1
|
Wang S, Liu W, Lei X, Huang T, Huang G, Lin C, Wu X. Surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes for pipette tip solid-phase extraction of microcystins in water. J Chromatogr A 2024; 1736:465390. [PMID: 39326382 DOI: 10.1016/j.chroma.2024.465390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The occurrence of microcystins (MCs) during harmful algal blooms (HABs) represents a major threat to freshwater environments. In this work, a novel surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes (PCSs) was prepared for the enrichment of MCs. The copolymerization of bifunctional amphiphilic monomers, 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-benzylquininium chloride (BQN), with the cross-linker methacryl substituted polyhedral oligomeric silsesquioxane (POSS) was achieved in an ionic liquid-based porogenic medium. The hierarchical porous structure, a variety of surface functional groups and weak hydrophilicity were well characterized on the prepared materials using scanning electron microscopy, nitrogen adsorption/desorption analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential analysis and water contact angle testing, respectively. The as-prepared surface amphiphilic PCSs was used as an adsorbent for pipette tip solid-phase extraction (PT-SPE) to enrich microcystins (MCs) from surface waters before their analysis by capillary electrochromatography (CEC) and liquid chromatography-mass spectrometry (LC-MS). Under the optimal conditions, the established PT-SPE-LC-MS method exhibited a wide linear range (10-10,000 ng L-1), low limits of detection (4.0-8.0 ng L-1) and satisfactory recoveries (89.5-102.8 %) for MCs. An adsorption mechanism involving electrostatic interactions, hydrogen bonding, hydrophilic interactions, and π-π stacking has been proposed. The findings suggest that the use of surface amphiphilic PCSs materials as adsorbents in the PT-SPE platform facilitates efficient enrichment of MCs for subsequent chromatographic analysis. These investigations offer a new perspective on the simple and uncomplicated pretreatment of complex environmental samples.
Collapse
Affiliation(s)
- Shuqiang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Wenning Liu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Xiaoyun Lei
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Ting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Guobin Huang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China.
| |
Collapse
|
2
|
Shchemelev IS, Ivanov AV, Ferapontov NB. Composite "Crosslinked Polyvinyl Alcohol-Magnetite" as a Stimuli-Responsive Matrix for Optical Methods. Molecules 2024; 29:2794. [PMID: 38930858 PMCID: PMC11206915 DOI: 10.3390/molecules29122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The preparation and application of the composite material "crosslinked polyvinyl alcohol-magnetite" as a sensitive matrix for use in digital colorimetry and optical micrometry methods are discussed. The material was synthesized in the form of spherical granules (for micrometry) and thin films (for digital colorimetry). The obtained composites were characterized by the registration of magnetization curves. It was shown that the amount of grown Fe3O4 particles in the polymer gel is in linear dependence with the iron salt concentrations in the impregnating solutions. The composite granules were applied to determining monosaccharides using optical micrometry. The optimal pH value for the total amount of monosaccharides' determination was 8.6. The study of the analytical response of composite granules and films performed with a low limit of detection (7.9 mmol/dm3) of both glucose and fructose and a possibility of the control of high alcohol contention in water media. The granules were used to determine the total carbohydrate content in samples of natural honey and syrups with high fructose contents, while the films were used to control the alcohol content in hand antiseptics. The results obtained are in good agreement with the data provided by the manufacturers.
Collapse
Affiliation(s)
- Ivan S. Shchemelev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
| | - Alexander V. Ivanov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119071 Moscow, Russia
| | - Nikolay B. Ferapontov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
| |
Collapse
|
3
|
Rocha MF, Vieira Magalhães-Ghiotto GA, Bergamasco R, Gomes RG. Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon 2024; 238:107589. [PMID: 38160739 DOI: 10.1016/j.toxicon.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Cyanobacteria are aquatic microorganisms of high interest for research due to the production of secondary metabolites, among which the most popular are cyanotoxins, responsible for causing severe poisoning in humans and animals through ingestion or contact with contaminated water bodies. Monitoring the number of cyanobacteria in water and concentrations of secreted cyanotoxins with the aid of sensitive and reliable methods is considered the primary action for evaluating potentially toxic blooms. There is a great diversity of methods to detect and identify these types of micro contaminants in water, differing by the degree of sophistication and information provided. Mass Spectrometry stands out for its accuracy and sensitivity in identifying toxins, making it possible to identify and characterize toxins produced by individual species of cyanobacteria, in low quantities. In this review, we seek to update some information about cyanobacterial peptides, their effects on biological systems, and the importance of the main Mass Spectrometry methods used for detection, extraction, identification and monitoring of cyanotoxins.
