance between electrostatic interactions and solvophobic interactions, with complementary effects on solute retention behavior when the isopropanol (IPA) concentration was altered. It was proposed that in both normal- and reversed-phase modes, information on the retention mechanisms could be obtained by observing the curvature of the logarithm of the retention factor versus the logarithm of the IPA concentration, and the slope values of the curves were related to the number of displaced IPA molecules upon solute adsorption. Using the proposed model and the two-site adsorption model, the retention behaviors of pantolactone (PL) enantiomers in both normal- and reversed-phase modes were investigated. The PL-sorbent interactions were classified into four types: electrostatic/enantioselective, electrostatic/nonselective, solvophobic/enantioselective, and solvophobic/nonselective. At IPA concentrations below 50 vol.% in n-hexane, the retention behaviors of PL were dominated by electrostatic/enantioselective sites, whereas at IPA concentrations beyond 50 vol.%, the solvophobic interactions of PL-sorbent were strengthened and mostly nonselective. By contrast, in the reversed-phase mode, a reverse in the enantiomeric elution order of PL was observed at 10 vol.% IPA, and considerably different enantioselectivity behaviors were found below and above 20 vol.%, indicating an abrupt change in the sorbent molecular environment. At IPA concentrations beyond 40 vol.%, the presence of PL-sorbent electrostatic interactions enhanced chiral recognition.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan.
| | - Hong-Lin Zhang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| | - Ching-Hung Hsieh
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| |
Collapse
|
30
|
Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation. Pharmaceuticals (Basel) 2021; 14:ph14020098. [PMID: 33513944 PMCID: PMC7911330 DOI: 10.3390/ph14020098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Chondroitin sulfate A was covalently immobilized onto a monolithic silica epoxy column involving a Schiff base formation in the presence of ethylenediamine as a spacer and evaluated in terms of its selectivity in enantioseparation. The obtained column was utilized as a chiral stationary phase in enantioseparation of amlodipine and verapamil using a mobile phase consisting of 50 mM phosphate buffer pH 3.5 and UV detection. Sample dilution by organic solvents (preferably 25% v/v acetonitrile-aqueous solution) was applied to achieve baseline enantioresolution (Rs > 3.0) of the individual drug models within 7 min, an excellent linearity (R2 = 0.999) and an interday repeatability of 1.1% to 1.8% RSD. The performance of the immobilized column for quantification of racemate in commercial tablets showed a recovery of 86–98% from tablet matrices. Computational modeling by molecular docking was employed to investigate the feasible complexes between enantiomers and the chiral selector.
Collapse
|
31
|
Tsui HW, Ye PW, Huang SX. Effect of solvents on the chiral recognition mechanisms of immobilized cellulose-based chiral stationary phase. J Chromatogr A 2020; 1637:461796. [PMID: 33387913 DOI: 10.1016/j.chroma.2020.461796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
The effect of solvents on the enantioselectivities of four structurally similar chiral solutes with a cellulose derivative-based chiral stationary phase, Chiralpak IB, were studied using acetone (AC), 2-propanol (IPA), and tert-butanol (TBA) separately as polar modifiers. The enantioselectivities α of benzoin and methyl mandelate decrease with an increase in modifier concentration CM, whereas the enantioselectivity of pantolactone increased with increasing AC concentration. These results were attributed to the heterogeneous adsorption mechanisms of enantiomers. To interpret the dependence of enantioselectivity on modifier content, an enantioselectivity model based on a two-site adsorption model was proposed. The dependence of α on CM was inferred to be mainly due to the distinct modulating effects of modifier concentration on the two adsorption sites: the nonselective type-I site and enantioselective type-II site. The model fitted the benzoin data satisfactorily over a wide TBA concentration range. The retention factors as a function of TBA concentration were successfully deconvoluted for each site. With the use of the proposed model, it was inferred that the chiral recognitions of benzoin and methyl mandelate were mainly achieved by the presence of an aromatic group adjacent to the hydroxyl group. When using IPA and TBA separately as modifiers, the presence of an aromatic group adjacent to the ketone group mainly contributed to the nonselective π interactions and enantioselective steric interactions, respectively. These results, along with those of the modifier adsorption isotherms, determined using the perturbation method, as well as the retention behaviors of various achiral solutes, indicate that the molecular recognition mechanism of IB sorbent is highly sensitive to the adsorbate's molecular geometry. The molecular environment of the sorbent can be controlled using different modifiers, leading to distinct adsorption and retention mechanisms.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan.
