1
|
Serafimov K, Lämmerhofer M. Comprehensive Coverage of Glycolysis and Pentose Phosphate Metabolic Pathways by Isomer-Selective Accurate Targeted Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Assay. Anal Chem 2024; 96:17271-17279. [PMID: 39425639 DOI: 10.1021/acs.analchem.4c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The accurate liquid chromatography-tandem mass spectrometry analysis of phosphorylated isomers from glycolysis and pentose phosphate pathways is a challenging analytical problem in metabolomics due to extraction problems from the biological matrix, adherence to stainless steel surfaces leading to tailing in LC, and incomplete separation of hexose and pentose phosphate isomers. In this study, we present a targeted HILIC-ESI-MS/MS method based on a BEH amide fully porous 1.7 μm particle column with an inert surface coating of column hardware and multiple reaction monitoring (MRM) acquisition fully covering the glycolysis and pentose phosphate pathway metabolites. To minimize contact of the phosphorylated analytes with stainless steel surfaces, a μ-ESI-MS probe with a hybrid electrode made of PEEKsil was employed. Optimized HILIC gradient elution conditions with 100 mM ammonium formate (pH 11) provided the separation of hexose monophosphate and pentose phosphate isomers. To ensure good retention time repeatability in HILIC, perfluoroalkoxy alkane bottles were used for the mobile phase (with sd over 60 runs between 0.01 and 0.02 min). For the quantitative assay, the U-13C-labeled cell extract was spiked prior to extraction by metal oxide-based affinity chromatography (MOAC) with TiO2 beads. The concentrations of the 24 targets were quantified in HeLa and human embryonic kidney (HEK293) cells. Erastin-induced ferroptosis in HEK293 cells was accompanied by enhanced levels of fructose-1,6-bis-phosphate, 2- and 3-phosphoglycerate, and 2,3-bis-phosphoglycerate.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Yu J, Guo M, Liu Y, Li S, Ni J, Feng YQ, Ding J. An 8-(Diazomethyl) Quinoline Derivatized Acyl-CoA in Silico Mass Spectral Library Reveals the Landscape of Acyl-CoA in Aging Mouse Organs. Anal Chem 2024. [PMID: 39150895 DOI: 10.1021/acs.analchem.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Acyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes. By applying the MS/MS fragmentation rules learned from the MS/MS spectra of 8-DMQ-acyl-CoA authentic standards, an 8-DMQ-acyl-CoA in silico mass spectral library containing 33,344 high-resolution tandem mass spectra of 8,336 acyl-CoA species was created. The in silico library facilitated the high-throughput and automatic annotation of acyl-CoA using multiple metabolomic data processing tools, such as NIST MS Search and MSDIAL. The feasibility of the in silico library in a complex sample was demonstrated by profiling endogenous acyl-CoAs in multiple organs of an aging mouse. 53 acyl-CoA species were annotated, including 12 oxidized fatty acyl-CoAs and 3 novel nonfatty acyl-CoAs. False positive annotations were further screened by developing an eXtreme Gradient Boosting (XGBoost) based retention time prediction model. The organ distribution and the aging dynamics of acyl-CoAs in a mouse model were discussed for the first time, which helped to elucidate the organ-specific function of acyl-CoAs and the role of different acyl-CoA species during aging.