Collapse
Affiliation(s)
- Mariana Fernandes Rocha
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Grace Anne Vieira Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
4
|
Feng J, Dong L, Wang H, Xie Y, Wang H, Ding L, Song G, Zhang J, Li T, Shen Q, Zhang Y. Application of aptamer-conjugated graphene oxide for specific enrichment of microcystin-LR in Achatina fulica prior to matrix-assisted laser desorption ionization mass spectrometry. Electrophoresis 2024; 45:275-287. [PMID: 37768831 DOI: 10.1002/elps.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Microcystin-LR (MC-LR), as a hepatotoxin, can cause liver swelling, hepatitis, and even liver cancer. In this study, MC-LR aptamer (Apt-3) modified graphene oxide (GO) was designed to enrich MC-LR in white jade snail (Achatina fulica) and pond water, followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis. Results indicated that the Apt-3/PEG/GO nanocomposites were highly specific to MC-LR, and the detection limit of MALDI-MS was 0.50 ng/mL. Moreover, the MC-LR can be released from nanocomposites at 75°C, thus, the reuse of Apt-3/PEG/GO is realized. Real sample analysis indicated that the Apt-3/PEG/GO nanocomposites coupled with MALDI-MS were efficient in detecting trace amounts of MC-LR in real samples. With the merits of being low cost, reusable, and easy to besynthesized, this Apt-3/PEG/GO MALDI-MS is expected to be comprehensively applied by anchoring suitable aptamers for different targets.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linpei Dong
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, P. R. China
| | - Yihong Xie
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Huizi Wang
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Lan Ding
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Ting Li
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
5
|
Su M, He Y, Zhang N, Lv M, Xu X. Microwave-Assisted Dispersive Liquid-Liquid Microextraction Combined with HPLC for the Determination of Three Biogenic Amines in Beverages. J Chromatogr Sci 2023; 61:790-798. [PMID: 36111432 DOI: 10.1093/chromsci/bmac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 10/01/2023]
Abstract
Microwave-assisted dispersive liquid-liquid microextraction (MADLLME) coupled with high-performance liquid chromatography (HPLC) with diode array detector was used for the extraction and determination of three biogenic amines (BAs), including tryptamine, histamine and phenylethylamine in beverages (beer, cherry juice and white spirit). Compared with solid-phase extraction, solid-phase microextraction and liquid-phase microextraction, which is more solvent use with lower extraction efficiency, this MADLLME method obviously shortened analytical time, the rapid heating of aqueous samples with non-ionizing electromagnetic radiation, a lower solvent use and enhanced extraction efficiency. Because of good extraction for three BAs, [3C6PC14][FeCl4] was used as an extraction solvent. We showed a tunable selectivity of magnetic ionic liquids (MILs) toward extracting BAs by changing anion or cation due to the modification of the interaction between the MIL and the BAs. Extraction conditions including the type and volume of extraction solvent, microwave power, microwave-assisted extraction time, sample pH, disperser and interference experiment were investigated. Under the optimal conditions, a good linear relationship was found in the concentration range of 100-2,000 ng mL-1 for three BAs with correlation coefficient (R2) of 0.995-0.999. The limit of detections (S/N = 3) and limit of quantitations (S/N = 10) were in the range of 3.46-4.96 ng mL-1 and 10.44-14.88 ng mL-1, respectively. The recoveries of three targets were in the range of 84.3-108.5%, and the relative standard deviations based on the peak areas for six replicate analyses of beverages spiked with 10, 50 and 100 ng mL-1 of each biogenic amine were lower than 7.9%. This method has also been successfully applied to analyze the real samples at three different spiked concentrations, and excellent results have been obtained.