| | - Pei-Wen Ye
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| | - Si-Xian Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| |
Collapse
|
32
|
Merino MED, Lancioni C, Padró JM, Castells CB. Study of enantioseparation of β-blockers using amylose tris(3-chloro-5-methylphenylcarbamate) as chiral stationary phase under polar-organic, reversed-phase and hydrophilic interaction liquid chromatography conditions. J Chromatogr A 2020; 1634:461685. [DOI: 10.1016/j.chroma.2020.461685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
|
33
|
Gupta R, Gonnade RG, Bedekar AV. Effect of Substituent of Roof Shape Amines on the Molecular Recognition of Optically Active Acids by NMR Spectroscopy. ChemistrySelect 2020. [DOI: 10.1002/slct.202003338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Riddhi Gupta
- Department of Chemistry Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara 390 002 India
| | - Rajesh G. Gonnade
- Center for Materials Characterization CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
| | - Ashutosh V. Bedekar
- Department of Chemistry Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara 390 002 India
| |
Collapse
|
34
|
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122332. [PMID: 32871378 PMCID: PMC7584770 DOI: 10.1016/j.jchromb.2020.122332] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The field of affinity chromatography, which employs a biologically-related agent as the stationary phase, has seen significant growth since the modern era of this method began in 1968. This review examines the major developments and trends that have occurred in this technique over the past five decades. The basic principles and history of this area are first discussed. This is followed by an overview of the various supports, immobilization strategies, and types of binding agents that have been used in this field. The general types of applications and fields of use that have appeared for affinity chromatography are also considered. A survey of the literature is used to identify major trends in these topics and important areas of use for affinity chromatography in the separation, analysis, or characterization of chemicals and biochemicals.
Collapse
Affiliation(s)
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Morgan Walters
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Shae Lott
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
35
|
HPLC Separation of Phenolic Acids on Silica Gels Layer-by-Layer Modified with 6,10-Ionene and Dextran Sulfate. J CHEM-NY 2020. [DOI: 10.1155/2020/5702940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Using phenolic acids as an example, we continue to study the nature of the previously obtained multilayer sorbents for HPLC—silica gels modified up to two times with 6,10-ionene and dextran sulfate (DS). The chromatographic behavior of this class of compounds on the obtained sorbents was studied. A six-component mixture of sorbic, vanillic, sinapic,
-coumaric, caffeic, and ferulic acids was separated on the silica gel twice modified with 6,10-ionene and dextran sulfate in 15 min with a selectivity of up to 1.88 and a column efficiency of up to 26000 theoretical plates per meter. The possibility of separating the two classes of compounds—phenolic acids and basic nitrogen-containing pharmaceuticals—in a single mixture on silica gel, twice modified with 6,10-ionene and dextran sulfate, is shown.
