1
|
Kim YK, Kwon SY, Seo YS, Lee YB, Mok JH. Application of static headspace GC-MS for detection of residual trichloroethylene and toluene solvents in β-cyclodextrin. Food Res Int 2024; 197:115292. [PMID: 39577940 DOI: 10.1016/j.foodres.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Trichloroethylene (TCE) and toluene (TOL), which have been used for β-cyclodextrin (β-CD) synthesis, need to be properly inspected for quality assurance and safety of food additives. In this study, a combination of static headspace separation and gas chromatography-mass spectrometry (SH-GC-MS) was optimized for detecting those residual solvents in β-CD in the compatible safe and green chemistry. Sample injection amount for SH was determined to 100 μL with the minimum volume that provides the suitable accuracy. For the safety and accuracy of analysis, equilibrium conditions of solvents were considered and selected to 60°C for 45 min. Also, we found that the addition of salt, like CaCl2, adversely affected recovery efficiency. Under the proposed condition, coefficients of determination (R2) of both TCE and TOL were more than 0.99 between 0.05-10 mg/L concentrations. Recovery rates and relative standard deviation (RSD) of tested solvents were between 91.7-106.0% and 1.0-8.9%, respectively. From validation with two commercial β-CDs, both TCE and TOL presented lower than regulatory limits for food additives (1 ppm) with satisfactory RSDs (<20%). Collectively, the proposed analytical methods can contribute to safer, simpler, and greener inspection of residual chemicals present in foods for public health.
Collapse
Affiliation(s)
- Yu-Kyeong Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seo-Yeon Kwon
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Yong-Soo Seo
- Cooperative Laboratory Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Yang-Bong Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Nascimento MM, Dos Anjos JP, Nascimento ML, Assis Felix CS, da Rocha GO, de Andrade JB. Development of a green liquid-phase microextraction procedure using a customized device for the comprehensive determination of legacy and current pesticides in distinct types of wine samples. Talanta 2024; 266:124914. [PMID: 37524042 DOI: 10.1016/j.talanta.2023.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
In this work, we reported the development of a novel, simple, and green liquid-phase microextraction (LPME) procedure based on the use of a customized device for the determination of 47 multiclass pesticides in red, white, and rosè wine samples by GC-MS. The main parameters that affect the LPME were optimized using multivariate statistical techniques such as centroid-simplex mixture design and Doehlert design. The optimal conditions were: 70 μL of toluene as extractor solvent; concentration of NaCl (2.7%, m v-1); pH 4; and an extraction time of 30 min, under vortex-assisted agitation (at 500 rpm). After validation, it was possible to obtain LOQ values as low as 7.63 ng L-1 and extraction recoveries ranging from 81.7% to 119% for most of the target pesticides. The application of exploratory analysis, specifically Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), provided evidence indicating contamination in the different types of wine samples, primarily by systemic fungicides.
Collapse
Affiliation(s)
- Madson M Nascimento
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Jeancarlo P Dos Anjos
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Melise L Nascimento
- Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Caio Silva Assis Felix
- Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Gisele O da Rocha
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115, Salvador, BA, Brazil
| | - Jailson B de Andrade
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
3
|
Nascimento MM, Nascimento ML, Pereira Dos Anjos J, Cunha RL, da Rocha GO, Ferreira Dos Santos I, Pereira PADP, de Andrade JB. A green method for the determination of illicit drugs in wastewater and surface waters-based on a semi-automated liquid-liquid microextraction device. J Chromatogr A 2023; 1710:464230. [PMID: 37826922 DOI: 10.1016/j.chroma.2023.464230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 10/14/2023]
Abstract
Liquid-phase microextraction (LPME) is a simple, low-cost, and eco-friendly technique that enables the detection of trace concentrations of organic contaminants in water samples. In this work, a novel customized microextraction device was developed for the LPME extraction and preconcentration of nine illicit drugs in surface water and influent and effluent wastewater samples, followed by analysis by GC-MS without derivatization. The customized device was semi-automated by coupling it with a peristaltic pump to perform the collection of the upper layer of the organic phase. The extraction parameters affecting the LPME efficiency were optimized. The optimized conditions were: 100 µL of a toluene/DCM/EtAc mixture as extractor solvent; 30min of extraction time under vortex agitation (500rpm) and a solution pH of 11.6. The limits of detection and quantification ranged from 10.5ng L-1 (ethylone) to 22.0ng L-1 (methylone), and from 34.9ng L-1 to 73.3ng L-1 for these same compounds, respectively. The enrichment factors ranged from 39.7 (MDMA) to 117 (cocaethylene) and the relative recoveries ranged from 80.4% (N-ethylpentylone) to 120% (cocaine and cocaine-d3). The method was applied to real surface water, effluent, and influent wastewater samples collected in Salvador City, Bahia, Brazil. Cocaine was the main drug detected and quantified in wastewater samples, and its concentration ranged from 312ng L-1 to 1,847ng L-1. Finally, the AGREE metrics were applied to verify the greenness of the proposed method, and an overall score of 0.56 was achieved, which was considered environmentally friendly.