Collapse
Affiliation(s)
- Mingming Su
- Department of Chemistry, Liaoning University, Chongshan Middle Road No.60, Huanggu Dis., Shenyang, 110036, P. R. China
- Technology Center, Dalian Customs, 60 Changjiang East Road, Dalian, Liaoning, 110060, People's Republic of China
| | - Yongke He
- College of Science, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang 110142, P. R. China
| | - Ning Zhang
- Technology Center, Dalian Customs, 60 Changjiang East Road, Dalian, Liaoning, 110060, People's Republic of China
| | - Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang 110142, P. R. China
| | - Xu Xu
- Department of Chemistry, Liaoning University, Chongshan Middle Road No.60, Huanggu Dis., Shenyang, 110036, P. R. China
| |
Collapse
|
6
|
Huang T, Lei X, Wang S, Lin C, Wu X. Ionic liquid assisted in situ growth of nano-confined ionic liquids/metal-organic frameworks nanocomposites for monolithic capillary microextraction of microcystins in environmental waters. J Chromatogr A 2023; 1692:463849. [PMID: 36764066 DOI: 10.1016/j.chroma.2023.463849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
A facile in-situ ionothermal synthesis strategy for fabrication of ionic liquids/metal-organic frameworks (MOFs) (ILs@ZIF-8) nanocomposites hybrid monolith has been proposed to facilitate highly effective capillary microextraction (CME) of ultra-trace microcystins (MCs) in environmental waters. The ZnO nanoparticles (ZnO-NPs) were initially introduced into a precursor polymer monolith, and acted as the metal sources and anchoring seeds to construct ILs@ZIF-8 nanocomposites hybrid monolith via a nanoparticle-directed in-situ growth route in confined imidazolium ionic liquids. Detailed characterization based on scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption isotherms confirmed that both the morphology and porous structure of ZIF-8 were finely tuned by the incorporation of ILs, which acted as solvents and structure directing agent. The confinement of ILs in ZIF-8 framework endows the ILs@ZIF-8 hybrid monolith additional adsorption sites and satisfied water stability for the synergistic enhancement of adsorption efficiency of MCs via multiple interactions (including π-π stacking, hydrogen bonding, hydrophobic and electrostatic interactions). Coupling ILs@ZIF-8 hybrid monolith-based CME to LC-MS enabled an efficient and sensitive analysis of MCs in surface waters with ultra-low detection limits (LOD ≤ 1.4 ng L-1) and satisfactory recoveries (70.2%-107.0%). This study showed great potential for feasible design and fabrication of ILs@MOFs composites with synergistic and tunable structures toward efficient sample preparation applications.
Collapse
Affiliation(s)
- Ting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou University, Fuzhou 350116, China
| | - Xiaoyun Lei
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou University, Fuzhou 350116, China
| | - Shuqiang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou University, Fuzhou 350116, China
| | - Chenchen Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
7
|
Manousi N, Kabir A, Furton KG, Tzanavaras PD, Zacharis CK. In situ synthesis of monolithic sol–gel polyethylene glycol-based sorbent encapsulated in porous polypropylene microextraction capsules and its application for selective extraction of antifungal and anthelmintic drugs from human urine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|
9
|
Zhang H, Li B, Liu Y, Chuan H, Liu Y, Xie P. Immunoassay technology: Research progress in microcystin-LR detection in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127406. [PMID: 34689091 DOI: 10.1016/j.jhazmat.2021.127406] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins. Therefore, the fast, sensitive, and accurate determination of MC-LR plays an important role in the health of humans and animals. Immunoassay refers to a method that uses the principle of immunology to determine the content of the tested substance in a sample using the tested substance as an antigen or antibody. In analytical applications, the immunoassay technology could use the specific recognition of antibodies for MC-LR detection. In this review, we firstly highlight the immunoassay detection of MC-LR over the past two decades, including classical enzyme-link immunosorbent assay (ELISA), modern immunoassay with optical signal, and modern immunoassay with electrical signal. Among these detection methods, the water environment was used as the main detection system. The advantages and disadvantages of the different detection methods were compared and analyzed, and the principles and applications of immunoassays in water samples were elaborated. Furthermore, the current challenges and developmental trends in immunoassay were systematically introduced to enhance MC-LR detection performance, and some critical points were given to deal with current challenges. This review provides novel insight into MC-LR detection based on immunoassay method.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
10
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
11
|
|
12
|
