1
|
Hoy KS, Davydiuk T, Chen X, Lau C, Schofield JRM, Lu X, Graydon JA, Mitchell R, Reichert M, Le XC. Arsenic speciation in freshwater fish: challenges and research needs. FOOD QUALITY AND SAFETY 2023; 7:fyad032. [PMID: 37744965 PMCID: PMC10515374 DOI: 10.1093/fqsafe/fyad032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/12/2023] [Indexed: 09/26/2023]
Abstract
Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.
Collapse
Affiliation(s)
- Karen S Hoy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaojian Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ruth Mitchell
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Virk RK, Garla R, Kaushal N, Bansal MP, Garg ML, Mohanty BP. The relevance of arsenic speciation analysis in health & medicine. CHEMOSPHERE 2023; 316:137735. [PMID: 36603678 DOI: 10.1016/j.chemosphere.2023.137735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Long term exposure to arsenic through consumption of contaminated groundwater has been a global issue since the last five decades; while from an alternate standpoint, arsenic compounds have emerged as unparallel chemotherapeutic drugs. This review highlights the contribution from arsenic speciation studies that have played a pivotal role in the progression of our understanding of the biological behaviour of arsenic in humans. We also discuss the limitations of the speciation studies and their association with the interpretation of arsenic metabolism. Chromatographic separation followed by spectroscopic detection as well as the utilization of biotinylated pull-down assays, protein microarray and radiolabelled arsenic have been instrumental in identifying hundreds of metabolic arsenic conjugates, while, computational modelling has predicted thousands of them. However, these species exhibit a variegated pattern, which supports more than one hypothesis for the metabolic pathway of arsenic. Thus, the arsenic species are yet to be integrated into a coherent mechanistic pathway depicting its chemicobiological fate. Novel biorelevant arsenic species have been identified due to significant evolution in experimental methodologies. However, these methods are specific for the identification of only a group of arsenicals sharing similar physiochemical properties; and may not be applicable to other constituents of the vast spectrum of arsenic species. Consequently, the identity of arsenic binding partners in vivo and the sequence of events in arsenic metabolism are still elusive. This resonates the need for additional focus on the extraction and characterization of both low and high molecular weight arsenicals in a combinative manner.
Collapse
Affiliation(s)
- Rajbinder K Virk
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Roobee Garla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohinder P Bansal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohan L Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Biraja P Mohanty
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Electrochemically decorated gold nanoparticles on CVD graphene ChemFET sensor for the highly sensitive detection of As(III). Microchem J 2022. [DOI: 10.1016/j.microc.2022.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Paper-based gold nanoparticles decorated SWCNTs chemiresistive sensor for sensitive detection of As(III) based on electrochemical doping. Anal Chim Acta 2022; 1235:340553. [DOI: 10.1016/j.aca.2022.340553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 11/01/2022]
|
5
|
Lin C, Ping M, Zhang X, Wang X, Chen L, Wu Y, Fu F. In vitro bio-accessibility and distribution characteristic of each arsenic species in different fishes and shellfishes/shrimps collected from Fujian of China. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126660. [PMID: 34329088 DOI: 10.1016/j.jhazmat.2021.126660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
It is very important to consider the bio-accessibilities and concentrations of each arsenic species, not total arsenic, in seafood in order to accurately assess internal exposure level and health risk of arsenic from seafood. Herein, the concentrations and in vitro bio-accessibilities of each arsenic species in various fishes and shellfishes/shrimps were extensively investigated. Experimental results showed that arsenic species and contents in shellfishes/fishes remarkably varied with the difference of fish/shellfish species or individuals and sampling area, and arsenobetaine (AsB) is dominant arsenic species for fishes and shellfishes/shrimps. Different arsenic species in the same fish/shellfish have quite different bio-accessibilities, and the