Collapse
Affiliation(s)
- Jinhui Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Menghao Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ye Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Sha Li
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Jian Ni
- Renmin Hospital of Wuhan University, Wuhan University, 430072 Wuhan, P. R. China
| | - Yu-Qi Feng
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Jun Ding
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
- Renmin Hospital of Wuhan University, Wuhan University, 430072 Wuhan, P. R. China
| |
Collapse
|
3
|
Chen X, Wang Y, Ye Y, Yu H, Wu B. The Pre- and Post-Column Derivatization on Monosaccharide Composition Analysis, a Review. Chem Biodivers 2024; 21:e202400749. [PMID: 38856087 DOI: 10.1002/cbdv.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Polysaccharides, as common metabolic products in organisms, play a crucial role in the growth and development of living organisms. For humans, polysaccharides represent a class of compounds with diverse applications, particularly in the medical field. Therefore, the exploration of the monosaccharide composition and structural characteristics of polysaccharides holds significant importance in understanding their biological functions. This review provides a comprehensive overview of extraction methods and hydrolysis strategies for polysaccharides. It systematically analyzes strategies and technologies for determining polysaccharide composition and discusses common derivatization reagents employed in further polysaccharide studies. Derivatization is considered a fundamental strategy for determining monosaccharides, as it not only enhances the detectability of analytes but also increases detection sensitivity, especially in liquid chromatography (LC), capillary electrophoresis (CE), and gas chromatography (GC) techniques. The review meticulously examines pre-column and post-column derivatization techniques for monosaccharide analysis, categorizing them based on diverse detection methodologies. It delves into the principles and distinctive features of various derivatization reagents, offering a comparative analysis of their strengths and limitations. Ultimately, the aim is to provide guidance for selecting the most suitable derivatization approach, taking into account the structural nuances, biological functions, and reaction dynamics of polysaccharides.
Collapse
Affiliation(s)
- Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| | - Yinuo Wang
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| | - Yongjun Ye
- Zhejiang Suichang Huikang Pharmaceutical Industry Co., Suichang, 323000, China
| | - Huali Yu
- Lishui Institute for Quality Inspection and Testing, Lishui, 323000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| |
Collapse
|
4
|
Chen J, Lou Y, Liu Y, Deng B, Zhu Z, Yang S, Chen D. Advances in Chromatographic and Mass Spectrometric Techniques for Analyzing Reducing Monosaccharides and Their Phosphates in Biological Samples. Crit Rev Anal Chem 2024:1-23. [PMID: 38855933 DOI: 10.1080/10408347.2024.2364232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Reducing monosaccharides and their phosphates are critical metabolites in the central carbon metabolism pathway of living organisms. Variations in their content can indicate abnormalities in metabolic pathways and the onset of certain diseases, necessitating their analysis and detection. Reducing monosaccharides and their phosphates exhibit significant variations in content within biological samples and are present in many isomers, which makes the accurate quantification of reducing monosaccharides and their phosphates in biological samples a challenging task. Various analytical methods such as spectroscopy, fluorescence detection, colorimetry, nuclear magnetic resonance spectroscopy, sensor-based techniques, chromatography, and mass spectrometry are employed to detect monosaccharides and phosphates. In comparison, chromatography and mass spectrometry are highly favored for their ability to simultaneously analyze multiple components and their high sensitivity and selectivity. This review thoroughly evaluates the current chromatographic and mass spectrometric methods used for detecting reducing monosaccharides and their phosphates from 2013 to 2023, highlighting their efficacy and the advancements in these analytical technologies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yifeng Lou
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuwei Liu
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bowen Deng
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Zhu
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sen Yang
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, China
| | - Di Chen
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Tao Y, Rossez Y, Bortolus C, Duma L, Dubar F, Merlier F. Simultaneous Quantification of Trehalose and Trehalose 6-Phosphate by Hydrophilic Interaction Chromatography/Electrospray Accurate Mass Spectrometry with Application in Non-Targeted Metabolomics. Molecules 2023; 28:molecules28083443. [PMID: 37110679 PMCID: PMC10145281 DOI: 10.3390/molecules28083443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
High-resolution mass spectrometry (HRMS) was coupled with ultra-high-performance liquid chromatography (UHPLC) to simultaneously quantify trehalose and trehalose 6-phosphate without derivatization or sample preparation. The use of full scan mode and exact mass analysis also makes it possible to carry out metabolomic analyses as well as semi-quantification. In addition, the use of different clusters in negative mode makes it possible to compensate for deficiencies in linearity and inerrant saturation at time-of-flight detectors. The method has been approved and validated for different matrices, yeasts, and bacteria, and has shown differentiation between bacteria as a function of growth temperatures.