Shyam Sunder GS, Rohanifar A, Alipourasiabi N, Lawrence JG, Kirchhoff JR. Synthesis and Characterization of Poly(pyrrole-1-carboxylic acid) for Preconcentration and Determination of Rare Earth Elements and Heavy Metals in Water Matrices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34782-34792. [PMID: 34254511 DOI: 10.1021/acsami.1c05061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pyrrole was N-functionalized with solid carbon dioxide followed by chemical polymerization to create a new air-stable, granular, and water-insoluble sorbent, poly(pyrrole-1-carboxylic acid) (PPy-CO2). PPy-CO2 exhibited enhanced affinity for the sorption of metal ions compared to unfunctionalized PPy due to the incorporation of carboxylate functional groups directly onto the polymer backbone. As a freestanding sorbent material, immobilization to an additional solid support is not needed. Sorption, and therefore preconcentration, occurs simultaneously to achieve efficient removal and recovery of metal ions by a pH-dependent sorption-desorption mechanism. PPy-CO2 was evaluated on the analytical scale for the solid-phase extraction of a range of metal ions and found to efficiently preconcentrate rare earth elements (REEs), Th, and heavy metals (Cr, Fe, Cd, and Pb), which allowed quantitation by inductively coupled plasma mass spectrometry (ICP-MS). The impact of sorption parameters, such as solution pH, amount of sorbent, and sorption time, and the effect of desorption flow rate for recovery were investigated and optimized using ultrasound-assisted dispersive solid-phase extraction (UAD-SPE) with ICP-MS analysis. Maximum efficiency for sorption and recovery of most metal ions was achieved at a solution pH of 6.0, 10 mg of sorbent, a sorption time of 5 min, and desorption conditions of 1 mL of 2 M nitric acid applied at a flow rate of 0.25 mL min-1. Detection limits for REEs and Th ranged from 0.2-3.4 ng L-1 for REEs and Th and 0.9-5.7 ng L-1 for heavy metals. Linear ranges from 0.1-1000 μg L-1 for REEs and 0.1-500 μg L-1 for heavy metals and Th were also observed. PPy-CO2 successfully preconcentrated and facilitated the determination of the targeted metal ions in water matrices of varying complexity, including tap water, well water, river water, and produced water samples. These results indicate the potential application of PPy-CO2 for larger-scale recovery and removal of valuable or hazardous metal ions.
Collapse
|
13
|
Fernandes SPS, Kovář P, Pšenička M, Silva AMS, Salonen LM, Espiña B. Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15053-15063. [PMID: 33760592 DOI: 10.1021/acsami.0c18808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.
Collapse
Affiliation(s)
- Soraia P S Fernandes
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Petr Kovář
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Milan Pšenička
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Artur M S Silva
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura M Salonen
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
14
|
Loperena AP, Lehr IL, Saidman SB. Improved Corrosion Resistance of AZ91D Mg Alloy by Cerium-Based Films. Formation of a Duplex Coating with Polypyrrole. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Prasanna VL, Gozlan I, Kaplan A, Zachor-Movshovitz D, Avisar D. Solid phase extraction based on trimethylsilyloxy silica aerogel. RSC Adv 2021; 11:18617-18622. [PMID: 35480917 PMCID: PMC9033453 DOI: 10.1039/d1ra01803e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
Solid-phase extraction (SPE) based on trimethylsilyloxy-modified silica aerogel was developed for extraction of chemotherapeutic drugs from water. The developed method is easy and affordable, can be performed in separating funnel and does not require a vacuum and SPE manifold. The extraction and recovery of cyclophosphamide (CYP), dexamethasone (DEX), and paclitaxel (TAX) by the aerogel from water were investigated. The factors governing the extraction efficiency such as sample pH, sample volume, volume of eluent and concentration of analytes were studied. The LOD and LOQ of the developed method were calculated and linearity was found in the range of 4–100 μg L−1. The extraction efficiency of the aerogel was compared to that of other SPE cartridges, Oasis HLB, Strata-X-C, C18 and polymeric reversed phase, and the aerogel showed similar or better performance than the other commercial cartridges available on the market. The developed method was also used to extract chemotherapeutic drugs spiked in hospital wastewater. Solid-phase extraction (SPE) based on trimethylsilyloxy-modified silica aerogel was developed for extraction of chemotherapeutic drugs from water.![]()
Collapse
Affiliation(s)
- V. Lakshmi Prasanna
- The Water Research Center
- The Hydro-Chemistry Laboratory
- Porter School for Environment and Earth Sciences
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
| | - Igal Gozlan
- The Water Research Center
- The Hydro-Chemistry Laboratory
- Porter School for Environment and Earth Sciences
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
| | - Aviv Kaplan
- The Water Research Center
- The Hydro-Chemistry Laboratory
- Porter School for Environment and Earth Sciences
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
| | - Daniel Zachor-Movshovitz
- The Water Research Center
- The Hydro-Chemistry Laboratory
- Porter School for Environment and Earth Sciences
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
| | - Dror Avisar
- The Water Research Center
- The Hydro-Chemistry Laboratory
- Porter School for Environment and Earth Sciences
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
| |
Collapse
|
16
|
