1
|
Queiroz EF, Guillarme D, Wolfender JL. Advanced high-resolution chromatographic strategies for efficient isolation of natural products from complex biological matrices: from metabolite profiling to pure chemical entities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2024; 23:1415-1442. [PMID: 39574436 PMCID: PMC11576662 DOI: 10.1007/s11101-024-09928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 11/24/2024]
Abstract
The isolation of pure compounds from extracts represents a key step common to all investigations of natural product (NP) research. Isolation methods have gone through a remarkable evolution. Current approaches combine powerful metabolite profiling methods for compounds annotation with omics mining results and/or bioassay for bioactive NPs/biomarkers priorisation. Targeted isolation of prioritized NPs is performed using high-resolution chromatographic methods that closely match those used for analytical profiling. Considerable progress has been made by the introduction of innovative stationary phases providing remarkable selectivity for efficient NPs isolation. Today, efficient separation conditions determined at the analytical scale using high- or ultra-high-performance liquid chromatography can be optimized via HPLC modelling software and efficiently transferred to the semi-preparative scale by chromatographic calculation. This ensures similar selectivity at both the analytical and preparative scales and provides a precise separation prediction. High-resolution conditions at the preparative scale can notably be granted using optimized sample preparation and dry load sample introduction. Monitoring by ultraviolet, mass spectrometry, and or universal systems such as evaporative light scattering detectors and nuclear magnetic resonance allows to precisely guide the isolation or trigger the collection of specific NPs with different structural scaffolds. Such approaches can be applied at different scales depending on the amounts of NPs to be isolated. This review will showcase recent research to highlight both the potential and constraints of using these cutting-edge technologies for the isolation of plant and microorganism metabolites. Several strategies involving their application will be examined and critically discussed. Graphical abstract
Collapse
Affiliation(s)
- Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Li G, Chen J, Yang Q, Yang X, Wang P, Lei H, Mi M, Ma Q. Identification of chemical constituents in pomegranate seeds based on ultra-high-performance supercritical fluid chromatography coupled with quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9482. [PMID: 36718938 DOI: 10.1002/rcm.9482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Pomegranate seeds are a potential source of bioactive compounds. Nonetheless, most pomegranate seeds are discarded in the food processing industry, likely due to the lack of convincing data on their component analysis. METHODS To reveal the main chemical constituents of pomegranate seeds, a reliable and sensitive method based on ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (MS) was developed. A time-dependent MSE data acquisition mode was applied to acquire the mass spectrometric data. The chemical constituents were identified by an automatic retrieval of a traditional Chinese medicine library and relevant literature. RESULTS A total number of 59 compounds, including fatty acids, sterols, vitamins, cerebrosides, phospholipids, flavonoids, phenylpropanoids, and others, were tentatively identified. Their possible fragmentation pathways and characteristic ions were proposed and elucidated. CONCLUSIONS The findings of this study, along with the developed methodology, could provide a reference for basic research on the pharmacodynamic substances of pomegranate seeds and shed light on their potential nutritional and therapeutic applications in the future.
Collapse
Affiliation(s)
- Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Qing Yang
- Waters Technology Co., Ltd., Beijing, China
| | | | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ma Mi
- Tibetan Traditional Medical College, Lhasa, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
3
|
Li ZY, Li XK, Yang ZL, Qiu D, Feng N, Zhang XZ, Li BQ. An accurate and reliable analytical strategy for simultaneous determination of target furanocoumarins and flavonoids in cosmetic and pharmaceutical samples by ultra-high performance supercritical fluid chromatography. J Pharm Biomed Anal 2023; 225:115221. [PMID: 36603396 DOI: 10.1016/j.jpba.2022.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Furanocoumarins and flavonoids have various important biological activities and wide application. In the present study, a rapid and reliable supercritical fluid chromatography method was proposed for the separation of 10 target components including 8 furanocoumarins and 2 flavonoids. After detailed condition optimization, the 10 target compounds can be baseline separated on a Trefoil CEL1 (3.0 mm × 150 mm, 2.5 µm) column using gradient elution. A 0.07% (v/v) trifluoroacetic acid in ethanol was determined to be the most proper mobile phase for the separation of target compounds. The column temperature, back pressure, flow rate were set at 36 ℃, 2000 psi, 1.0 mL min-1 to 1.4 mL min-1, respectively. The ten target compounds were analyzed within 24 min using the optimized conditions. Under the optimized conditions, all the target compounds showed good linearity with linear correlation coefficients higher than 0.995, and satisfactory recovery in the range of 83.52-112.92%. All these results showed that the developed ultra-high performance supercritical fluid chromatography method was reliable and effective. Finally, the application of the developed method to cosmetic, Psoraleae fructus and Angelicae dahuricae radix samples were presented. The results highlight the applicability of the ultra-high performance supercritical fluid chromatography method to the analysis of interested compounds in pharmaceutical and cosmetic samples.
