1
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
2
|
Jiamphun S, Chaiyana W. Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules 2022; 27:molecules27103317. [PMID: 35630792 PMCID: PMC9143893 DOI: 10.3390/molecules27103317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
In this research, we aimed to compare the biological activities related to cosmeceutical applications of glutinous rice husk extracted by aqueous enzymatic extraction (AEE) and conventional solvent extraction. Cellulase enzymes were used to assist the extraction process. The vanillic and ferulic acid contents of each extract were investigated by high-performance liquid chromatography, and their antioxidant and anti-aging activities were investigated by spectrophotometric methods. The irritation effects of each extract were investigated by the hen’s egg test on chorioallantoic membrane. The rice husk extract from AEE using 0.5% w/w of cellulase (CE0.5) contained the significantly highest content of vanillic and ferulic acid (p < 0.05), which were responsible for its biological activities. CE0.5 was the most potent antioxidant via radical scavenging activities, and possessed the most potent anti-skin wrinkle effect via collagenase inhibition. Aside from the superior biological activities, the rice husk extracts from AEE were safer than those from solvent extraction, even when 95% v/v ethanol was used. Therefore, AEE is suggested as a green extraction method that can be used instead of the traditional solvent extraction technique given its higher yield and high quality of bioactive compounds. Additionally, CE0.5 is proposed as a potential source of natural antioxidants and anti-aging properties for further development of anti-wrinkle products.
Collapse
Affiliation(s)
- Sudarat Jiamphun
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944343
| |
Collapse
|
3
|
Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. BIORESOUR BIOPROCESS 2021; 8:95. [PMID: 38650192 PMCID: PMC10992179 DOI: 10.1186/s40643-021-00447-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.
Collapse
Affiliation(s)
- Nisha Bhardwaj
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
A molecular dynamics simulations study of the ionic liquid effect on the β-glucosidase active site interactions with a flavonoid glycoside. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Wang Y, Wang S, Liu L. Extraction of geniposidic acid and aucubin employing aqueous two-phase systems comprising ionic liquids and salts. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Wei X, Peng P, Peng F, Dong J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3797-3821. [PMID: 33761246 DOI: 10.1021/acs.jafc.0c07560] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the second natural rubber resource, Eucommia ulmoides rubber (EUR) from Eucommia ulmoides Oliver is mainly composed of trans-1,4-polyisoprene, which is the isomer of natural rubber cis-1,4-polyisoprene from Hevea brasiliensis. In the past few years, the great potential application of EUR has received increasing attention, and there is a growing awareness that the natural polymer EUR could become an emerging research topic in field of the novel materials due to its unique and excellent duality of both rubber and plastic. To gain insight into its further development, in this review, the extraction, structure, physicochemical properties, and modification of EUR are discussed in detail. More emphasis on the potential applications in the fields of the environment, agriculture, engineering, and biomedical engineering is summarized. Finally, some insights into the challenges and perspectives of EUR are also suggested.
Collapse
Affiliation(s)
- Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Yu L, Cao L, Chang YH, Duan CJ, Liu C, Zhao XL, Yue GL, Wang XQ, Fu YJ. Enhanced extraction performance of iridoids, phenolic acids from Eucommia ulmoides leaves by tailor-made ternary deep eutectic solvent. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Sui X, Liu T, Liu J, Zhang J, Zhang H, Wang H, Yang Y. Ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming for the extraction of psoralen and isopsoralen from Psoralea corylifolia seeds. ULTRASONICS SONOCHEMISTRY 2020; 69:105263. [PMID: 32711373 DOI: 10.1016/j.ultsonch.2020.105263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Recently, integrated and sustainable methods for extracting active substances from plant materials using green solvents, i.e., ionic liquids, have gained increasing attention. Ionic liquids showsuperiority over conventional organic solvents; however, they also exhibit negative factors and problems, such as high viscosity, poor water intermiscibility, intensive foaming and poor affinity for fat-soluble substances. The proposed method utilizes ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming (UESILED) to improve the extraction efficiency of ionic liquids. Single-factor experiments and a Box-Behnken design (BBD) were utilized to optimize the extraction procedure. The optimal conditions were as follows: extraction solvent, [C10MIM]Br; ultrasonic treatment time, 28 min; ultrasonic irradiation power, 437 W; liquid-solid ratio, 10 mL/g; particle size, 60 ~ 80 mesh; ultrasonication temperature, 313 K; and [C10MIM]Br solution concentration, 0.5 mol/L. In comparison with those of other reference extraction methods, the proposed method exhibited higher yields of two furocoumarins and operational feasibility. Moreover, the mechanism of UESILED was elaborated in terms of accelerating infiltration, dissolution and defoaming. The feasible and efficient ultrasonic-enhanced ionic liquid-based extraction established in this study strongly contributes to overcoming the limitations of ionic liquid solvents. The present research indicates that this improved process will be beneficial for the extraction of other fat-soluble substances and provides promising concepts and experimental data.
Collapse
Affiliation(s)
- Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China.
| | - Jicheng Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China.
| | - Jie Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Huiyu Wang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Ying Yang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| |
Collapse
|
9
|
Sustainable and efficient surfactant-based microwave-assisted extraction of target polyphenols and furanocoumarins from fig (Ficus carica L.) leaves. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Xia L, Li Y, Liu Y, Li G, Xiao X. Recent advances in sample preparation techniques in China. J Sep Sci 2019; 43:189-201. [DOI: 10.1002/jssc.201900768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Ling Xia
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Yanxia Li
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Yulan Liu
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Xiaohua Xiao
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| |
Collapse
|
11
|
|