Du J, Xia Y, Zhao F, Zeng B. Preparation of gold nanoparticles and barium coordination polymer doped polypyrrole solid-phase microextraction coating for the detection of nitropolycyclic aromatic hydrocarbons. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Simultaneous Pre-Concentration and HPLC-MS/MS Quantification of Phycotoxins and Cyanotoxins in Inland and Coastal Waters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134782. [PMID: 32635172 PMCID: PMC7369962 DOI: 10.3390/ijerph17134782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to set up a sensitive method for the simultaneous determination of phycotoxins and cyanotoxins-Emerging pollutants with different structures and harmful properties (hepatotoxicity, neurotoxicity and cytotoxicity)-In environmental waters. Due to the low concentrations detected in these samples, a pre-concentration step is required and here it was performed in a single step with a commercial cartridge (Strata™-X), achieving enrichment factors up to 200 and satisfactory recovery (R = 70-118%) in different aqueous matrices. After solid-phase extraction (SPE), toxins were separated and quantified by High Performance Liquid Chromatography- Heated ElectroSpray Ionisation Tandem Mass Spectrometry (HPLC-HESI-MS/MS) in Multiple Reaction Monitoring (MRM) mode. An analytical evaluation of the proposed method was done based on the analytical figures of merit, such as precision and trueness, linearity, selectivity, and sensitivity, and it turned out to be a robust tool for the quantification of ng L-1 levels, phycotoxins and cyanotoxins in both freshwater and saltwater samples.
Collapse
|
18
|
Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS. Mikrochim Acta 2020; 187:339. [DOI: 10.1007/s00604-020-04308-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
|
19
|
Hemmati M, Tejada-Casado C, Lara FJ, García-Campaña AM, Rajabi M, del Olmo-Iruela M. Monitoring of cyanotoxins in water from hypersaline microalgae colonies by ultra high performance liquid chromatography with diode array and tandem mass spectrometry detection following salting-out liquid-liquid extraction. J Chromatogr A 2019; 1608:460409. [DOI: 10.1016/j.chroma.2019.460409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
|
20
|
Thuret-Benoist H, Pallier V, Feuillade-Cathalifaud G. Quantification of microcystins in natural waters by HPLC-UV after a pre-concentration step: validation of the analytical performances and study of the interferences. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103223. [PMID: 31401407 DOI: 10.1016/j.etap.2019.103223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
A method for the determination of microcystins concentrations (MC-LR, MC-RR, MC-YR) in natural water samples was optimized using High Performance Liquid Chromatography with UV/PDA detection after Solid Phase Extraction. Solid Phase Extraction is needed to clean natural sample and concentrate pollutant. The method was validated by evaluation of specificity and repeatability. Average recoveries in ultra-pure grade water were better than 95% with Relative Standard Deviation values lower than 4%. Matrix interferences, as pH, conductivity and organic matter content, were tested. pH must be fixed between 6 and 8 to avoid under-estimation or over-estimation and conductivity did not interfere with the analytical method. Organic Matter content negatively impacted microcystins quantification unlike organic matter characteristics. It over-estimated the concenration by an average of 19%. Then, the developed method was applied to study the occurrence of microcystins in Pigeard pond (France). These results constitute the first report on the concentration levels and seasonal variations of microcystins in this resource water.
Collapse
Affiliation(s)
- Hélène Thuret-Benoist
- University of Limoges, PEREINE Laboratory, EA 7500, ENSIL-ENSCI, 16 rue Atlantis, 87068 Limoges Cedex, France
| | - Virginie Pallier
- University of Limoges, PEREINE Laboratory, EA 7500, ENSIL-ENSCI, 16 rue Atlantis, 87068 Limoges Cedex, France
| | | |
Collapse
|
21
|
Giménez-Campillo C, Pastor-Belda M, Campillo N, Arroyo-Manzanares N, Hernández-Córdoba M, Viñas P. Determination of Cyanotoxins and Phycotoxins in Seawater and Algae-Based Food Supplements Using Ionic Liquids and Liquid Chromatography with Time-Of-Flight Mass Spectrometry. Toxins (Basel) 2019; 11:E610. [PMID: 31652586 PMCID: PMC6832300 DOI: 10.3390/toxins11100610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
An analytical procedure is proposed for determining three cyanotoxins (microcystin RR, microcystin LR, and nodularin) and two phycotoxins (domoic and okadaic acids) in seawater and algae-based food supplements. The toxins were first isolated by a salting out liquid extraction procedure. Since the concentration expected in the samples was very low, a dispersive liquid-liquid microextraction procedure was included for preconcentration. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (80 mg) was used as green extractant solvent and acetonitrile as disperser solvent (0.5 mL) for a 10 mL sample volume at pH 1.5, following the principles of green analytical chemistry. Liquid chromatography with electrospray ionization and quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) was used. The selectivity of the detection system, based on accurate mass measurements, allowed the toxins to be unequivocally identified. Mass spectra for quadrupole time of flight-mass spectrometry (Q-TOF-MS) and Q-TOF-MS/MS were recorded in the positive ion mode and quantification was based on the protonated molecule. Retention times ranged between 6.2 and 17.9 min using a mobile phase composed by a mixture of methanol and formic acid (0.1%). None of the target toxins were detected in any of the seawater samples analyzed, above their corresponding detection limits. However, microcystin LR was detected in the blue green alga sample.