Collapse
Affiliation(s)
- Ze Ying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xin Kang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Zhuo Ling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Dian Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
4
|
Jiang D, Wu D, Zhou G, Dai Y, Yang J, Jin Y, Fu Q, Ke Y, Liang X. An in-depth investigation of supercritical fluid chromatography retention mechanisms by evaluation of a series of specially designed alkylsiloxane-bonded stationary phases based on linear solvation energy relationship. J Chromatogr A 2023; 1690:463781. [PMID: 36638687 DOI: 10.1016/j.chroma.2023.463781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Fundamental research on supercritical fluid chromatography (SFC) has gained considerable interest, with many studies focusing on its retention mechanism based on the linear solvation energy relationship (LSER) model. In this paper, a series of alkylsiloxane-bonded stationary phases were specifically designed and synthesized, then evaluated using the mobile phase composed of CO2 with 10% (v/v) methanol. The study demonstrated the close relationship between the interactions (manner and magnitude) of stationary phases and the C-chain length, bonding density and the endcapping treatment. All C8 phases provide positive e, v and negative s, whose magnitude was regularly affected by bonding density. It was worth mentioning the non-endcapped C8 phases could provide H-bonding (positive a and b) by reducing the bonding density of the alkyl chain. Once it was endcapped, the interaction manner did not vary with bonding density adjustment. The non-endcapped C4 phases with higher bonding density could establish additional dispersion interaction (positive v). It can be seen that two synthesis strategies, 1) non-endcapped, long C-chain (C8) combined with low bonding density, and 2) non-endcapped, short C-chain (C4) combined with high bonding density, can obtain the alkylsiloxane-bonded stationary phases (C8-1 and C4-3) to provide both polar and dispersion interactions, showing different separation selectivity. Furthermore, the LSER model with ionic terms was applied to evaluate partial C8 columns, and its rationality was verified. The non-endcapped C8 showed great d+ values, which originated from the silanol groups. C8SCX also possessed a great d+ value due to the benzenesulfonic acid groups. A remarkable result showed that C8SAX exhibited prominent d- and d+ values simultaneously due to the combined effect of silanol and quaternary ammonium groups, which indicates the unique selectivity when separating ionic compounds. This study provides in-depth insights into the retention mechanism of alkylsiloxane-bonded stationary phases in SFC, as well as a reference for the design of SFC stationary phases.
Collapse
Affiliation(s)
- Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Di Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guanghao Zhou
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Roy D, Tarafder A, Miller L. Additives in chiral packed column super/subcritical fluid chromatography: A little goes a long way. J Chromatogr A 2022; 1676:463216. [DOI: 10.1016/j.chroma.2022.463216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
|
6
|
Li BQ, Li ZY, Li XK, Tan LF. Development and validation of ultra-high performance supercritical fluid chromatography method for quantitative determination of four target flavonoids components in citrus samples. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A new method for the analysis of four target flavonoids in two kinds of citrus samples by ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed. Main variables affecting the UHPSFC separation were optimized, and under the optimized conditions the four target compounds (tangeretin, nobiletin, hesperetin and naringenin) can be separated within 10 min. The UHPSFC method allowed the determination of the four target compounds in the diluted stock solutions with limit of detection (LOD) ranging from 1.08 to 2.28 μg mL−1, and limit of quantification (LOQ) ranging from 1.45 to 4.52 μg mL−1, respectively. The coefficients of determination (R
2) of the calibration curves were higher than 0.9950. The recoveries of the four target compounds at three different concentrations were in the range of 82.4–117.6%. The validation results demonstrated that the proposed method is simple, accurate, time-saving and environment friendly, and it is applicable to a variety of complex samples such as medicine-food dual purpose herbs and functional foods.