Collapse
Affiliation(s)
- Madson Moreira Nascimento
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Melise Lemos Nascimento
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Jeancarlo Pereira Dos Anjos
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil
| | - Ricardo Leal Cunha
- Laboratório de Toxicologia Forense, Instituto de Análises e Pesquisas Forenses - IAPF, Polícia Científica, São Cristóvão, SE 49100-000, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil
| | - Gisele Olimpio da Rocha
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Ivanice Ferreira Dos Santos
- Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA 44036-900, BA, Brazil
| | - Pedro Afonso de Paula Pereira
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil
| | - Jailson Bittencourt de Andrade
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil.
| |
Collapse
|
4
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Discriminative Behavior of Cyclodextrin Polymers against Dissolved Organic Matter: Role of Cavity Size and Sorbate Properties. Anal Chem 2023; 95:14582-14591. [PMID: 37721868 DOI: 10.1021/acs.analchem.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cyclodextrin polymers (CDPs) are promising next-generation adsorbents in water purification technologies. The selectivity of the polymer derivate cross-linked with tetrafluoroterephthalonitrile (TFN-CDP) for nonionic and cationic micropollutants (MPs) over dissolved organic matter (DOM) renders the adsorbent also attractive for many analytical applications. The molecular drivers of the observed selectivity are, nonetheless, not yet fully understood. To provide new insights into the sorption mechanism, we (i) synthesized TFN-CDPs with different cavity sizes (α-, β-, γ-CDP); (ii) assessed their extraction efficiencies for selected nonionic MPs in competition with different DOM size fractions (<1, 1-3, 3-10, >10 kDa) to test for size-selectivity; and (iii) performed nontargeted, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry analysis on CDP-extracted DOM compounds (<1 kDa) to probe for molecular sorbate properties governing their selective sorption. First, no evidence of size-selectivity was obtained through either the different CD cavity sizes (i) or the two independent approaches (ii) and (iii). Second, we found a dominant impact of sorbate oxygenation and polarity on the extraction of DOM and MPs, respectively, with relatively oxygen-poor/nonpolar molecules favorably retained on all α-, β-, and γ-CDP. Third, our data indicates exclusion of an anionic matrix, such as carboxylic acids, but preferential sorption of cationic nitrogen-bearing DOM, pointing at repulsive and attractive forces with the negatively charged cross-linker as a likely reason. Therefore, we ascribe TFN-CDP's selectivity to nonpolar and electrostatic interactions between MPs/DOM and the polymer building blocks. These molecular insights can further aid in the optimization of efficient and selective sorbent design for environmental and analytical applications.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
5
|
Maleki S, Hashemi P, Adeli M. A simple and portable vacuum assisted headspace solid phase microextraction device coupled to gas chromatography based on covalent organic framework/metal organic framework hybrid for simultaneous analysis of volatile and semi-volatile compounds in soil. J Chromatogr A 2023; 1705:464195. [PMID: 37423076 DOI: 10.1016/j.chroma.2023.464195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Various microextraction methods have demonstrated a positive effect when assisted by vacuum. However, working with such systems is often laborious, they often require expensive and non-portable vacuum pumps, and may even suck off some sample vapor or solid particles during the evacuation process. To address these issues, a simple, and affordable vacuum-assisted headspace solid-phase microextraction (HS-SPME) device was developed in this study. The device, named In Syringe Vacuum-assisted HS-SPME (ISV-HS-SPME), utilizes an adjustable 40 mL glass syringe as a vacuum provider and sampling vessel. A new fiber coating, made from a hybrid of covalent triazine-based frameworks and metal-organic frameworks (COF/MOF), was prepared and characterized by Fourier transform infrared spectrometry, field emission scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis, and Brunauer-Emmett-Teller techniques for use in the ISV-HS-SPME. By optimizing parameters such as extraction temperature, extraction time, desorption temperature, desorption time, and, humidity using a simplex method, the ISV system was found to increase the extraction efficiency of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in solid samples by up to 175%. The determinations were followed by GC-FID measurements. Compared to three commercially available fibers, the ISV-HS-SPME device with the COF/MOF (2DTP/MIL-101-Cr) fiber exhibited significantly higher peak areas for PAHs and BTEX. The linear dynamic ranges for BTEX and PAHs were 7.1-9000 ng g-1 and 0.23-9000 ng g-1, respectively, with limits of detection ranging from 2.1-5 ng g-1 for BTEX and 0.07-1.6 ng g-1 for PAHs. The relative standard deviation of the method was 2.6-7.8% for BTEX and 1.6-6.7% for PAHs. The ISV-HS-SPME was successfully used to simultaneously determine PAHs and BTEX in polluted soil samples with recoveries ranging from 80.4 to 108%.
Collapse
Affiliation(s)
- Sara Maleki
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Payman Hashemi
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| | - Mohsen Adeli
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| |
Collapse
|
6
|
Arkhipov VP, Arkhipov RV, Petrova EV, Filippov A. Micellar and solubilizing properties of rhamnolipids. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:345-355. [PMID: 36840535 DOI: 10.1002/mrc.5337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 05/11/2023]
Abstract
We studied the micellar and solubilizing properties of aqueous solutions of unfractionated rhamnolipids produced by Pseudomonas aeruginosa. We used nuclear magnetic resonance (NMR) diffusometry, dynamic light scattering, and conductometry to measure the critical micelle concentration (CMC) of rhamnolipid solutions and determined the effective hydrodynamic radii of rhamnolipid monomers and micelles. Based on selective measurements of the self-diffusion coefficients of molecules, performed by NMR diffusometry, the solubilizing properties of rhamnolipids were studied depending on their concentration in solution; aromatic hydrocarbons, benzene, toluene, ethylbenzene, and para-xylene were taken as solubilizates. On the basis of the measurement results, we estimated the distribution coefficient of the solubilizate between the micellar (solubilized) and free (in the aqueous phase) states and the solubilizing capacity of rhamnolipid micelles.