Collapse
|
36
|
Ianni F, Carotti A, Intagliata S, Macchiarulo A, Chankvetadze B, Pittalà V, Sardella R. Laboratory-Scale Semipreparative Enantioresolution of Phenylethanolic-Azole Heme Oxygenase-1 Inhibitors. Chromatographia 2020. [DOI: 10.1007/s10337-020-03972-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Hegade RS, Chen K, Boon JP, Hellings M, Wicht K, Lynen F. Development of an achiral-chiral 2-dimensional heart-cutting platform for enhanced pharmaceutical impurity analysis. J Chromatogr A 2020; 1628:461425. [DOI: 10.1016/j.chroma.2020.461425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
|
38
|
|
39
|
Bi W, Wang F, Han J, Liu B, Shen J, Zhang L, Okamoto Y. Influence of the substituents on phenyl groups on enantioseparation property of amylose phenylcarbamates. Carbohydr Polym 2020; 241:116372. [DOI: 10.1016/j.carbpol.2020.116372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
40
|
Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions. J Chromatogr A 2020; 1625:461281. [DOI: 10.1016/j.chroma.2020.461281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
|
41
|
Li Y, Gao Z, Chen T, Wei M, Ma Y, Ma X, Xu H. Polysaccharide-Based Chiral Stationary Phases on Gold Nanoparticles Modified Silica Beads for Liquid-Phase Separation of Enantiomers. J Chromatogr Sci 2020; 58:731-736. [PMID: 32720694 DOI: 10.1093/chromsci/bmaa042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2020] [Accepted: 07/04/2020] [Indexed: 11/14/2022]
Abstract
Abstract
Au nanoparticles (AuNPs) (10−15 nm in size) were prepared and deposited on the surfaces of silica particles functionalized using 3-aminopropyltriethoxysilane as the seeds under mild conditions. Then, Au seeds grew further and formed nanosheets by the method of gold chloride hydrate reduction. 3, 5-dimethylphenyl isocyanate derivative of cellulose as chiral selector was coated on the surfaces of SiO2/Au. The obtained spheres possessed a sandwich structure in which silica bead, the packed Au NPs monolayer and cellulose derivative were the core, the interlayer and the shell, respectively. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC) as chiral stationary phase (CSP). The separations of nine pairs of enantiomers were achieved in the normal-phase liquid chromatography mode. The results showed that the new CSP has sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces compared with coated cellulose-silica column.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
- College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Zhuxian Gao
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
- College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Tong Chen
- Institute of Comprehensive Technology Center, Zhenjiang Customs District P. R. of China, 84 Dongwu Road, Zhenjiang 212008, China
| | - Manman Wei
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
- College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Xiaoxia Ma
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
- College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Hong Xu
- Institute of Technology Center, Shanghe New Materials (Zhenjiang) Technology Co., Ltd., 29 Guantang Bridge Avenue Ocean, Zhenjiang 212000,China
| |
Collapse
|
42
|
Ioutsi AN, Ioutsi VA, Shapovalova EN, Shpigun OA. Determination of Pharmacologically Active Nitrogen-Containing Compounds on Silica Doubly Modified with 6,10-Ionene and Dextran Sulphate by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Zhou Y, Liang Q, Zhang Z, Wang Z, Huang M. Chiral separations with crosslinked cellulose derivatives attached onto hybrid silica monolith particles via the thiol-ene click reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2727-2734. [PMID: 32930304 DOI: 10.1039/d0ay00772b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hybrid silica monolith containing vinyl groups was synthesized by a sol-gel method, and then ground and treated, yielding silica particles with a 3-5 μm particle size and a 10-20 nm pore size. Cellulose derivatives containing 3,5-dimethylphenylcarbamate groups and methacrylate groups regioselectively were then immobilized onto the surface of the above particles by the thiol-ene click reaction using an alkanedithiol as the crosslinking agent, thus forming a solvent-resisting crosslinked network structure attached onto the surface of the particles. The immobilization degree was more than 80%, and the back pressure of the chiral stationary phase (CSP) packed column was relatively low and was maintained at around 3.0 MPa. The as-prepared CSPs were shown to be able to effectively separate various enantiomers with different mobile phases.