Collapse
Affiliation(s)
- Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Ze Ying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Xin Kang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Lin Fan Tan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| |
Collapse
|
7
|
Beres M. Expanding the boundaries of SFC: Analysis of biomolecules. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Khater S, Ferguson P, Grand-Guillaume-Perrenoud A. Method development approaches for small-molecule analytes. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Ganzera M, Zwerger M. Analysis of natural products by SFC – Applications from 2015 to 2021. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Lesellier E, West C. Supercritical fluid chromatography for the analysis of natural dyes: From carotenoids to flavonoids. J Sep Sci 2021; 45:382-393. [PMID: 34633729 DOI: 10.1002/jssc.202100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Plant-derived natural dyes are used in a variety of formulated products, from food to cosmetics and pharmaceutics. In addition to their color, they also provide some bioactivity. While they are mostly analyzed with high-performance liquid chromatography, supercritical fluid chromatography was also employed for several dye families, mostly for carotenoids and chlorophylls, and more recently for anthraquinones and flavonoids. These supercritical fluid chromatography methods are described in this review. Because the dyes have different structures and structural variations (polarity, isomers, etc.), the best chromatographic system to achieve their separation is not always the same. Hydrophobic stationary phases are preferred for the most hydrophobic dyes (chlorophylls and carotenoids) while polar stationary phases are preferred for the polar dyes (anthraquinones and flavonoids). Regarding the mobile phase composition, chlorophylls and carotenoids are best eluted with moderate proportions of co-solvent in CO2 (about 40%), while the most polar glycosylated flavonoids require higher proportions of co-solvent and acidic additives. Because dyes are colorful, ultraviolet-visible detection is often sufficient, while mass spectrometry offers additional structural information. Furthermore, fundamental information can also be gained through chromatographic analysis of dyes: either solubility in supercritical fluids, in view of their extraction, or retention behavior providing an understanding of stationary phase properties.
Collapse
Affiliation(s)
- Eric Lesellier
- Institut de Chimie Organique et Analytique, Centre National de la Recherche Scientifique, Unité mixte de recherche, 7311, University of Orleans, Orleans, France
| | - Caroline West
- Institut de Chimie Organique et Analytique, Centre National de la Recherche Scientifique, Unité mixte de recherche, 7311, University of Orleans, Orleans, France
| |
Collapse
|
11
|
Li BQ, Li XK, Lin Y, Li ZY, Zhang XZ, Feng N, Ma AJ, Chen CY, Tan LF. Development and validation of ultra-high performance supercritical fluid chromatography method for quantitative determination of six compounds in Guizhi Fuling capsule and tablet samples. J Sep Sci 2021; 44:3199-3207. [PMID: 34213832 DOI: 10.1002/jssc.202100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022]
Abstract
A fast and simple ultra-high performance supercritical fluid chromatography method has been developed for the determination of six analytes, namely (paeonol, coumarin, cinnamic alcohol, cinnamic acid, paeoniflorin, and amygdalin) in Guizhi Fuling capsule and tablet samples. The influence of the key chromatographic parameters for the separation purposes was evaluated. The optimal column was Trefoil CEL1 column. The optimal mobile phase was a gradient mixture of carbon dioxide and methanol at flow rate of 1.0 mL/min. The back pressure of the system was set to 1.38 × 107 Pa and the temperature to 45°C. The six compounds were separated within 11 min by the proposed ultra-high performance supercritical fluid chromatography method with satisfactory resolution. Method validation confirmed that the procedure is accurate with the recovery rates from 87.04 to 104.30%, intraday precision values less than 4.81% and interday precision less than 5.22%, and linear with R2 higher than 0.9967. Therefore, this work provides a simple and novel method for the simultaneous analysis of six compounds in Guizhi Fuling capsule and tablet samples.