Collapse
Affiliation(s)
- Ye Tao
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France
| | - Yannick Rossez
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, 59655 Lille, France
| | - Clovis Bortolus
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Luminita Duma
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Faustine Dubar
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Franck Merlier
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France
| |
Collapse
|
6
|
Qin Y, Xiao Z, Zhao H, Wang J, Wang Y, Qiu F. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1755-1769. [PMID: 35796344 DOI: 10.1111/jipb.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Carbohydrate partitioning is essential for plant growth and development, and its hindrance will result in excess accumulation of carbohydrates in source tissues. Most of the related mutants in maize (Zea mays L.) display impaired whole-plant sucrose transport, but other mechanisms affecting carbohydrate partitioning have seldom been reported. Here, we characterized chlorotic leaf3 (chl3), a recessive mutation causing leaf chlorosis with starch accumulation excessively in bundle sheath chloroplasts, suggesting that chl3 is defective in carbohydrate partitioning. Positional cloning revealed that the chl3 phenotype results from a frameshift mutation in ZmPHOH, which encodes starch phosphorylase 2. Two mutants in ZmPHOH exhibited the same phenotype as chl3, and both alleles failed to complement the chl3 mutant phenotype in an allelism test. Inactivation of ZmPHOH in chl3 leaves reduced the efficiency of transitory starch conversion, resulting in increased leaf starch contents and altered carbohydrate metabolism patterns. RNA-seq revealed the transcriptional downregulation of genes related to photosynthesis and carbohydrate metabolism in chl3 leaves compared to the wild type. Our results demonstrate that transitory starch remobilization is very important for cellular carbohydrate partitioning in maize, in which ZmPHOH plays an indispensable role.
Collapse
Affiliation(s)
- Yao Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanru Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Targeted analysis of sugar phosphates from glycolysis pathway by phosphate methylation with liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 2022; 1221:340099. [DOI: 10.1016/j.aca.2022.340099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|
8
|
Olavarrieta CE, Sampedro MC, Vallejo A, Štefelová N, Barrio RJ, De Diego N. Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja. PLANTS 2022; 11:plants11121594. [PMID: 35736745 PMCID: PMC9229063 DOI: 10.3390/plants11121594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
The application of biostimulants appears to be an environmentally friendly, innovative, and sustainable agronomical tool to mitigate the negative effects induced by adverse climatology in traditional grape-growing regions such as La Rioja (Spain). However, their mechanism of action in grapevines is still unclear. We evaluated how commercial substances (two from Ascophyllum nodosum extraction and one amino acids-based biostimulant) and the non-proteinogenic amino acid β-aminobutyric acid (BABA) affect the quality and quantity of musts and grapes in Vitis vinifera L. cv. Tempranillo from a semi-arid region of La Rioja during two seasons. We hypothesized an enhancement in organic metabolites in berries and leaves in response to these treatments, changing the organoleptic characteristics of the final products. The treatments altered the primary metabolites such as carbohydrates, organic acids (AcOrg), and free amino acids, first in the leaves as the effect of the foliar application and second in grapes and musts. As the main result, the biostimulant efficiency depended on the climatology and vineyard location to improve the final yield. Whereas biostimulant application enhanced the yield in 2018 (less dry year), it did not help production in 2019 (dry year). BABA was the most efficient biostimulant, enhancing plant production. Regarding yield quality, the biostimulant application improved the musts mainly by enhancing the fumaric acid content and by reducing carbohydrates, except in BABA-treated plants, where they were accumulated. These results corroborate biostimulants as an exciting approach in wine production, especially for improving wine quality.
Collapse
Affiliation(s)
- Cristina E. Olavarrieta
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.V.); (R.J.B.)
- Correspondence: (C.E.O.); (N.D.D.)
| | - Maria Carmen Sampedro
- Central Service of Analysis (SGIker), University of the Basque Country UPV/EHU, Lascaray Ikergunea, Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain;
| | - Asier Vallejo
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.V.); (R.J.B.)
| | - Nikola Štefelová
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Ramón J. Barrio
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.V.); (R.J.B.)