Collapse
Affiliation(s)
- Victor P Arkhipov
- Department of Physics, Kazan National Research Technological University, Kazan, 420015, Russian Federation
| | - Ruslan V Arkhipov
- Institute of Physics, Kazan Federal University, Kazan, 420008, Russian Federation
| | - Ekaterina V Petrova
- Department of Analytical Chemistry, Kazan National Research Technological University, Kazan, 420015, Russian Federation
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
7
|
Teimoori S, Shirkhanloo H, Hassani AH, Panahi M, Mansouri N. An immobilization of aminopropyl trimethoxysilane-phenanthrene carbaldehyde on graphene oxide for toluene extraction and separation in water samples. CHEMOSPHERE 2023; 316:137800. [PMID: 36634719 DOI: 10.1016/j.chemosphere.2023.137800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
A new functionalized Nano graphene with aminopropyl trimethoxysilane-phenanthrene-4-carbaldehyde (NGO@APTMS-PNTCA) as a novel adsorbent was used to extract toluene from water samples by the ultrasound-assisted dispersive solid-phase microextraction procedure (USA-D-SPME). So, 50 mg of NGO@APTMS-PNTCA adsorbent was added to water samples and sonicated for 20 min. After toluene extraction, the NGO@APTMS-PNTCA adsorbent separated from the liquid phase with a Whatman membrane filter (200 nm). Then, the toluene was back-extracted from the adsorbent by 2.0 mL of the acetone/ethanol (1:1, eluent) at 25 °C. Due to the physical properties and structure of toluene, fluorobenzene was used as an internal standard. Finally, the toluene values were measured by a gas chromatography-flame ionization detector (GC-FID). In optimized conditions, the limit of detection (LOD), the working range (WR), and the enrichment factor (EF) were obtained at 2.5 μg L-1, 0.01-1.2 mg L-1, and 9.63, respectively (MRSD% = 3.38). Also, the limit of quantification (LOQ) 10 μg L-1 and extraction recovery of more than 95% was efficiently achieved for toluene. Standard additions of toluene to blank solutions had high recoveries between 95.2% and 104.5% with a relative standard deviation (RSD%) of 0.27-5.2. The absorption capacities of NGO and NGO@APTMS-PNTCA adsorbents for toluene extraction were obtained at 32.8 mg g-1 and 154.9 mg g-1, respectively. The USA-D-SPME method was validated by spiking the standard concentrations of toluene. The proposed method demonstrated relevant and suitable statistical results with high accuracy and precision for toluene extraction by a novel adsorbent synthesis.
Collapse
Affiliation(s)
- Shahnaz Teimoori
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran, 14857-33111, Iran.
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Panahi
- Department of Energy and Industry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nabiollah Mansouri
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, de la Guardia M. Miniaturized Solid Phase Extraction techniques for different kind of pollutants analysis: State of the art and future perspectives – PART 1. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Fliszár-Nyúl E, Zinia Zaukuu JL, Szente L, Kovacs Z, Poór M. Impacts of β-cyclodextrin bead polymer (BBP) treatment on the quality of red and white wines: Color, polyphenol content, and electronic tongue analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Ma S, Zhang H, Qu J, Zhu X, Hu Q, Wang J, Ye P, Sai F, Chen S. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ghorbani YA, Ghoreishi SM, Ghani M. Micro-Solid Phase Extraction of Volatile Organic Compounds in Water Samples Using Porous Membrane-Protected Melamine-Modified MIL-88 Followed by Gas Chromatography-Mass Spectrometry. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1954038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yousef Ali Ghorbani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Sayed Mehdi Ghoreishi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
12
|
Hafiz Rozaini MN, Saad B, Lim JW, Yahaya N, Ramachandran MR, Kiatkittipong W, Mohamad M, Chan YJ, Goh PS, Shaharun MS. Development of β-cyclodextrin crosslinked citric acid encapsulated in polypropylene membrane protected-μ-solid-phase extraction device for enhancing the separation and preconcentration of endocrine disruptor compounds. CHEMOSPHERE 2022; 303:135075. [PMID: 35618057 DOI: 10.1016/j.chemosphere.2022.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disruptor compounds (EDCs) such as plasticisers, surfactants, pharmaceutical products, personal care products and pesticides are frequently released into the environmental waters. Therefore, a sensitive and environmentally friendly method is entailed to quantify these compounds at their trace level concentrations. This study encapsulated the β-cyclodextrin crosslinked with citric acid in a polypropylene membrane protected-μ-solid phase extraction (BCD-CA μ-SPE) device for preconcentrating the EDCs (triclosan, triclocarban, 2-phenylphenol, 4-tert-octylphenols and bisphenol A) in real water samples before the analysis by high-performance liquid chromatography. FT-IR and TGA results indicated that BCD-CA was successfully synthesised with the formation of ester linkage (1078.33 cm-1) and O-H stretching from carboxylic acid (3434.70 cm-1) with higher thermal stability as compared with native CD with the remaining weight above 72.1% at 500 °C. Several critical parameters such as the sorbent loading, type and amount of salts, extraction time, sample volume, sample pH, type and volume of desorption solvents and desorption time were sequentially optimised and statistically validated. Under the optimum condition, the use of BCD-CA μ-SPE device had manifested good linearity (0.5-500 μg L-1) with the determination of the coefficient range of 0.9807-0.9979. The p-values for the F-test and t-test (6.60 × 10-8 - 1.77 × 10-5) were lesser than 0.05 and low detection limits ranging from 0.27 to 0.84 μg L-1 for all studied EDCs. The developed technique was also successfully applied for EDC analyses in four distinct real water samples, namely, wastewater, river water, tap water and mineral water, with good EDCs recoveries (80.2%-99.9%), low relative standard deviations (0.1%-3.8%, n = 3) with enrichment factor ranging from 9 to 82 folds. These results signified the potential of the BCD-CA μ-SPE device as an efficient, sensitive, and environmentally friendly approach for analyzing EDCs.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | | | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Yi Jing Chan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| | - Maizatul Shima Shaharun