Collapse
Affiliation(s)
- Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Xin Kang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Yuan Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Ze Ying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Chao Yang Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Lin Fan Tan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| |
Collapse
|
12
|
Gordillo R. Supercritical fluid chromatography hyphenated to mass spectrometry for metabolomics applications. J Sep Sci 2020; 44:448-463. [DOI: 10.1002/jssc.202000805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ruth Gordillo
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
13
|
Molineau J, Hideux M, West C. Chromatographic analysis of biomolecules with pressurized carbon dioxide mobile phases - A review. J Pharm Biomed Anal 2020; 193:113736. [PMID: 33176241 DOI: 10.1016/j.jpba.2020.113736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
Biomolecules like proteins, peptides and nucleic acids widely emerge in pharmaceutical applications, either as synthetic active pharmaceutical ingredients, or from natural products as in traditional Chinese medicine. Liquid-phase chromatographic methods (LC) are widely employed for the analysis and/or purification of such molecules. On another hand, to answer the ever-increasing requests from scientists involved in biomolecules projects, other chromatographic methods emerge as useful complements to LC. In particular, there is a growing interest for chromatography with a mobile phase comprising pressurized carbon dioxide, which can be named either (i) supercritical (or subcritical) fluid chromatography (SFC) when CO2 is the major constituent of the mobile phase, or (ii) enhanced fluidity liquid chromatography (EFLC) when hydro-organic or purely organic solvents are the major constituents of the mobile phase. Despite the low polarity of CO2, supposedly inadequate to solubilize such biomolecules, SFC and EFLC were both employed in many occasions for this purpose. This paper specifically reviews the literature related to the SFC/EFLC analysis of free amino acids, peptides, proteins, nucleobases, nucleosides and nucleotides. The analytical conditions employed for specific molecular families are presented, with a focus on the nature of the stationary phase and the mobile phase composition. We also discuss the potential benefits of combining SFC/EFLC to LC in a single gradient elution, a method sometimes designated as unified chromatography (UC). Finally, detection issues are presented, and more particularly hyphenation to mass spectrometry.
Collapse
Affiliation(s)
- Jérémy Molineau
- University of Orleans, ICOA, CNRS UMR 7311, rue de Chartres, BP 6759, 45067 Orléans, France
| | - Maria Hideux
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311, rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
14
|
Analysis of flavonoids with unified chromatography-electrospray ionization mass spectrometry-method development and application to compounds of pharmaceutical and cosmetic interest. Anal Bioanal Chem 2020; 412:6595-6609. [PMID: 32651647 DOI: 10.1007/s00216-020-02798-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
In this project, we aimed at analysing flavonoid-type compounds with unified chromatography (joining supercritical fluid chromatography and enhanced fluidity liquid chromatography with carbon dioxide-methanol mobile phases covering a wide range of compositions) and diode-array and electrospray ionization mass spectrometric detection (UC-DAD-ESI-MS). First, the chromatographic method was developed for 9 standard flavonoid molecules from three different families (flavanols, flavanones and flavonols, glycosylated or not), with a strong focus on mobile phase composition to achieve the elution of a wide range of flavonoids with good chromatographic quality (efficiency and resolution). For this purpose, two stationary phases were selected (ACQUITY UPC2 DEA and Diol), and five different additives (formic acid, citric acid, phosphoric acid, methanesulfonic acid and ammonium hydroxide) were successively introduced in the methanol co-solvent. The composition containing 0.1% methanesulfonic acid in methanol was retained as it provided the best chromatographic quality together with the possibility of hyphenating the chromatography to mass spectrometry. The DEA column appeared to provide the best efficiency and was retained for further method development. The gradient method was then optimized to achieve a fast analysis, which involved elution with a wide range of mobile phase composition (from 20 to 100% co-solvent in methanol) together with reversed flow rate and reversed pressure gradients at fixed temperature. The final gradient lasted 10 min, followed by 2.5 min of re-equilibration. Then, ESI-MS detection was optimized. Because the single-quadrupole mass spectrometer employed (ACQUITY UPC2 QDa) allowed the variation of only a few parameters, a design of experiments was used to define the best compromise for three parameters (probe temperature, cone voltage and capillary voltage). The make-up fluid introduced before entering the MS was also varied: different compositions of methanol-water containing either formic acid, ammonium hydroxide or sodium chloride were tested. The best results in terms of signal-to-noise ratio were obtained with methanol containing 20 mM ammonium hydroxide and 2% water. The optimal UC-DAD-ESI-MS method was then applied to two different flavonoid formulation ingredients. The first one, hidrosmin (5-O-(β-hydroxyethyl)diosmin), is known for its vasoprotective properties and therefore employed in pharmaceutical formulations. The second one, α-glucosyl-hesperidin (sometimes referred to as vitamin P), is employed in cosmetic formulations. Identification of the major compounds in each sample was achieved with the help of MS detection. Graphical abstract.