Collapse
Affiliation(s)
- Claudia Giménez-Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Marta Pastor-Belda
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Manuel Hernández-Córdoba
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
22
|
Garcia Y, Canfarotta F, Smolinska-Kempisty K, Piletsky SA, Pereira E. Competitive pseudo-ELISA based on molecularly imprinted nanoparticles for microcystin-LR detection in water. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Microcystins (MCs) are dangerous cyanotoxins for the public health, and microcystin-LR (MC-LR) is one of most toxic, dangerous, and frequently found in water bodies. Typically, the detection of MCs is carried out by means of competitive ELISAs which, however, need special precautions for handling and storage, due to the stability of the antibodies used in this test. Molecularly imprinted nanoparticles (nanoMIPs) represents more robust and cost-effective alternative to antibodies. In this work, we developed a competitive pseudo-ELISA based on nanoMIPs (which are used in place of natural antibodies), for the detection of microcystin-LR (MC-LR). This pseudo-ELISA showed a linear response towards MC-LR, showing high affinity and low cross-reactivity against another analogue toxin (microcystin-YR). The analytical recovery of MC-LR in the analysis of water samples by the proposed pseudo-ELISA was 96 %–130 % and the limit of detection was 2.64 × 10−4 nM. The obtained results suggest that this competitive pseudo-ELISA could have high potential in the detection of toxins, due to its rapid, sensitive and accurate detection of toxin in water samples.
Collapse
Affiliation(s)
- Yadiris Garcia
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Science , University of Concepción , Concepción , Chile
| | - Francesco Canfarotta
- MIP Diagnostics Ltd, University of Leicester , Fielding Johnson Building , Leicester LE1 7RH , UK
| | - Katarzyna Smolinska-Kempisty
- Department of Chemistry , University of Leicester , University Road , Leicester, LE1 7RH , UK
- Wroclaw University of Science and Technology , Faculty of Chemistry, Department of Polymer and Carbon Materials , Wyb. St. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Sergey A. Piletsky
- Department of Chemistry , University of Leicester , University Road , Leicester, LE1 7RH , UK
| | - Eduardo Pereira
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Science , University of Concepción , Concepción , Chile
| |
Collapse
|
23
|
Zhang H, Gonzales GB, Beloglazova NV, De Saeger S, Shen J, Zhang S, Yang S, Wang Z. Development of a validated direct injection-liquid chromatographic tandem mass spectrometric method under negative electrospray ionization for quantitation of nine microcystins and nodularin-R in lake water. J Chromatogr A 2019; 1609:460432. [PMID: 31431355 DOI: 10.1016/j.chroma.2019.460432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022]
Abstract
Microcystins (MCs) are cyclic heptapeptide toxins produced by various cyanobacterial genera that are toxic to both animals and humans. In this study, a novel strategy was proposed for the quantitation of nine MCs and Nodularin-R (NOD) in lake water using UHPLC-MS/MS under negative ionization mode, in which only centrifugation was employed during sample preparation. As a result, limits of quantification (LOQ) ranging from 0.05 to 0.1 μg/L for all studied compounds were obtained in water samples, which were lower than the results obtained using positive ionization mode. Additionally, validation was performed by spiking three different levels of MCs at 0.05 or 0.1, 0.5, 1.0 μg/L (n = 6). Recoveries ranged from 88.6% to 101.8%, and intraday and interday variability were lower than 12% and 14%, respectively, for all targeted compounds. Furthermore, the proposed method was applied to investigate microcystins contamination in fifty lake water samples collected in different regions in China. As a result, MC-LR, MC-RR, MC-YR, MC-WR, MC-LW, MC-LA, MC-LY, and MC-HilR were detected in lake water samples at trace level ranging from 0.06 to 0.37 μg/L. The obtained results indicated that it was necessary to monitor the presence of MCs in lake water, especially during regular cyanobacterial blooms during warmer months.