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
13
|
Haimhoffer Á, Vas A, Árvai G, Fenyvesi É, Jicsinszky L, Budai I, Bényei A, Regdon G, Rusznyák Á, Vasvári G, Váradi J, Bácskay I, Vecsernyés M, Fenyvesi F. Investigation of the Drug Carrier Properties of Insoluble Cyclodextrin Polymer Microspheres. Biomolecules 2022; 12:biom12070931. [PMID: 35883488 PMCID: PMC9313285 DOI: 10.3390/biom12070931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The investigation of the usability of solid insoluble β-cyclodextrin polymers (βCDP) in micro-sized, controlled drug delivery systems has only recently attracted interest. Our aim was to form complexes with poorly soluble active pharmaceutical ingredients (APIs) with two types of βCDP for drug delivery applications. Solid insoluble cyclodextrin polymer of irregular shape (βCDPIS) and cyclodextrin microbeads (βCDPB) were used in the experiments. Morphology, surface area, size distribution and swelling capacity of carriers were investigated. We created complexes with two APIs, curcumin and estradiol, and applied powder X-ray diffraction, FTIR and thermal analysis (TGA/DSC) to prove the complexation. Finally, the dissolution, biocompatibility and permeation of APIs on Caco-2 cells were investigated. The size of the beads was larger than 100 µm, their shape was spherical and surfaces were smooth; while the βCDPIS particles were around 4 µm with irregular shape and surface. None of the polymers showed any cytotoxic effect on Caco-2 cells. Both carriers were able to extract curcumin and estradiol from aqueous solutions, and the dissolution test showed prolonged estradiol release. Caco-2 permeability tests were in accordance with the complexation abilities and dissolution of the complexes. This study offers useful data for further pharmaceutical applications of insoluble cyclodextrin polymers.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Alexandra Vas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
| | - Gabriella Árvai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
| | - Éva Fenyvesi
- Cyclolab Cyclodextrin R & D Laboratory Ltd., Illatos St. 7, H-1097 Budapest, Hungary;
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Street 2-4, H-4028 Debrecen, Hungary;
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, Egyetem Sqr. 1, H-4032 Debrecen, Hungary;
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (A.V.); (G.Á.); (Á.R.); (G.V.); (J.V.); (I.B.); (M.V.)
- Correspondence:
| |
Collapse
|
14
|
Zhou L, Yu J. Use of hydroxypropyl β-cyclodextrin hybrid monolithic material as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples. J Sep Sci 2022; 45:2310-2320. [PMID: 35447012 DOI: 10.1002/jssc.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
In this study, the hydroxypropyl β-cyclodextrin hybrid monolithic material was fabricated and firstly applied as adsorbent for dispersive solid-phase extraction coupled with high-performance liquid chromatography to detect trace-level seven fluoroquinolones in water samples. The prepared hydroxypropyl β-cyclodextrin hybrid monolithic material was characterized by fourier transform infrared spectroscopy, scanning electron microscopy and adsorption experiments, which showed excellent specific adsorption to the target fluoroquinolones. Under the optimized conditions, the extraction methodology showed satisfactory precision with relative standard deviations between 2.6 and 5.6%, good linearity (R2 ≥0.9990) and satisfactory recoveries (82.5∼91.8%). The limits of detection and limits of quantification of the method were in the range of 0.4∼1.2 ng mL-1 and 1.4∼4.0 ng mL-1 respectively, which confirmed the possibility of quantifying trace levels. Furthermore, the material could be reused at least five times. These results demonstrated that the hydroxypropyl β-cyclodextrin hybrid monolithic material was a promising adsorbent for fluoroquinolones, and the established method combined dispersive solid-phase extraction with high-performance liquid chromatography was suitable for the determination of fluoroquinolones in aqueous samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Zhou
- Department of Health Inspection, College of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Shenyang, Liaoning Province, 110034, China.,School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
15
|
Baezzat MR, Jahromi FZ. Differential Pulse Voltammetric Determination of Acetaminophen Using Carbon Paste Electrode Modified with β-Cyclodextrin/Gold/Titanium Dioxide Nanocomposite. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Crini G, Bradu C, Fourmentin M, Cosentino C, Ribeiro ARL, Morin-Crini N. Sorption of 4-n-nonylphenol, 4-n-octylphenol, and 4-tert-octyphenol on cyclodextrin polymers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:171-181. [PMID: 34014475 DOI: 10.1007/s11356-021-14435-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Alkylphenols are industrial pollutants commonly present in wastewater. They are difficult to eliminate by conventional treatment processes, ending up in the sludge of wastewater treatment plants. In this study, we propose to use cross-linked cyclodextrin-based polymers (ECP) as sorbents to treat three alkylphenols, namely, one nonylphenol (4-n-NP) and two octylphenols (4-n-OP and 4-tert-OP), present in aqueous solution by a batch method. The experiments were carried out with five cyclodextrin polymers (α-ECP, β-ECP, γ-ECP, α,β,γ-ECP, and HP-β-ECP). Sorption results showed that all polymers, with the exception of α-ECP, had high sorption capacities between 60 and 100% of the alkylphenols in the concentration range studied (between 25 and 100 μg/L). In all cases, HP-β-ECP has shown the highest removals, regardless of the structure of the molecule. The order obtained was HP-β-ECP >> β-ECP ~ α,β,γ-ECP >> γ-ECP > α-ECP. The 4-tert-OP compound was the best adsorbed, regardless the material and the solution studied. Sorption results also indicated that (i) the sorption efficiency decreased with the increasing of alkylphenol concentration; (ii) sodium chloride had a strong negative effect on the sorption process; and (iii) the performance remained unchanged after five sorption-regeneration cycles. The main sorption mechanism of alkylphenols occurring in ECP was the inclusion within the cyclodextrin cavities. The obtained results proved that cyclodextrin polymers could serve as efficient sorbents for the removal of alkylphenols from real effluents.