Collapse
|
15
|
Wang H, Herderschee HR, Bennett R, Potapenko M, Pickens CJ, Mann BF, Haidar Ahmad IA, Regalado EL. Introducing online multicolumn two-dimensional liquid chromatography screening for facile selection of stationary and mobile phase conditions in both dimensions. J Chromatogr A 2020; 1622:460895. [DOI: 10.1016/j.chroma.2020.460895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
|
16
|
Yousefi M, Rahimi-Nasrabadi M, Mirsadeghi S, Pourmortazavi SM. Supercritical Fluid Extraction of Pesticides and Insecticides from Food Samples and Plant Materials. Crit Rev Anal Chem 2020; 51:482-501. [PMID: 32295402 DOI: 10.1080/10408347.2020.1743965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The principal intention of this study is presenting the attempts carried out for extracting, separating, and determining of the pesticide and insecticide residues existing in food and plant samples. In this regard, a set of content, including the explanations about the supercritical fluid extraction (SFE), supercritical fluid chromatography, and various types of pesticides are indicated. Besides, the parameters affecting the pesticides extraction composed of temperature, pressure, modifier, drying agent, and so on are discussed. Also, examples of insecticides extraction by SFE technique as an important subset of pesticides are indicated. Along with these items, some interesting works, concerning the innovations implemented in the field of SFE of pesticide and insecticide residues from foodstuff and plants are depicted.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | | |
Collapse
|
17
|
Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: Review and discussion. J Chromatogr A 2020; 1614:460582. [DOI: 10.1016/j.chroma.2019.460582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/29/2023]
|
18
|
|
19
|
Zhang Y, Wu WJ, Zhou WE, Ren ZQ, Feng XS, Zhang F. Determination of 14 heterocyclic aromatic amines in meat products using solid-phase extraction and supercritical fluid chromatography coupled to triple quadrupole mass spectrometry. J Sep Sci 2020; 43:1372-1381. [PMID: 31944578 DOI: 10.1002/jssc.201900816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 11/12/2022]
Abstract
A novel, simple, and sensitive method has been developed for simultaneous determination of 14 heterocyclic aromatic amines in meat product using solid-phase extraction combined with ultrahigh-performance supercritical fluid chromatography coupled to tandem quadrupole mass spectrometry. The analytes could be separated within 7 min and identified using their retention times and mass. The developed method was validated based on the linearity, limits of quantification, precision, and accuracy. The recovery ranged from 52.3 to 97.5% with an acceptable standard deviation, which is not higher than 6%. The limits of quantitation ranged from 0.03 to 0.17 µg/kg. The selectivity and sensitivity were satisfactory in multiple reaction monitoring mode. The method was applied to commercial meat products, and the results demonstrated that the novel method has potential for the analysis of the targets in food matrices. This is the first work reporting the simultaneous quantification of 14 heterocyclic aromatic amines by means of ultrahigh-performance supercritical fluid chromatography coupled to tandem quadrupole mass spectrometry.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China.,Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wen-Jie Wu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Wei-E Zhou
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| | - Zhi-Qin Ren
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| |
Collapse
|
20
|
Gibitz-Eisath N, Eichberger M, Gruber R, Seger C, Sturm S, Stuppner H. Towards eco-friendly secondary plant metabolite quantitation: Ultra high performance supercritical fluid chromatography applied to common vervain (Verbena officinalis L.). J Sep Sci 2019; 43:829-838. [PMID: 31769179 PMCID: PMC7160600 DOI: 10.1002/jssc.201900854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
This report presents the first ultra high performance supercritical fluid chromatography diode array detector based assay for simultaneous determination of iridoid glucosides, flavonoid glucuronides, and phenylpropanoid glycosides in Verbena officinalis (Verbenaceae) extracts. Separation of the key metabolites was achieved in less than 7 min on an Acquity UPC2 Torus Diol column using a mobile phase gradient comprising subcritical carbon dioxide and methanol with 0.15% phosphoric acid. Method validation for seven selected marker compounds (hastatoside, verbenalin, apigenin‐7‐O‐glucuronide, luteolin‐7‐O‐glucuronide, apigenin‐7‐O‐diglucuronide, verbascoside, and luteolin‐7‐O‐diglucuronide) confirmed the assay to be sensitive, linear, precise, and accurate. Head‐to‐head comparison to an ultra high performance liquid chromatography comparator assay did prove the high orthogonality of the methods. Quantitative result equivalence was evaluated by Passing‐Bablok‐correlation and Bland‐Altman‐plot analysis. This cross‐validation revealed, that one of the investigated marker compound peaks was contaminated in the ultra high performance liquid chromatography assay by a structurally related congener. Taken together, it was proven that the ultra high performance supercritical fluid chromatography instrument setup with its orthogonal selectivity is a true alternative to conventional reversed phase liquid chromatography in quantitative secondary metabolite analysis. For regulatory purposes, assay cross‐validation with highly orthogonal methods seems a viable approach to avoid analyte overestimation due to coeluting, analytically indistinguishable contaminants.