Collapse
Affiliation(s)
- Huiyan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100093, People's Republic of China; Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Gerard Bryan Gonzales
- Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Department of Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, C Heymanslaan 10, 9000 Ghent, Belgium
| | - Natalia V Beloglazova
- Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Suxia Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100093, People's Republic of China.
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
24
|
Liu X, Gao S, Li X, Wang H, Ji X, Zhang Z. Determination of microcystins in environmental water samples with ionic liquid magnetic graphene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:20-26. [PMID: 30947029 DOI: 10.1016/j.ecoenv.2019.03.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Microcystins is a class of monocyclic of heptapeptides with many different isomerides. It has become potential hazardous material in water environment for its toxic, distribution and stability. This project worked on a method for determination of trace microcystin (MC-LR and MC-RR) in environmental waters. The ionic liquid magnetic graphene (IL@MG) was prepared and applied to the concentration and determination of microcystins, based on magnetic solid phase extraction (MSPE), and coupled with ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The ionic liquid magnetic graphene was prepared by coprecipitatial synthesis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), specific surface area (BET), pore size distribution (BJH) and magnetic hysteresis loop. The experimental parameters of magnetic solid phase extraction, including amount of IL@MG, pH, extraction time and elution solvent were investigated by a univariate method and orthogonal screening. The method showed good linearity in the range of 0.01-10.0 g/L and 0.005-10.0 μg/L for MC-LR and MC-RR, when the pH of water samples was 4.00 and 10.0 mg adsorbents were used to extract targets for 18 min. The lowest detection limit was 0.414 ng/L and 0.216 ng/L for MC-LR and MC-RR respectively. The recoveries of the microcystins were in the range of 83.6-100.9%, and the relative standard deviation was less than 7.59%. The trace amount of MC-LR (0.020 μg/L) and MC-RR (0.003 μg/L and 0.021 μg/L) was detected in actural water samples. Attributed to its simple operator, low detection limit and high sensitivity, this method could be used for the detection of trace microcystins in water samples.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Xinyue Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Hui Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, 210093, PR China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China.
| |
Collapse
|
25
|
Polypyrrole nanotubes for electrochemically controlled extraction of atrazine, caffeine and progesterone. Mikrochim Acta 2019; 186:398. [PMID: 31183568 DOI: 10.1007/s00604-019-3545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Polypyrrole (PPy) was electrochemically synthesized with charge control on the surface of a steel mesh. Two different morphologies (globular and nanotubular) were created and characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified electrodes were used as extraction phases in solid-phase extraction (SPE) and electrochemically controlled solid-phase extraction (EC-SPE) of atrazine, caffeine and progesterone. Raman spectroscopy was employed for the structural characterization of PPy after long exposure to the analytes. The electrochemical behavior was studied by cyclic voltammetry which revealed the higher capacitive behavior of polypyrrole nanotubes because of the huge superficial area, also no electrocatalytical behavior was observed evidencing the strong adsorption of the analytes on the PPy surface. The effects of the PPy oxidation state on the extraction performance were evaluated by in-situ electrochemical sorption experiments. The sorption capacity was evaluated by gas chromatography coupled to mass spectrometry (GC-MS). The method displays good stability, repeatability and reproducibility. The limits of detection range between 1.7-16.7 μg L-1. Following the extraction of river water samples, it was possible to identify the presence of other endogenous organic compounds besides the analytes of interest. This indicates the potential of the method and material developed in this work. Graphical abstract Schematic representation of a steel mesh electrode covered with polypyrrole nanotubes used as extraction phase for separation of contaminants from aqueous samples. The oxidation level of polypyrrole was electrochemically tuned by which the adsorption of analytes is deeply affected.
