1
|
Gopika MG, Saraswathyamma B, Govindasamy M. CuSeO 3@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione. Talanta 2025; 287:127621. [PMID: 39879799 DOI: 10.1016/j.talanta.2025.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO3) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH). The choice of this material is due to the well-known ability of GSH to form a complex with copper. When a Cu ion enters a healthy cell, it quickly forms a complex with GSH, which then moves to another storage molecule: either a metalloprotein or a chelator. CNF was functionalized using acid to generate functionalized-CNF to enhance biocompatibility and boost conductivity. This was done to provide many active sites for effective integration of CuSeO3 in the nanocomposite preparation. The glassy carbon electrode (GCE) surface was enhanced by introducing CuSeO3@f-CNF nanocomposite, resulting in a significant increase in the current response for GSH in comparison to prior research. CuSeO3@f-CNF/GCE sensor has shown excellent sensing properties, like enhanced stability, selectivity, sensitivity, and reproducibility, for detecting and quantifying GSH. The sensor demonstrated an extensive linear detection range from 62.5 nM to 7785.0 μM, signifying one of the most comprehensive ranges documented to date. It attained a remarkable detection limit (LOD) of 17.6 nM. The sensor's performance was further tested by analyzing genuine biological fluid samples. The nanozyme-modified GCE demonstrated exceptional electrocatalytic efficiency for GSH detection, making it extremely appropriate for real-time monitoring applications.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala, 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala, 690525, India.
| | - Mani Govindasamy
- International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
2
|
Behera L, Naik AKD, Sahu BB, Mohapatra S. Betaine-Modified Green Carbon Dot for Cr(VI) Sensing, in Vivo Cr(VI) Imaging, and Growth Promotion in the Rice Plant. ACS APPLIED BIO MATERIALS 2024; 7:7624-7634. [PMID: 39503570 DOI: 10.1021/acsabm.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hexavalent chromium is a toxic environmental pollutant that damages plants due to disruption of nutrient uptake, photosynthesis metabolism, and oxidative stress, which suppresses the growth and development of the plant. In this work, we have developed a betaine-modified carbon dot (BT@CD) sensor for monitoring Cr(VI) in water and plants. Fluorescent carbon dots have been synthesized using jamun juice (Syzygium cumini) as the carbon source subjected to surface modification with betaine (BT@JCD). This BT@JCD exhibits strong blue fluorescence, which significantly decreases in the presence of Cr(VI) due to the inner filter effect in a range of 5-450 nM with a detection limit of 0.033 μM. Due to its easy translocation in the vascular bundles, these fluorescence nanosensors can be applied to detect Cr(VI) in rice plants Oryza sativa) through fluorescence confocal imaging. The treatment of rice plants with BT@JCDs in the concentration range of 0.2 to 1g/mL not only triggered photophysical parameters such as carbohydrates, chlorophyll, and carotenoids but also enhanced the antioxidant enzyme activity promoting plant growth.
Collapse
Affiliation(s)
- Lingaraj Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | | | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
- Centre for Nanomaterials, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
4
|
Wani AK, Khan Z, Sena S, Akhtar N, Alreshdi MA, Yadav KK, Alkahtani AM, Wani AW, Rahayu F, Tafakresnanto C, Latifah E, Hariyono B, Arifin Z, Eltayeb LB. Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108628. [PMID: 38636256 DOI: 10.1016/j.plaphy.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| | - Zehra Khan
- Department of Biology, College of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 4620044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Chendy Tafakresnanto
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Budi Hariyono
- Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research Innovation Agenc (BRIN), Bogor, 16911, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, 11942, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
6
|