Collapse
Affiliation(s)
- Nora Gibitz-Eisath
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Miriam Eichberger
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Regina Gruber
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Christoph Seger
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Risch Laboratory Group, Buchs, SG, Switzerland
| | - Sonja Sturm
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Wolfender JL, Litaudon M, Touboul D, Queiroz EF. Innovative omics-based approaches for prioritisation and targeted isolation of natural products - new strategies for drug discovery. Nat Prod Rep 2019; 36:855-868. [PMID: 31073562 DOI: 10.1039/c9np00004f] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2013 to 2019 The exploration of the chemical diversity of extracts from various biological sources has led to major drug discoveries. Over the past two decades, despite the introduction of advanced methodologies for natural product (NP) research (e.g., dereplication and high content screening), successful accounts of the validation of NPs as lead therapeutic candidates have been limited. In this context, one of the main challenges faced is related to working with crude natural extracts because of their complex composition and the inadequacies of classical bioguided isolation studies given the pace of high-throughput screening campaigns. In line with the development of metabolomics, genomics and chemometrics, significant advances in metabolite profiling have been achieved and have generated high-quality massive genome and metabolome data on natural extracts. The unambiguous identification of each individual NP in an extract using generic methods remains challenging. However, the establishment of structural links among NPs via molecular network analysis and the determination of common features of extract composition have provided invaluable information to the scientific community. In this context, new multi-informational-based profiling approaches integrating taxonomic and/or bioactivity data can hold promise for the discovery and development of new bioactive compounds and return NPs back to an exciting era of development. In this article, we examine recent studies that have the potential to improve the efficiency of NP prioritisation and to accelerate the targeted isolation of key NPs. Perspectives on the field's evolution are discussed.
Collapse
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 11, Switzerland.
| | | | | | | |
Collapse
|
22
|
Liu J, Makarov AA, Bennett R, Haidar Ahmad IA, DaSilva J, Reibarkh M, Mangion I, Mann BF, Regalado EL. Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative Scale. Anal Chem 2019; 91:13907-13915. [PMID: 31549812 DOI: 10.1021/acs.analchem.9b03408] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatographic separation, analysis and characterization of complex highly polar analyte mixtures can often be very challenging using conventional separation approaches. Analysis and purification of hydrophilic compounds have been dominated by liquid chromatography (LC) and ion-exchange chromatography (IC), with sub/supercritical fluid chromatography (SFC) moving toward these new applications beyond traditional chiral separations. However, the low polarity of supercritical carbon dioxide (CO2) has limited the use of SFC for separation and purification in the bioanalytical space, especially at the preparative scale. Reaction mixtures of highly polar species are strongly retained even using polar additives in alcohol modifier/CO2 based eluents. Herein, we overcome these problems by introducing chaotropic effects in SFC separations using a nontraditional mobile phase mixture consisting of ammonium hydroxide combined with high water concentration in the alcohol modifier and carbon dioxide. The separation mechanism was here elucidated based on extensive IC-CD (IC couple to conductivity detection) analysis of cyclic peptides subjected to the SFC conditions, indicating the in situ formation of a bicarbonate counterion (HCO3-). In contrast to other salts, HCO3- was found to play a crucial role acting as a chaotropic agent that disrupts undesired H-bonding interactions, which was demonstrated by size-exclusion chromatography coupled with differential hydrogen-deuterium exchange-mass spectrometry experiments (SEC-HDX-MS). In addition, the use of NH4OH in water-rich MeOH modifiers was compared to other commonly used basic additives (diethylamine, triethylamine, and isobutylamine) showing unmatched chromatographic and MS detection performance in terms of peak shape, retention, selectivity, and ionization as well as a completely different selectivity and retention behavior. Moreover, relative to ammonium formate and ammonium acetate in water-rich methanol modifier, the ammonium hydroxide in water additive showed better chromatographic performance with enhanced sensitivity. Further optimization of NH4OH and H2O levels in conjunction with MeOH/CO2 served to furnish a generic modifier (0.2% NH4OH, 5% H2O in MeOH) that enables the widespread transition of SFC to domains that were previously considered out of its scope. This approach is extensively applied to the separation, analysis, and purification of multicomponent reaction mixtures of closely related polar pharmaceuticals using readily available SFC instrumentation. The examples described here cover a broad spectrum of bioanalytical and pharmaceutical applications including analytical and preparative chromatography of organohalogenated species, nucleobases, nucleosides, nucleotides, sulfonamides, and cyclic peptides among other highly polar species.