Collapse
Affiliation(s)
- Grégorio Crini
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
| | - Corina Bradu
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
- PROTMED Centre, 050663, Bucharest, Romania
| | - Marc Fourmentin
- Laboratoire de Physico-Chimie de l'Atmosphère MREI2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Cesare Cosentino
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
- Istituto di Chimica e Biochimica G. Ronzoni, 81 via G. Colombo, 20133, Milan, Italy
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Nadia Morin-Crini
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France.
| |
Collapse
|
17
|
Nalluri LP, Popuri SR, Lee CH, Terbish N. Synthesis of biopolymer coated functionalized superparamagnetic iron oxide nanoparticles for the pH-sensitive delivery of anti-cancer drugs epirubicin and temozolomide. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1785449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lakshmi P. Nalluri
- Department of Environmental Engineering, Da-Yeh University, Changhua, R.O.C., Taiwan
| | - Srinivasa R. Popuri
- Department of Biological and Chemical Sciences, The University of the West Indies, Barbados, West Indies
| | - Ching-Hwa Lee
- Department of Environmental Engineering, Da-Yeh University, Changhua, R.O.C., Taiwan
| | - Narangarav Terbish
- Department of Environmental Engineering, Da-Yeh University, Changhua, R.O.C., Taiwan
| |
Collapse
|
18
|
Yazdanpanah M, Nojavan S. Cyclodextrin-starch hard gel as an efficient green sorbent for dispersive micro solid-phase extraction of eight polycyclic aromatic hydrocarbons from environmental water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Sun M, Han S, Feng J, Li C, Ji X, Feng J, Sun H. Recent Advances of Triazine-Based Materials for Adsorbent Based Extraction Techniques. Top Curr Chem (Cham) 2021; 379:24. [PMID: 33945059 DOI: 10.1007/s41061-021-00336-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
This review mainly focused on the synthesis and properties of triazine-based materials as well as the state-of-the-art development of these materials in adsorption-based extraction techniques in the past 5 years, such as solid-phase extraction, magnetic solid-phase extraction, solid-phase microextraction and stir bar sorptive extraction, and the detection of various pollutants, including metal ions, drugs, estrogens, nitroaromatics, pesticides, phenols, polycyclic aromatic hydrocarbons and parabens. In the triazine-functionalized composites, triazine-based polymers and covalent triazine frameworks have been developed as the adsorbents with potential for environmental pollutants, mainly relying on the large surface area and the affinity of triazinyl groups with the targets. Triazine-based adsorbents have satisfactory sensitivity and selectivity towards different types of analytes, attributed from various mechanisms including π-π, electrostatics, hydrogen bonds, and hydrophobic and hydrophilic effects. The prospects of the materials for adsorption-based extraction were also presented, which can offer an outlook for the further development and applications.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Sen Han
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
20
|
Liu X, Hu Q, Tong Y, Li N, Ouyang S, Yang H, Xu J, Ouyang G. Sample bottle coated with sorbent as a novel solid-phase extraction device for rapid on-site detection of BTEX in water. Anal Chim Acta 2021; 1152:338226. [PMID: 33648643 DOI: 10.1016/j.aca.2021.338226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
Solid-phase extraction (SPE) is a popular technique for environmental sample pretreatment. However, SPE usually requires complex sample pretreatment processes, which is time-consuming and inconvenient for real-time and on-site monitoring. Herein, a solvent-free, rapid, and user-friendly SPE device was developed by coating the polydimethylsiloxane (PDMS)/divinylbenzene (DVB) sorbent on the inner wall of a sample bottle. The extraction process and desorption process were both carried out in the bottle. The analytes trapped in the sorbent were thermally desorbed and simultaneously sucked out from the bottle by an air sampling tube equipped on field-portable GC-MS. Different to previous work, the sample pretreatment process didn't require any complicated and time-consuming steps, such as centrifugation or filtration. The total analysis time for each sample was less than 25 min, which was feasible for rapid on-site detection, and thus avoided the losses and contamination of samples in conventional sample storage and transportation processes. Under optimal conditions, the proposed SPE method exhibited wide linear ranges, low detection limits (0.010-0.036 μg L-1, which were much lower than the maximum levels restricted by the US Environmental Protection Agency and the Chinese GB3838-2002 standard), good intra-bottle repeatability (6.13-7.17%, n = 3) and satisfactory inter-bottle reproducibility (4.73-6.47%, n = 3). Finally, the method was successfully applied to the rapid detection of BTEX in the field. The recoveries of BTEX in spiked water samples ranged from 89.1% to 116.2%. This work presents a novel SPE approach for rapid on-site monitoring in water samples.
Collapse
Affiliation(s)
- Xiwen Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Qingkun Hu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yuanjun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Sai Ouyang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| |
Collapse
|
21
|
Chao SJ, Chung KH, Lai YF, Lai YK, Chang SH. Keratin particles generated from rapid hydrolysis of waste feathers with green DES/KOH: Efficient adsorption of fluoroquinolone antibiotic and its reuse. Int J Biol Macromol 2021; 173:211-218. [PMID: 33482215 DOI: 10.1016/j.ijbiomac.2021.01.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 01/28/2023]
Abstract
Fluoroquinolone antibiotics are widely used in human and veterinary medicine. However, untreated fluoroquinolone seriously threatens the ecosystem and human health. In this study, deep eutectic solvents (DESs) were applied for the hydrolysis of waste feathers, and the keratin particles (KPs) in a low-cost teabag were utilized to adsorb fluoroquinolone norfloxacin. Results showed that choline chloride/ethylene glycol DES rapidly hydrolyzed feathers within 10 min, and the undissolved particles effectively adsorbed norfloxacin. Adding KOH markedly shortened the hydrolysis time (6 min) and increased the adsorption ability of KPs. The optimum hydrolysis conditions were DES ratio of 1 g: 4.67 g, KOH of 35.68 g L-1, and temperature of 90 °C. When KPDES+KOH of 2 g L-1, norfloxacin of 25 mg L-1, and pH0 7 were used, 94% of norfloxacin was removed in 60 min. A low-cost teabag effectively separated the KPs from the solution after adsorption and did not decrease the adsorption ability of the KPs. The Langmuir isotherm model well described the adsorption behavior of KPsDES+KOH (qmax = 79.36 mg g-1, R2 = 0.9972). In addition, acetone efficiently regenerated the exhausted KPsDES+KOH. The KPs maintained >80% of its adsorption ability after seven cycles of regeneration.