Collapse
Affiliation(s)
- Yuhong Zhou
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Qian Liang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhilun Zhang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhaodi Wang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
44
|
Horváth S, Eke Z, Németh G. Utilization of the hysteresis phenomenon for chiral high-performance liquid chromatographic method selection in polar organic mode. J Chromatogr A 2020; 1625:461280. [PMID: 32709331 DOI: 10.1016/j.chroma.2020.461280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Polysaccharide-based chiral stationary phases (CSPs) are outstandingly suitable to play a key role in chiral HPLC method selection strategies, since they provide high success rates. One reason for this ability is that they adopt a diversity of higher order structures in various eluents, resulting in versatile chiral environments. A potential to extend this versatility further was expected and examined in the present study, based on the recently discovered hysteretic behavior of a widely used chiral selector (CS), amylose tris(3,5-dimethylphenylcarbamate). The hindered transitions of its structure, which are behind the history dependence of its separation ability, were used as a tool to identify distinct states of the chiral selector in order to exploit an extended selectivity space. The identification was carried out using a single diagnostic compound, as opposed to the common approach where testing a library of compounds is required. Eluent mixtures consisting of 2-propanol and either methanol or ethanol were scrutinized in terms of stability and robustness of the observed retentions. The solvent mixtures that were eligible for practical application in these respects were used to construct a screening sequence, including identical compositions combined with different column pretreatment. The gain achievable by using the proposed sequence was then evaluated using 15 enantiomer pairs with focus on resolution, enantiomer elution order and chemoselectivity.
Collapse
Affiliation(s)
- Simon Horváth
- György Hevesy Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Drug Substance Development Division, Egis Pharmaceuticals PLC, P. O. Box 100, H-1475 Budapest, Hungary
| | - Zsuzsanna Eke
- Joint Research and Training Laboratory on Separation Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Wessling International Research and Educational Center, Anonymus u. 6., H-1045 Budapest, Hungary
| | - Gábor Németh
- Drug Substance Development Division, Egis Pharmaceuticals PLC, P. O. Box 100, H-1475 Budapest, Hungary.
| |
Collapse
|
45
|
Tsui HW, Chou PY, Ye PW, Chen SC, Chen YW. Effects of the Sorbent Backbone and Side Chain on Retention Mechanisms Using Immobilized Polysaccharide-Based Stationary Phases in Normal Phase Mode. Chromatographia 2020. [DOI: 10.1007/s10337-020-03898-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Comparison of dimethylated and methylchlorinated amylose stationary phases, coated and covalently immobilized on silica, for the separation of some chiral compounds in supercritical fluid chromatography. J Chromatogr A 2020; 1621:461053. [PMID: 32276857 DOI: 10.1016/j.chroma.2020.461053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 11/23/2022]
Abstract
The chromatographic properties of a new coated amylose tris(3-chloro-5-methylphenylcarbamate) were evaluated in supercritical fluid chromatography for the separation of enantiomers of chiral 1-aryl-5-aryl-pyrrolidin-2-one derivatives, potential anticancer agents, and some commercial drugs. The mobile phase consisted of CO2-modifier mixtures with 30% of either methanol or ethanol, the flow rate was 3 mL/min. The column oven temperature was 40 °C and the outlet pressure was 15 MPa, in order to limit the compressibility of the CO2, thus limiting density variation along the column. The obtained results were then compared to those observed toward 3 other stationary phases: the coated amylose tris(3,5-dimethylphenylcarbamate), the immobilized amylose tris(3,5-dimethylphenylcarbamate) and the coated amylose tris(5-chloro-2-methylphenylcarbamate). It was shown that the new coated amylose tris(3-chloro-5-methylphenylcarbamate) was the most retentive column whatever the studied compounds, particularly for thalidomide and omeprazole with retention factors up to 73.3 and 29.5for the second enantiomer, respectively. Concerning the enantioselectivity, even most of the compounds are separated on all the four columns, the coated amylose tris(3-chloro-5-methylphenylcarbamate) allows the best resolution for most of the ten studied analytes (except omeprazole for which the resolution values are equal to 7.8 and 9.7 on the coated amylose tris(3-chloro-5-methylphenylcarbamate) and amylose tris(3,5-dimethylphenylcarbamate), respectively). Acting in complementary ways, the two chlorinated stationary phases permitted the complete separation of enantiomers of nine compounds out of the ten.