Collapse
Affiliation(s)
- Jinchu Liu
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Alexey A Makarov
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Raffeal Bennett
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Jimmy DaSilva
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mikhail Reibarkh
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Ian Mangion
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Benjamin F Mann
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Erik L Regalado
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| |
Collapse
|
23
|
Supercritical fluid chromatography – Mass spectrometry: Recent evolution and current trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
He PX, Zhang Y, Zhou Y, Li GH, Zhang JW, Feng XS. Supercritical fluid chromatography-a technical overview and its applications in medicinal plant analysis: an update covering 2012-2018. Analyst 2019; 144:5324-5352. [PMID: 31348475 DOI: 10.1039/c9an00826h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medicinal plants with complex matrices are endowed with a wide scope of biological activities. The separation, quantification, characterization and purification of bioactive components from herbal medicine extracts have always challenged analysts. Fortunately, the advancement of various emerging techniques has provided potent support for improving the method selectivity, sensitivity and run speeds in medicinal plant analyses. In recent years, the advent of new-generation supercritical fluid chromatography (SFC) instruments and a wide diversity of column chemistries, coupled with the intrinsic technical features of SFC, have made it an alternative and prominent analytical platform in the medicinal plant research area. This work aims to give a comprehensive overview of the fundamentals, technical advancement and investigating parameters of SFC in combination with three prevalent detectors. Moreover, the latest research progress of SFC applications in medicinal plant analyses is illuminated, with focus on herbal medicine-related SFC papers on the analytical and preparative scale that were published during the period of 2012 to December 2018. The most relevant applications were classified based on the constituents to be analysed. As for the respective research cases, analytical protocols and data processing strategies were provided, along with the indicated restrictions or superiority of the method; thus, the current status of SFC in medicinal plant analysis was presented.
Collapse
Affiliation(s)
- Pei-Xia He
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
25
|
Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. J Chromatogr A 2019; 1593:127-134. [DOI: 10.1016/j.chroma.2019.01.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
|
26
|
Pilařová V, Plachká K, Khalikova MA, Svec F, Nováková L. Recent developments in supercritical fluid chromatography – mass spectrometry: Is it a viable option for analysis of complex samples? Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Evaluation of global conformational changes in peptides and proteins following purification by supercritical fluid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:94-100. [DOI: 10.1016/j.jchromb.2019.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
|
28
|
Cavaliere C, Capriotti AL, La Barbera G, Montone CM, Piovesana S, Laganà A. Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices. Molecules 2018; 23:E3091. [PMID: 30486380 PMCID: PMC6320936 DOI: 10.3390/molecules23123091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/19/2022] Open
Abstract
Nowadays, there is an increasing attention for nutraceuticals and, in general, bioactive compounds naturally present in food. Indeed, the possibility of preserving human health and preventing disease (e.g., cardiovascular diseases, cancer etc.) by the intake of healthy food is attractive for both consumers and food industries. In turn, research in this field was also prompted significantly, with the aim of characterizing these bioactive compounds and ascribe to them a specific activity. The bioactive compounds can belong to several chemical classes. However, their chemical diversity and presence in complex matrices, such as food, make it challenging both their isolation and characterization. To tackle this issue, efficient separation systems are needed, which are mainly based on chromatography. In this context, this mini-review aims to provide the reader with an overview of the most relevant and recent approaches for the separation of the most common bioactive compounds in food, in particular polyphenols, phenols, carotenoids, and peptides, by liquid chromatography approaches.