Collapse
Affiliation(s)
- Shu-Ju Chao
- Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC
| | - Kuo-Hao Chung
- Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC
| | - Yi-Fen Lai
- Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC
| | - Yu-Kuei Lai
- Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan, ROC
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan, ROC; Department of Family and Community Medicine, Chung-Shan Medical University Hospital, Taichung 402, Taiwan, ROC.
| |
Collapse
|
22
|
Abstract
Chemical pollution of water has raised great concerns among citizens, lawmakers, and nearly all manufacturing industries. As the legislation addressing liquid effluents becomes more stringent, water companies are increasingly scrutinized for their environmental performance. In this context, emergent contaminants represent a major challenge, and the remediation of water bodies and wastewater demands alternative sorbent materials. One of the most promising adsorbing materials for micropolluted water environments involves cyclodextrin (CD) polymers and cyclodextrin-containing polysaccharides. Although cyclodextrins are water-soluble and, thus, unusable as adsorbents in aqueous media, they can be feasibly polymerized by using different crosslinkers such as epichlorohydrin, polycarboxylic acids, and glutaraldehyde. Likewise, with those coupling agents or after substituting hydroxyl groups with more reactive moieties, cyclodextrin units can be covalently attached to a pre-existing polysaccharide. In this direction, the functionalization of chitosan, cellulose, carboxymethyl cellulose, and other carbohydrate polymers with CDs is vastly found in the literature. For the system containing CDs to be used for remediation purposes, there are benefits from a synergy that arises from (i) the ability of CD units to interact selectively with a broad spectrum of molecules, forming inclusion complexes and higher-order supramolecular assemblies, (ii) the functional groups of the crosslinker comonomers, (iii) the three-dimensional structure of the crosslinked network, and/or (iv) the intrinsic characteristics of the polysaccharide backbone. In view of the most recent contributions regarding CD-based copolymers and CD-containing polysaccharides, this review discusses their performance as adsorbents in micropolluted water environments, as well as their interaction patterns, addressing the influence of their structural and physicochemical properties and their functionalization.
Collapse
|
23
|
Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. NANOMATERIALS 2020; 11:nano11010007. [PMID: 33374502 PMCID: PMC7822197 DOI: 10.3390/nano11010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Separation and pre-concentration of trace pollutants from their matrix by reversible formation of inclusion complexes has turned into a widely studied field, especially for the benefits provided to different areas. Cyclodextrins are non-toxic oligosaccharides that are well known for their host–guest chemistry, low prices, and negligible environmental impact. Therefore, they have been widely used as chiral selectors and delivery systems in the pharmaceutical and food industry over time. However, their use for extraction purposes is hampered by their high solubility in water. This difficulty is being overcome with a variety of investigations in materials science. The setting-up of novel solid sorbents with improved properties thanks to the presence of cyclodextrins at their structure is still an open research area. Some properties they can offer, such as an increased selectivity or a good distribution along the surface of a solid support, which provides better accessibility for guest molecules, are characteristics of great interest. This systematic review reports the most significant uses of cyclodextrins for the adsorption of pollutants in different-origin samples based on the works reported in the literature in the last years. The study has been carried out indistinctly for quantitation and remediation purposes.
Collapse
|
24
|
Nascimento MM, da Rocha GO, de Andrade JB. Customized dispersive micro-solid-phase extraction device combined with micro-desorption for the simultaneous determination of 39 multiclass pesticides in environmental water samples. J Chromatogr A 2020; 1639:461781. [PMID: 33517136 DOI: 10.1016/j.chroma.2020.461781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
A dispersive micro-solid phase extraction (d-µ-SPE) procedure was developed for the simultaneous extraction of 39 multiclass pesticides, containing a variety of chemical groups (organophosphate, organochlorine, pyrethroid, strobilurin, thiocarbamate, triazole, imidazole, and triazine), from water samples. A customized d-µ-SPE glass device was combined with a multi-tube platform vortex and a micro-desorption unit (Whatman Mini-UniPrep G2 syringeless filter), which allowed the unique simultaneous desorption, extract filtration, and injection. A simplex-centroid mixture design and Doehlert design were employed to optimize the extraction conditions. The optimized extraction conditions consisted of an extraction time of 30 min, an addition of 6.74 % of NaCl into 100 mL of water sample, and a desorption time of 24 min with 500 µL of EtAc. The procedure provided a low limit of detection (LOD), ranging from 0.51 ng L-1 (4,4-DDE) to 22.4 ng L-1 (dimethoate), and an enrichment factor ranging from 72.5 (dimethoate) to 200 (tebuconazole). The relative recoveries of the pesticides from spiked freshwater and seawater ranged from 74.2 % (endrin) to 123 % (molinate). The proposed procedure was applied to detect the presence of multiclass pesticides in environmental water samples. Three pesticides commonly applied in Brazil, namely, malathion, dimethoate, and lambda-cyhalothrin, were detected in concentrations ranging from <LOD to 120 ng L-1 (dimethoate).