Lara-Almazán N, Zarazúa-Ortega G, Ávila-Pérez P, Barrera-Díaz CE, Cedillo-Cruz A. Validation and uncertainty estimation of analytical method for quantification of phytochelatins in aquatic plants by UPLC-MS. PHYTOCHEMISTRY 2021; 183:112643. [PMID: 33421889 DOI: 10.1016/j.phytochem.2020.112643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Phytochelatins (PCs) are peptides that play an important role in homeostasis and detoxification of heavy metal in plants. Furthermore, they have been proposed as earlier potential biomarkers of aquatic pollution by heavy metals. Nowadays, several researchers have reported on current methods for quantification of glutathione (GSH) and the PCs (phytochelatin 2, phytochelatin 3, phytochelatin 4) quantification in plants. However, no method has reported the uncertainty of the measurement, which helps to improve the accuracy and quality assurance in the PC quantification. In this work, a new methodology using ultra-high-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) to measure with high precision and accuracy the PCs in aquatic plants, was validated. Selectivity, linearity, limit of detection, limit of quantification, precision, trueness and uncertainty estimation were examined as parts of the method validation. The described method shows excellent linearity in different ranges for all analytes with coefficients of determination higher than 0.99. The relative standard deviation for intra-day precision was <3% and for inter-day <10%. All LOD and LOQ analytes ranged from 0.02 to 0.08 μg ml-1, and from 0.03 to 0.09 μg ml-1, respectively. The recoveries varied from 61% to 89%. In order to obtain an interval of results with the highest confidence levels, the uncertainty associated with the measurements was evaluated. The calibration curve (>50%) and recovery (19-44%) were the most important contributors to the total uncertainty. The proposed method was applied to quantify GSH and PCs in the aquatic plants Lemna gibba L., Myriophyllum heterophyllum Michx., Arenaria paludicola and Hydrocotyle ranunculoides L. fil., showing statistical differences in the mass fraction of the analytes.
Collapse
Affiliation(s)
- Nancy Lara-Almazán
- Faculty of Chemistry, Autonomous University of the State of Mexico, Toluca, Mexico; National Nuclear Forensic Research Laboratory (LANAFONU), National Institute for Nuclear Research, Ocoyoacac, Mexico
| | - Graciela Zarazúa-Ortega
- National Nuclear Forensic Research Laboratory (LANAFONU), National Institute for Nuclear Research, Ocoyoacac, Mexico.
| | - Pedro Ávila-Pérez
- Division of Graduate Studies, Technological Institute of Toluca, Toluca, Mexico
| | | | - Alberto Cedillo-Cruz
- National Nuclear Forensic Research Laboratory (LANAFONU), National Institute for Nuclear Research, Ocoyoacac, Mexico
| |
Collapse
|
7
|
Squissato AL, Munoz RAA, Banks CE, Richter EM. An Overview of Recent Electroanalytical Applications Utilizing Screen‐Printed Electrodes Within Flow Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202000175] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- André L. Squissato
- Institute of Chemistry Federal University of Uberlandia Av. João Naves de Ávila 2121 – Uberlandia, Minas Gerais Brazil
| | - Rodrigo A. A. Munoz
- Institute of Chemistry Federal University of Uberlandia Av. João Naves de Ávila 2121 – Uberlandia, Minas Gerais Brazil
| | - Craig E. Banks
- Faculty of Science and Engineering Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Eduardo M. Richter
- Institute of Chemistry Federal University of Uberlandia Av. João Naves de Ávila 2121 – Uberlandia, Minas Gerais Brazil
- Faculty of Science and Engineering Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
8
|
Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
10
|
Zou H, Zhou C, Li Y, Yang X, Wen J, Hu X, Sun C. Occurrence, toxicity, and speciation analysis of arsenic in edible mushrooms. Food Chem 2019; 281:269-284. [PMID: 30658757 DOI: 10.1016/j.foodchem.2018.12.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 11/29/2022]
Abstract
Owing to the strong concentration and biotransformation of arsenic, the influence of some edible mushrooms on human health has attracted widespread attention. The toxicity of arsenic greatly depends on its species, so the speciation analysis of arsenic is of critical importance. The aim of the present review is to highlight recent advances in arsenic speciation analysis in edible mushrooms. We summarized the contents and distribution of arsenic species in some edible mushrooms, the methods of sample preparation, and the techniques for their identification and quantification. Stability of the arsenic species during sample pretreatment and storage is also briefly discussed.