Collapse
|
26
|
Palagama DSW, Devasurendra AM, Baliu-Rodriguez D, Kirchhoff JR, Isailovic D. Treated rice husk as a recyclable sorbent for the removal of microcystins from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1292-1300. [PMID: 30970494 DOI: 10.1016/j.scitotenv.2019.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs) appear during harmful algal blooms (HABs) in water sources worldwide, and represent a threat for humans and animals ingesting or inhaling MCs from the environment. Herein, treated rice husk (RH) was tested as a recyclable sorbent for removal of six MCs (MC-RR, MC-LR, MC-YR, MC-LA, MC-LF, and MC-LW) from water. RH was refluxed with hydrochloric acid and heated to 250 °C to produce the sorbent material. Twenty milligrams of treated RH removed >95% of the MCs from a 30 mL solution containing 25 μg/L of each MC. The adsorption of MCs onto RH follows the Freundlich isotherm model (R2 ≥ 0.9612) and pseudo-second-order kinetics (R2 ≥ 0.9996). More than 90% of MCs were removed within 5 min, and >95% were removed at equilibrium (in <40 min). Performance of the RH sorbent was evaluated by removing MCs from Lake Erie water collected during an algal bloom in 2017. The total concentration (extracellular plus intracellular) of six tested MCs in lake water ranged from 3.7 to 13,605.9 μg/L, and removal of MCs by treated RH ranged from 100.0% to 71.8%, respectively. The removal capacity of RH for the six MCs from the lake water sample containing 13,605.9 μg/L of MCs was 586 μg per g of treated RH. After being used to extract MCs, the RH was heated to 560 °C to produce silica nanoparticles. Therefore, treated RH enables rapid and efficient removal of MCs from water and it can be recycled for use as a raw material. Overall, treated RH can contribute to mitigation of environmental and health effects caused by MCs and reduce concerns for toxic waste disposal.
Collapse
Affiliation(s)
- Dilrukshika S W Palagama
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Amila M Devasurendra
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Jon R Kirchhoff
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, USA.
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
27
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Tian X, She C, Qi Z, Xu X. Magnetic-graphene oxide based molecularly imprinted polymers for selective extraction of microsystin-LR prior to the determination by HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Madikizela LM, Ncube S, Chimuka L. Recent Developments in Selective Materials for Solid Phase Extraction. Chromatographia 2018. [DOI: 10.1007/s10337-018-3644-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Palagama DSW, Baliu-Rodriguez D, Lad A, Levison BS, Kennedy DJ, Haller ST, Westrick J, Hensley K, Isailovic D. Development and applications of solid-phase extraction and liquid chromatography-mass spectrometry methods for quantification of microcystins in urine, plasma, and serum. J Chromatogr A 2018; 1573:66-77. [PMID: 30201162 DOI: 10.1016/j.chroma.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 μg/L and 10 μg/L) ranged from 90.4% to 104.3% with relative standard deviations (RSDs) ≤ 4.7% for mouse urine, 90.4-106.9% with RSDs ≤ 6.3% for mouse plasma, and 90.0-104.8% with RSDs ≤ 5.0% for human serum. Matrix-matched internal standard calibration curves were linear with R2 ≥ 0.9950 for MC-LR, MC-RR and MC-YR, and R2 ≥ 0.9883 for MC-LA, MC-LF, and MC-LW. The limits of quantification (LOQs) in spiked urine samples were ∼0.13 μg/L for MC-LR, MC-RR, and MC-YR, and ∼0.50 μg/L for MC-LA, MC-LF, and MC-LW, while the LOQs in spiked plasma and serum were ∼0.25 μg/L for MC-LR, MC-RR, and MC-YR, and ∼1.00 μg/L for MC-LA, MC-LF, and MC-LW. The developed methods were applied in a proof-of-concept study to quantify urinary and blood concentrations of MC-LR after oral administration to mice. The urine of mice administered 50 μg of MC-LR per kg bodyweight contained on average 1.30 μg/L of MC-LR (n = 8), while mice administered 100 μg of MC-LR per kg bodyweight had average MC-LR concentration of 2.82 μg/L (n = 8). MC-LR was also quantified in the plasma of the same mice. The results showed that increased MC-LR dosage led to larger urinary and plasma MC-LR concentrations and the developed methods were effective for the quantification of MCs in mouse biofluids.
Collapse
Affiliation(s)
- Dilrukshika S W Palagama
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, United States
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, United States
| | - Apurva Lad
- Department of Medicine, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Bruce S Levison
- Department of Physiology and Pharmacology, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - David J Kennedy
- Department of Medicine, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Steven T Haller
- Department of Medicine, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Judy Westrick
- Department of Chemistry, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Kenneth Hensley
- Department of Biochemistry, Cellular and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, United States.
| |
Collapse
|