Collapse
Affiliation(s)
- Madson Moreira Nascimento
- Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Gisele Olímpio da Rocha
- Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil.
| |
Collapse
|
25
|
Tan SC, Sin Leow JW, Lee HK. Emulsification-assisted micro-solid-phase extraction using a metal-organic framework as sorbent for the liquid chromatography-tandem mass spectrometric analysis of polar herbicides from aqueous samples. Talanta 2020; 216:120962. [DOI: 10.1016/j.talanta.2020.120962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/19/2023]
|
26
|
Fabrication of a novel azamacrocycle-based adsorbent for solid-phase extraction of organophosphorus pesticides in tea drinks. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Kachangoon R, Vichapong J, Santaladchaiyakit Y, Srijaranai S. Cloud-point extraction coupled to in-situ metathesis reaction of deep eutectic solvents for preconcentration and liquid chromatographic analysis of neonicotinoid insecticide residues in water, soil and urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Abstract
Cyclodextrins are widely used excipients, composed of glucopyranose units with a cyclic structure. One of their most important properties, is that their inner cavity is hydrophobic, while their surface is hydrophilic. This enables them for the complex formation with lipophilic molecules. They have several applications in the pharmaceutical field like solubility enhancers or the building blocks of larger drug delivery systems. On the other hand, they have numerous effects on cells or biological barriers. In this review the most important properties of cyclodextrins and cyclodextrin-based drug delivery systems are summarized with special focus on their biological activity.
Collapse
|
29
|
Simple and effective dispersive micro-solid phase extraction procedure for simultaneous determination of polycyclic aromatic compounds in fresh and marine waters. Talanta 2019; 204:776-791. [DOI: 10.1016/j.talanta.2019.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|
30
|
Gentili A. Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 2019; 1609:460654. [PMID: 31679713 DOI: 10.1016/j.chroma.2019.460654] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Cyclodestrins (CDs) are cyclic oligosaccharides well-known for their ability to form host-guest inclusion complexes with properly sized compounds. They have been used for decades as chiral selectors as well as drug delivery systems within the frameworks of separation science and pharmaceutical science. More recently, their use has been extended to the field of extractive science under the stimulus of additional advantageous characteristics, such as low-price, negligible environmental impact, non-toxicity, as arising from the fact that natural CDs are starch degradation products. To abate their solubility in water and generate novel sorbents for solid phase extraction, the following approaches have been employed: (i) immobilization onto inert materials (silica, attapulgite, etc.); (ii) immobilization onto nanomaterials (magnetic nanoparticles, titanium oxide, carbon nanotubes, graphene oxide, etc.); (iii) polymerisation with specific cross-linkers to form the so-called CD-based nanosponges. Particularly promising are these last ones for their selectivity, mesoporous structure, insolubility in aqueous media and good dispersibility. This review offers a concise overview on the state of art and future prospects of CDs in this important sector of the analytical chemistry, offering a critical perspective of the most significant applications.
Collapse
Affiliation(s)
- Alessandra Gentili
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, "Sapienza" University of Rome, P.le A. Moro n° 5, 00185 Rome, Italy.
| |
Collapse
|
31
|
Adsorption behaviour of Eriochrome Black T from water onto a cross-linked β-cyclodextrin polymer. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
PAS1-modified optical SIS sensor for highly sensitive and specific detection of toluene. Biosens Bioelectron 2019; 141:111469. [PMID: 31260905 DOI: 10.1016/j.bios.2019.111469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 11/23/2022]
Abstract
We report on a novel solution immersed silicon (SIS) sensor modified with bio-receptor to detect toluene. To perform this approach, bio-receptor PAS1 which specifically interacts with toluene was chosen as a capture agent for SIS ellipsometric sensing. We constructed wild PAS1 and mutant PAS1 (F46A and F79Y) which are toluene binding-defective. Especially, we utilized an easily accessible capturing approach based on silica binding peptide (SBP) for direct immobilization of PAS1 on the SiO2 surfaces. After the immobilization of SBP-tagged PAS1 to the sensing layers, PAS1-based SIS sensor was evaluated for its ability to recognize toluene. As a result, a significant up-shift in Psi (Ψ) was clearly observed with a low limit of detection (LOD) of 0.1 μM, when treated with toluene on wild PAS1-surface, but not on mutant PAS1-sensing layers, indicating the selective interactions between PAS1 and toluene molecule. The PAS1-SIS sensor showed no changes in Psi (Ψ), if any, negligible, when exposed to benzene, phenol, xylene and 4-nitrophenol as negative controls, thereby demonstrating the specificity of interaction between PAS1 and toluene. Taken together, our results strongly indicate that PAS1-modified ellipsometry sensor can provide a high fidelity system for the accurate and selective detection of toluene.
Collapse
|
33
|
Polydopamine-assisted attachment of β-cyclodextrin onto iron oxide/silica core-shell nanoparticles for magnetic dispersive solid phase extraction of aromatic molecules from environmental water samples. J Chromatogr A 2019; 1601:9-20. [PMID: 31084899 DOI: 10.1016/j.chroma.2019.04.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
Abstract
Pollution monitoring in a contaminated environmental water samples is a big challenge. In this article, immobilization of β-cyclodextrin molecules onto the magnetic core-shell silica nanoparticles was conducted by using adhesive properties of polydopamine. The synthesis path was included of three steps: producing Fe3O4 nanoparticles as a core, coating the cores with a silica layer, and further coating with β-cyclodextrin molecules. The structural characteristics of the synthesized nanocomposite were investigated by using attenuated total reflection-Fourier transform infrared spectroscopy, x-ray diffraction analysis, field emission scanning microscopy, transmission electron microscopy, dynamic light scattering, vibrating-sample magnetometer and energy-dispersive X-ray spectroscopy. Afterwards, obtained nanocomposite was used to extract eight polycyclic aromatic hydrocarbons from environmental water samples. Results were demonstrated that analyts with different chemical structures had different extraction manners during the process. Important effective parameters on the extraction efficiency; such as sorbent type and mass, desorption solvent (type and volume), salt concentration and the time of extraction & desorption; were investigated. Under the optimum operating conditions, good linearity within the range of 1-1000 ng/mL was obtained while coefficient of determination (r2) was in the range of 0.990-0.998. The limits of detection were between 0.04 and 0.57 ng/mL, and the enrichment factor was found to be 21-90. This nanocomposite was also applied for the extraction and enrichment of aromatic analytes from the canal and rain water samples prior to gas chromatography analysis.