Collapse
Affiliation(s)
- Haimin Zou
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Chen Zhou
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Yongxin Li
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| | - Xiaosong Yang
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Jun Wen
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Xiaoke Hu
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Chengjun Sun
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
11
|
Serrano N, Cetó X, Núñez O, Aragó M, Gámez A, Ariño C, Díaz-Cruz JM. Characterization and classification of Spanish paprika (Capsicum annuum L.) by liquid chromatography coupled to electrochemical detection with screen-printed carbon-based nanomaterials electrodes. Talanta 2018; 189:296-301. [PMID: 30086921 DOI: 10.1016/j.talanta.2018.06.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Screen-printed electrodes based on graphite, carbon nanotubes, carbon nanofibers, and graphene were tested as amperometric detectors for the determination of phenolic compounds by high performance liquid chromatography (HPLC). The chromatographic performance as well as the obtained sensitivity, detection and quantification limits suggest that carbon nanofibers modified screen-printed electrode (SPCE-CNF) is the amperometric sensor that provides the best analytical performance. Upon this confirmation, chromatographic data obtained using SPCE-CNF were exploited by means of linear discriminant analysis (LDA) to successfully characterize and classify 96 Spanish paprika (Capsicum annuum L.) samples with different origin and type: from La Vera (including sweet, bittersweet and spicy types) and from Murcia (including sweet and spicy types).
Collapse
Affiliation(s)
- Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Xavier Cetó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, University of Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramanet, Barcelona, Spain; Serra Hunter Fellow, Generalitat de Catalunya, Spain
| | - Miriam Aragó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Alejandro Gámez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Cristina Ariño
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| |
Collapse
|
12
|
Nagles E, Penagos-Llanos J, García-Beltrán O, Hurtado J. Determination of Rutin in Drinks Using an Electrode Modified with Carbon Nanotubes-Prussian Blue. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|
14
|
Ben Aoun S. Nanostructured carbon electrode modified with N-doped graphene quantum dots-chitosan nanocomposite: a sensitive electrochemical dopamine sensor. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171199. [PMID: 29291105 PMCID: PMC5717679 DOI: 10.1098/rsos.171199] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
A highly selective and sensitive dopamine electrochemical sensor based on nitrogen-doped graphene quantum dots-chitosan nanocomposite-modified nanostructured screen printed carbon electrode is presented, for the first time. Graphene quantum dots were prepared via microwave-assisted hydrothermal reaction of glucose, and nitrogen doping was realized by introducing ammonia in the reaction mixture. Chitosan incorporation played a significant role towards the selectivity of the prepared sensor by hindering the ascorbic acid interference and enlarging the peak potential separation between dopamine and uric acid. The proposed sensor's performance was shown to be superior to several recently reported investigations. The as-prepared CS/N,GQDs@SPCE exhibited a high sensitivity (i.e. ca. 418 µA mM cm-2), a wide linear range i.e. (1-100 µM) and (100-200 µM) with excellent correlations (i.e. R2 = 0.999 and R2 = 1.000, respectively) and very low limit of detection (LOD = 0.145 µM) and limit of quantification (LOQ = 0.482 µM) based on S/N = 3 and 10, respectively. The applicability of the prepared sensor for real sample analysis was tested by the determination of dopamine in human urine in pH 7.0 PBS showing an approximately 100% recovery with RSD < 2% inferring both the practicability and reliability of CS/N,GQDs@SPCE. The proposed sensor is endowed with high reproducibility (i.e. RSD = ca. 3.61%), excellent repeatability (i.e. ca. 0.91% current change) and a long-term stability (i.e. ca. 94.5% retained activity).