bio-accessibilities of each arsenic species also varied with fish/shellfish species or individuals. As3+ in fishes/shellfishes was partly oxidized to form As5+ during gastrointestinal digestion, and thus it is more reasonable and practicable to evaluate the bio-accessibilities of inorganic arsenic (iAs, total As3+ and As5+), not individual As3+ and As5+. Fishes and shellfishes/shrimps have similar bio-accessibilities of iAs, AsB and total arsenic, whereas have different bio-accessibilities of MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and two un-identified arsenic (Ui-As1 and Ui-As2). The results of this study provided a valuable knowledge for accurately assessing the health risk of arsenic in seafood.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xu Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xusheng Wang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lian Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
6
|
Yilmaz E, Erbas Z, Soylak M. Hydrolytic enzyme modified magnetic nanoparticles: An innovative and green microextraction system for inorganic species in food samples. Anal Chim Acta 2021; 1178:338808. [PMID: 34482859 DOI: 10.1016/j.aca.2021.338808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
In the presented study, the usability of hydrolytic enzyme immobilized magnetic nanoparticles as an extraction agent for the microextraction of metal ions from food samples was investigated. α-amylase modified magnetic carbon nanotubes (α-amylase-Fe3O4/MWCNTs) was used as an extraction agent for direct microextraction of trace arsenic from food sample phase into liquid phase medium prior to its ICP-MS determination. In extraction studies using hydrolytic enzymes, it is impossible to recover the free soluble enzyme after extraction without losing its activity. In our study, this problem was overcome by immobilizing the hydrolytic enzyme on magnetic support. In this way, α-amylase-Fe3O4/MWCNTs as an extraction agent with a reuse property of at least six times was used. α-amylase-Fe3O4/MWCNTs was characterized by FT-IR, XRD, SEM, SEM-EDX, VSM, TGA, and DTG techniques. Optimization of the presented method was performed using 1568 A rice flour certified reference material. Analytical parameters such as type of hydrolytic enzyme, pH and volume of the aqueous phase, extraction temperature and ultrasonic irridation time were optimized. The microextraction step was performed in ultrasonic water bath within only ∼15 min. Limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD %) values for the developed method were found to be 14.3 μg kg-1, 47.3 μg kg-1 and 7.5%, respectively. The method was successfully applied to the analysis of arsenic contents of different rice and flour samples.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039, Kayseri, Turkey; Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey
| | - Zeliha Erbas
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Erciyes University, Faculty of Sciences, Department of Chemistry, 38039, Kayseri-Turkey; Science and Technology Application and Research Center, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Mustafa Soylak
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Erciyes University, Faculty of Sciences, Department of Chemistry, 38039, Kayseri-Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Chen S, Liu L. Simultaneous Species Analysis of Arsenic, Selenium, Bromine, and Iodine in Bottled Drinking Water and Fruit Juice by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. ANAL SCI 2021; 37:1241-1246. [PMID: 33518582 DOI: 10.2116/analsci.20p399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A method for the simultaneous determination of arsenobetaine, arsenite, arsenate, dimethylarsinic acid, monomethylarsonic acid, selenite, selenate, bromate, bromide, iodate, and iodide in bottled drinking water and fruit juice samples was established by using high-performance liquid chromatography-inductively coupled plasma mass spectrometry. The separation of eleven compounds was performed on an ion exchange chromatography column (Dionex IonPac AS14) with 20 mmol L-1 (NH4)2CO3 (pH 10) and 50 mmol L-1 (NH4)2CO3 (pH 10) as a mobile phase. The limits of quantification of the method were 0.17 - 1.2 μg L-1 for the test compounds in bottled drinking water and 0.34 - 2.4 μg L-1 in fruit juice. The average recoveries ranged from 85.8 to 102.2%, and the relative standard deviations (RSDs) obtained in fortification recovery studies were generally <4.2% for bottled drinking water samples. The average recoveries ranged from 88.1 to 118.0% (except for iodate) for fruit juice sample.