Collapse
|
34
|
Magnetically Modified Porous β-Cyclodextrin Polymers for Dispersive Solid-Phase Extraction High-Performance Liquid Chromatography Analysis of Sudan Dyes. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01476-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Fluorescence-Based Detection of Benzene, Toluene, Ethylbenzene, Xylene, and Cumene (BTEXC) Compounds in Fuel-Contaminated Snow Environments. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reported herein is the sensitive and selective cyclodextrin-promoted fluorescence detection of benzene, toluene, ethylbenzene, xylene, and cumene (BTEXC) fuel components in contaminated snow samples collected from several locations in the state of Rhode Island. This detection method uses cyclodextrin as a supramolecular scaffold to promote analyte-specific, proximity-induced fluorescence modulation of a high-quantum-yield fluorophore, which leads to unique fluorescence responses for each cyclodextrin-analyte-fluorophore combination investigated and enables unique pattern identifiers for each analyte using linear discriminant analysis (LDA). This detection method operates with high levels of sensitivity (sub-micromolar detection limits), selectivity (100% differentiation between structurally similar compounds, such as ortho-, meta-, and para-xylene isomers), and broad applicability (for different snow samples with varying chemical composition, pH, and electrical conductivity). The high selectivity, sensitivity, and broad applicability of this method indicate significant potential in the development of practical detection devices for aromatic toxicants in complex environments.
Collapse
|
36
|
Yazdanpanah M, Nojavan S. Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent. J Chromatogr A 2018; 1585:34-45. [PMID: 30528253 DOI: 10.1016/j.chroma.2018.11.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022]
Abstract
Previous studies have demonstrated the excellent capability of the cyclodextrins in pre-concentration of the organic pollutants from the aqueous solutions. In this work, β-cyclodextrin- multiwalled carbon nano-tube composite was produced from the reaction of oxidized carbon nano-tube with cyclodextrin in the presence of the hydrazine hydrate, and subsequently attaching this composite to the iron oxide nano-particles. Prepared magnetic nano-composite was characterized by the attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), the thermogravimetric analysis (TGA), the field emission scanning electron microscopy (FESEM), and the X-ray diffraction (XRD). This composite was applied to extract seven polycyclic aromatic hydrocarbons (PAHs) from the environmental water samples as follows: naphthalene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene. Analytes analysis was performed using the gas chromatography (GC) followed by the flame ionization detection (FID), and the predominant parameters influencing the extraction efficiency were investigated thoroughly. Under the optimized extraction conditions, the enrichment factor (EF) was ranging from 41.3 to 49.3 (EFmax = 50.0), and a suitable linearity was obtained (R2 = 0.992-0.997) within the range of 2.0-1000 ng/mL. The limits of the quantification and detection were 2.0-10.0 and 0.6-3.0 ng/mL, respectively. Finally, the synthesized magnetic sorbent and method were successfully utilized for the analysis of rain, well and agricultural water samples. The relative recoveries were ranging from 75.3-107.0% with an acceptable precision (5.5-8.3%) for PAHs extraction.
Collapse
Affiliation(s)
- Mina Yazdanpanah
- Department of analytical chemistry and pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983969411, Iran
| | - Saeed Nojavan
- Department of analytical chemistry and pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983969411, Iran.
| |
Collapse
|
37
|
Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:113-121. [DOI: 10.1016/j.jchromb.2018.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 01/16/2023]
|
38
|
Pan J, Li S, Dang F, Zhang Z, Zhang J. Fabrication of a porous β-cyclodextrin-polymer-coated solid-phase microextraction fiber for the simultaneous determination of five contaminants in water using gas chromatography-mass spectrometry. RSC Adv 2018; 8:22422-22428. [PMID: 35539744 PMCID: PMC9081428 DOI: 10.1039/c8ra04394a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
A novel solid-phase microextraction fiber coated with a porous β-cyclodextrin polymer was developed. The porous β-cyclodextrin polymer cross-linked using tetrafluoroterephthalonitrile, possessed well-distributed pores and the largest surface area among current β-cyclodextrin polymers. Scanning electron microscopy revealed that the coating had a continuous wrinkled and folded structure, which guarantees a sufficient loading capacity for contaminants. The properties of the developed fiber were evaluated using headspace solid-phase microextraction of five contaminants as model analytes coupled with gas chromatography-mass spectrometry. Owing to the advantages of a large surface area and three-dimensional cavities, the novel fiber exhibited excellent operational stability and extraction ability. After optimisation of the extraction conditions, including extraction temperature, extraction time, salt effect, and desorption time, validation of the method with water samples achieved good linearity over a wide range (0.01–120 μg L−1) and low detection limits (0.003–1.600 μg L−1). The single-fiber and fiber-to-fiber repeatabilities were 1.7–11.0% and 1.9–11.0%, respectively. The method was applied to the simultaneous analysis of five analytes with satisfactory recoveries (76.6–106.0% for pond water and 89.0–105.9% for rainwater). A novel solid-phase microextraction fiber coated with a porous β-cyclodextrin polymer was developed.![]()
Collapse
Affiliation(s)
- Jiongxiu Pan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Shuming Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Zhiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|