Collapse
Affiliation(s)
- Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy.
| | - Giorgia La Barbera
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy.
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy.
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy.
| |
Collapse
|
29
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
30
|
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem 2018; 91:210-239. [DOI: 10.1021/acs.analchem.8b05026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Adrian Clarke
- Novartis Pharma AG, Technical Research and Development, Chemical and Analytical Development (CHAD), Basel, CH4056, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
31
|
Khalikova MA, Lesellier E, Chapuzet E, Šatínský D, West C. Development and validation of ultra-high performance supercritical fluid chromatography method for quantitative determination of nine sunscreens in cosmetic samples. Anal Chim Acta 2018; 1034:184-194. [DOI: 10.1016/j.aca.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
|
32
|
Nagai K, Shibata T, Shinkura S, Ohnishi A. Poly(4-vinylpyridine) based novel stationary phase investigated under supercritical fluid chromatography conditions. J Chromatogr A 2018; 1572:119-127. [DOI: 10.1016/j.chroma.2018.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/07/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
|
33
|
Shulaev V, Isaac G. Supercritical fluid chromatography coupled to mass spectrometry – A metabolomics perspective. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:499-505. [DOI: 10.1016/j.jchromb.2018.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
|
34
|
Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions. J Chromatogr A 2018; 1549:85-92. [DOI: 10.1016/j.chroma.2018.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023]
|
35
|
Natural compounds analysis using liquid and supercritical fluid chromatography hyphenated to mass spectrometry: Evaluation of a new design of atmospheric pressure ionization source. J Chromatogr B Analyt Technol Biomed Life Sci 2018. [DOI: 10.1016/j.jchromb.2018.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Laboureur L, Guérineau V, Auxilien S, Yoshizawa S, Touboul D. Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry. J Chromatogr A 2018; 1537:118-127. [DOI: 10.1016/j.chroma.2017.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
|
37
|
Huang Y, Tang G, Zhang T, Fillet M, Crommen J, Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal 2018; 147:65-80. [DOI: 10.1016/j.jpba.2017.08.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
|
38
|
Recent advances on HPLC/MS in medicinal plant analysis—An update covering 2011–2016. J Pharm Biomed Anal 2018; 147:211-233. [DOI: 10.1016/j.jpba.2017.07.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
|
39
|
Yang J, Zhu L, Zhao Y, Xu Y, Sun Q, Liu S, Liu C, Ma B. Separation of furostanol saponins by supercritical fluid chromatography. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Wolrab D, Frühauf P, Gerner C, Kohout M, Lindner W. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger. J Chromatogr A 2017; 1517:165-175. [DOI: 10.1016/j.chroma.2017.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/30/2023]
|
41
|
Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:71-92. [PMID: 28301728 PMCID: PMC5627998 DOI: 10.1146/annurev-anchem-061516-045212] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.
Collapse
Affiliation(s)
- Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Roza Wojcik
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Xing Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Denver, Colorado 80045
| | - Yehia M Ibrahim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Daniel J Orton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Matthew E Monroe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Ronald J Moore
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Richard D Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Erin S Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| |
Collapse
|
42
|
Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal 2017; 140:384-391. [DOI: 10.1016/j.jpba.2017.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/06/2023]
|
43
|
Optimized selection of liquid chromatography conditions for wide range analysis of natural compounds. J Chromatogr A 2017; 1504:91-104. [DOI: 10.1016/j.chroma.2017.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
|
44
|
Allard PM, Genta-Jouve G, Wolfender JL. Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opin Chem Biol 2017; 36:40-49. [DOI: 10.1016/j.cbpa.2016.12.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
|