Collapse
Affiliation(s)
- Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control
| |
Collapse
|
8
|
Wang Q, Fan Z, Qiu L, Liu X, Yin Y, Ibrahim. Jamus IM, Song C, Chen J. Occurrence and health risk assessment of residual heavy metals in the Chinese mitten crab (Eriocheir sinensis). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Xiao Z, Wang J, Guo J, Suo D, Wang S, Tian J, Guo L, Fan X. Quantitative selenium speciation in feed by enzymatic probe sonication and ion chromatography-inductively coupled plasma mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:268-279. [PMID: 33405994 DOI: 10.1080/19440049.2020.1849820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A rapid, sensitive and species preservative analytical method for the simultaneous determination of six selenium (Se) species has been developed. Enzymatic probe sonication (EPS) was investigated as a novel and alternative technology for the extraction of Se species from feed matrices and the results were compared with the conventional hot water extraction, enzymatic hydrolysis and sequential extraction. The critical parameters of EPS such as enzyme types, extraction time, temperature, ultrasonic power and sample/enzyme ratio were varied with control. The Se species were separated and quantitatively determined by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). Under current optimised conditions, six inorganic and organic Se species were completely separated within 15 min in a single chromatographic run. The spectral interferences from the argon plasma 40Ar2, 40Ar37Cl or 1H79Br were effectively removed by employing the kinetic energy discrimination (KED) mode. Quantitative extraction for total Se (>94.8%) and more than 89.0% for the sum of different Se chemical forms without species transformation were obtained in only 60 s by applying the EPS treatment using aqueous protease XIV. The limits of detection (LODs) and quantification (LOQs) for Se species were in the ranges of 0.21-0.56 µg kg-1 and 0.69-1.87 µg kg-1, respectively. The proposed method was successfully applied to the speciation of Se in several reference materials and feed samples collected from the markets and local farms.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Jitong Wang
- Beijing Institute of Feed Control , Beijing, China
| | - Jiangpeng Guo
- Beijing General Station of Animal Husbandry , Beijing, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Jing Tian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Lili Guo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| |
Collapse
|
10
|
Lin Y, Sun Y, Wang X, Chen S, Wu Y, Fu F. A universal method for the speciation analysis of arsenic in various seafood based on microwave-assisted extraction and ion chromatography-inductively coupled plasma mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Occurrence, speciation analysis and health risk assessment of arsenic in Chinese mitten crabs (Eriocheir sinensis) collected from China. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Reid MS, Hoy KS, Schofield JR, Uppal JS, Lin Y, Lu X, Peng H, Le XC. Arsenic speciation analysis: A review with an emphasis on chromatographic separations. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115770] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Yu X, Liu C, Guo Y, Deng T. Speciation Analysis of Trace Arsenic, Mercury, Selenium and Antimony in Environmental and Biological Samples Based on Hyphenated Techniques. Molecules 2019; 24:E926. [PMID: 30866421 PMCID: PMC6429259 DOI: 10.3390/molecules24050926] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a well understanding of the toxicity and ecological effects of trace elements in the environment, it is necessary to determine not only the total amount, but also their existing species. Speciation analysis has become increasingly important in making risk assessments of toxic elements since the toxicity and bioavailability strongly depend on their chemical forms. Effective separation of different species in combination with highly sensitive detectors to quantify these particular species is indispensable to meet this requirement. In this paper, we present the recent progresses on the speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples with an emphasis on the separation and detection techniques, especially the recent applications of high performance liquid chromatography (HPLC) hyphenated to atomic spectrometry or mass spectrometry.
Collapse
Affiliation(s)
- Xiaoping Yu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Chenglong Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Komorowicz I, Sajnóg A, Barałkiewicz D. Total Arsenic and Arsenic Species Determination in Freshwater Fish by ICP-DRC-MS and HPLC/ICP-DRC-MS Techniques. Molecules 2019; 24:E607. [PMID: 30744106 PMCID: PMC6385125 DOI: 10.3390/molecules24030607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/01/2022] Open
Abstract
Analytical methods for the determination of total arsenic (TAs) and arsenic species (arsenite-As(III), arsenate-As(V), monomethylarsenic acid-MMA, dimethylarsenic acid-DMA and arsenobetaine-AsB) in freshwater fish samples were developed. Inductively coupled plasma mass spectrometry with dynamic reaction cell (ICP-DRC-MS) and high-performance liquid chromatography hyphenated to ICP-DRC-MS were used for TAs and arsenic species determination, respectively. The DRC with oxygen as a reaction gas was used. Sample preparation, digestion, and extraction were optimized. Microwave assisted digestion and extraction provided good recovery and extraction efficiency. Arsenic species were fully separated in 8 min using 10 mmol L-1 of ammonium dihydrogen phosphate and 10 mmol L-1 of ammonium nitrate. Overlapping of AsB and As(III) of arsenic species in the presence of a high concentration of AsB and trace amounts of As(III) were studied. Detailed validation of analytical procedures proved the reliability of analytical measurements. Both procedures were characterized by short-term and long-term precision: 2.2% (TAs) up to 4.2% (AsB), and 3.6% (TAs) up to 7.2% (DMA), respectively. Limits of detection (LD) were in the range from 0.056 µg L-1 for TAs to 0.15 µg L-1 for As(V). Obtained recoveries were in the range of 85%⁻116%. Developed methods were applied to freshwater fish samples analysis.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614 Poznań, Poland.
| | - Adam Sajnóg
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614 Poznań, Poland.
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614 Poznań, Poland.
| |
Collapse
|