Collapse
|
47
|
Cerra B, Macchiarulo A, Carotti A, Camaioni E, Varfaj I, Sardella R, Gioiello A. Enantioselective HPLC Analysis to Assist the Chemical Exploration of Chiral Imidazolines. Molecules 2020; 25:molecules25030640. [PMID: 32024219 PMCID: PMC7036806 DOI: 10.3390/molecules25030640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022] Open
Abstract
In the present work, we illustrate the ability of high-performance liquid chromatography (HPLC) analysis to assist the synthesis of chiral imidazolines within our medicinal chemistry programs. In particular, a Chiralpak® IB® column containing cellulose tris(3,5-dimethylphenylcarbamate) immobilized onto a 5 μm silica gel was used for the enantioselective HPLC analysis of chiral imidazolines synthesized in the frame of hit-to-lead explorations and designed for exploring the effect of diverse amide substitutions. Very profitably, reversed-phase (RP) conditions succeeded in resolving the enantiomers in nine out of the 10 investigated enantiomeric pairs, with α values always higher than 1.10 and RS values up to 2.31. All compounds were analysed with 50% (v) water while varying the content of the two organic modifiers acetonitrile and methanol. All the employed eluent systems were buffered with 40 mM ammonium acetate while the apparent pH was fixed at 7.5. Based on the experimental results, the prominent role of π-π stacking interactions between the substituted electron-rich phenyl groups outside of the polymeric selector and the complementary aromatic region in defining analyte retention and stereodiscrimination was identified. The importance of compound polarity in explaining the retention behaviour with the employed RP system was readily evident when a quantitative structure-property relationship study was performed on the retention factor values (k) of the 10 compounds, as computed with a 30% (v) methanol containing mobile phase. Indeed, good Pearson correlation coefficients of retention factors (r - log k1st = −0.93; r - log k2nd = −0.94) were obtained with a water solubility descriptor (Ali-logS). Interestingly, a n-hexane/chloroform/ethanol (88:10:2, v/v/v)-based non-standard mobile phase allowed the almost base-line enantioseparation (α = 1.06; RS = 1.26) of the unique compound undiscriminated under RP conditions.
Collapse
|
48
|
Liu Y, Cai L, Lun J, Zhao M, Guo X. Enantiomeric separation and molecular docking study of seven imidazole antifungal drugs on a cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase. NEW J CHEM 2020. [DOI: 10.1039/d0nj03657a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chiral separation and molecular docking study of seven imidazole antifungal drugs were performed on a cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase (Chiralcel OD-RH).
Collapse
Affiliation(s)
- Yanru Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Liangzhao Cai
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Jia Lun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Min Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Xingjie Guo
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| |
Collapse
|
49
|
Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115709] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Qian H, Shen X, Huang H, Zhang Y, Zhang M, Wang H, Wang Z. Helical poly(phenyl isocyanide)s grafted selectively on C-6 of cellulose for improved chiral recognition ability. Carbohydr Polym 2019; 231:115737. [PMID: 31888853 DOI: 10.1016/j.carbpol.2019.115737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023]
Abstract
Cellulose graft copolymers are an effective way to endow new properties to cellulose substrate, as well the rigidity, regularity, and helicity of the cellulose backbone could induce the self-assembly of supramolecular structures. In this work, right-handed helical poly(phenyl isocyanide)s (PPIn) were grafted selectively onto C-6-cellulose. Alkyne-terminated PPIn was synthesized by living polymerization of right-handed phenyl isocyanide monomer using an alkyne-terminated palladium(II) complex as an initiator/catalyst, and were grafted onto the C-6 of the cellulose backbone (Cell-6-g-PPIn) at various chain lengths using copper-catalyzed alkyne-azide cycloaddition (CuAAC) "click" chemistry. We confirmed the successful grafting by liquid 1H NMR and 13C NMR, as well as solid 13C NMR, FTIR, and GPC. After grafting onto cellulose, the right-handed chirality of PPIn was significantly increased by 111.2%. Additionally, the Cell-6-g-PPIn exhibited better chiral recognition of L-Phe-DNSP than PPIn alone. Therefore, the helical cellulose backbone has enhanced effect on preferred helix of PPIn.
Collapse
Affiliation(s)
- Hao Qian
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Xiaofei Shen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Hailong Huang
- School of Physics and Materials Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No.43663 North Zhongshan Road, Shanghai, 200062, China
| | - Yan Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Mingtao Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China.
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Material Science and Engineering, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|