Collapse
|
15
|
Turull M, Grmanova G, Dago À, Ariño C, Díez S, Díaz-Cruz JM, Esteban M. Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory. CHEMOSPHERE 2017; 176:74-80. [PMID: 28259081 DOI: 10.1016/j.chemosphere.2017.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The effects of mercury (Hg) released from a chlor-alkali factory in aquatic plants along the Ebro River basin (NE Spain) were analysed considering the phytochelatins (PCn) and their isoforms content in these plants. These compounds were analyzed using HPLC with amperometric detection, and the macrophytes species Ceratophyllum demersum and Myriopyllum spicatum were collected in two sampling campaigns, autumn and spring, respectively. To correlate the PCn content in macrophytes with the Hg contamination, analysis of total Hg (THg) content in plants and suspended particulate matter, as well as the dissolved-bioavailable fraction of Hg in water measured by the diffusive gradient in thin film (DGT) technique were done. The results confirm the presence of PC2-Ala in extracts of C. demersum and PC2-desGly in M. spicatum, and the concentration of these thiol compounds depends clearly on the distance between the hot spot and the downstream sites: the higher the levels are, the closer the hot spot is. Since most of the Hg is hypothesized to be associated with SPM and transported downstream, our results of the DGT suggest that trace amounts of Hg in water can be released as free metal ions yielding a certain accumulation in plants (reaching the ppb level) that are enough for activation of induction of PCs. A few PCs species have been determined, at different seasons, indicating that they can be used as good indicators of the presence of bioavailable Hg in aquatic media throughout the year.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Gabriela Grmanova
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Àngela Dago
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Cristina Ariño
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Miquel Esteban
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| |
Collapse
|
16
|
Castillo-García M, Aguilar-Caballos M, Gómez-Hens A. Nanomaterials as tools in chromatographic methods. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2439-2442. [PMID: 27151829 DOI: 10.1002/smll.201503874] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/11/2016] [Indexed: 06/05/2023]
Abstract
A controlled assembly of natural beta-cyclodextrin modified Au NPs mediated by dopamine is demonstrated. Furthermore, a simple and sensitive colorimetric detection for dopamine is established by the concentration-dependent assembly.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Wei Liu
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | | | - Danny Haubold
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Matthias Holzschuh
- Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | - Frank Simon
- Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | | |
Collapse
|
18
|
Petroni JM, Lucca BG, Fogliato DK, Ferreira VS. Sensitive Approach for Voltammetric Determination of Carbendazim Based on the Use of an Anionic Surfactant. ELECTROANAL 2016. [DOI: 10.1002/elan.201501069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta 2015; 150:198-205. [PMID: 26838400 DOI: 10.1016/j.talanta.2015.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022]
Abstract
Polyaniline/graphene quantum dots (PANI/GQDs) were used to modify a screen-printed carbon electrode (SPCE) in a flow-based system. A method for rapidly determining the Cr(VI) concentrations by using stopped-flow analysis has been developed using an Auto-Pret system coupled with linear-sweep voltammetry using the PANI/GQD-modified SPCE. The GQDs, synthesized in a botton-up manner from citric acid, were mixed with aniline monomer in an optimized ratio. The mixture was injected into an electrochemical flow cell in which electro-polymerization of the aniline monomer occurred. Under conditions optimized for determining Cr(VI), wide linearity was obtained in the range of 0.1-10 mg L(-1), with a detection limit of 0.097 mg L(-1). For a sample volume of 0.5 m L, the modified SPCE can be used continuously with a sample-throughput of more than 90 samples per hour. In addition, this proposed method was successfully applied to mineral water samples with acceptable accuracy, and the quantitative agreement was accomplished in deteriorated Cr-plating solutions with a standard traditional method for Cr(VI) detection.
Collapse
|
20
|
Yu S, Bian Y, Zhou R, Mou R, Chen M, Cao Z. Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials. J Sep Sci 2015; 38:4146-52. [PMID: 26541262 DOI: 10.1002/jssc.201500557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
Abstract
A sensitive and robust high-performance liquid chromatography coupled with electrospray tandem mass spectrometry method for the identification and quantification of glutathione and phytochelatins from rice was developed. Homogenized samples were extracted with water containing 100 mM dithiothreitol, and solid-phase extraction using polymer anion exchange resin was employed for sample purification. Chromatography was performed on a polymeric column with acetonitrile and water containing 0.1% formic acid as the mobile phase at the flow rate of 300 μL/min. The limit of quantitation was 6-100 nM. This assay showed excellent linearity for both glutathione and phytochelatins over physiological normal ranges, with correlation coefficients (r) > 0.9976. Recoveries for four biothiols were within the range of 76-118%, within relative standard deviations less than 15%. The intraday precision (n = 7) was 2.1-13.3%, and the interday precision over 15 days was 4.3-15.2%. The optimized method was applied to analyze tissue samples from rice grown using nutrient solutions with three different cadmium concentrations (0, 50, and 100 μM). With increasing cadmium concentrations, the content of phytochelatin 2 and phytochelatin 3 in rice roots increased, in contrast to most phytochelatins, and the content of glutathione in rice stems and roots decreased significantly.
Collapse
Affiliation(s)
- Shasha Yu
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Yingfang Bian
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Rong Zhou
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Renxiang Mou
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Mingxue Chen
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|