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
- Correspondence: (C.E.O.); (N.D.D.)
| |
Collapse
|
9
|
Li S, Liu FL, Zhang Z, Yin XM, Ye TT, Yuan BF, Feng YQ. Ultrasensitive Determination of Sugar Phosphates in Trace Samples by Stable Isotope Chemical Labeling Combined with RPLC-MS. Anal Chem 2022; 94:4866-4873. [PMID: 35274930 DOI: 10.1021/acs.analchem.2c00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sugar phosphates are important metabolic intermediates in organisms and play a vital role in energy and central carbon metabolism. Profiling of sugar phosphates is of great significance but full of challenges due to their high structural similarity and low sensitivities in liquid chromatography (LC)-mass spectrometry (MS). In this study, we developed a novel stable isotope chemical labeling combined with the reversed-phase (RP)LC-MS method for ultrasensitive determination of sugar phosphates at the single-cell level. By chemical derivatization with 2-(diazo-methyl)-N-methyl-N-phenyl-benzamide (2-DMBA) and d5-2-DMBA, sugar phosphate isomers can obtain better separation and identification, and the detection sensitivities of sugar phosphates increased by 3.5-147 folds. The obtained limits of detection of sugar phosphates ranged from 5 to 16 pg/mL. Using this method, we achieved ultrasensitive and accurate quantification of 12 sugar phosphates in different trace biological samples. Benefiting from the improved separation and detection sensitivity, we successfully quantified five sugar phosphates (d-glucose 1-phosphate, d-mannose 6-phosphate, d-fructose 6-phosphate, d-glucose 6-phosphate, and seduheptulose 7-phosphate) in a single protoplast of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fei-Long Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao-Ming Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tian-Tian Ye
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
10
|
Straube H, Witte CP, Herde M. Analysis of Nucleosides and Nucleotides in Plants: An Update on Sample Preparation and LC-MS Techniques. Cells 2021; 10:689. [PMID: 33804650 PMCID: PMC8003640 DOI: 10.3390/cells10030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleotides fulfill many essential functions in plants. Compared to non-plant systems, these hydrophilic metabolites have not been adequately investigated in plants, especially the less abundant nucleotide species such as deoxyribonucleotides and modified or damaged nucleotides. Until recently, this was mainly due to a lack of adequate methods for in-depth analysis of nucleotides and nucleosides in plants. In this review, we focus on the current state-of-the-art of nucleotide analysis in plants with liquid chromatography coupled to mass spectrometry and describe recent major advances. Tissue disruption, quenching, liquid-liquid and solid-phase extraction, chromatographic strategies, and peculiarities of nucleotides and nucleosides in mass spectrometry are covered. We describe how the different steps of the analytical workflow influence each other, highlight the specific challenges of nucleotide analysis, and outline promising future developments. The metabolite matrix of plants is particularly complex. Therefore, it is likely that nucleotide analysis methods that work for plants can be applied to other organisms as well. Although this review focuses on plants, we also discuss advances in nucleotide analysis from non-plant systems to provide an overview of the analytical techniques available for this challenging class of metabolites.
Collapse
Affiliation(s)
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, 30419 Hannover, Germany;
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, 30419 Hannover, Germany;
| |
Collapse
|
11
|
Sheng N, Zhao H, Chen X, Wang D, Li M, Wang Z, Zhang J, Jiang J. A novel derivatization strategy for profiling phosphate ester/anhydride metabolic network and application on glioma rats using HILIC-MS/MS. Talanta 2021; 228:122238. [PMID: 33773740 DOI: 10.1016/j.talanta.2021.122238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Phosphate esters and anhydrides have great significance in the field of biochemical research and medical therapy. The genetic materials (DNA or RNA), most of the coenzymes, many intermediary metabolites, such as nucleotides and glycosyl phosphates in vivo are phosphodiesters, phosphoric acid or phosphates, respectively. It is important to monitor endogenous active phosphate metabolites for investigating many biological processes or drug mechanism. However, the detection and determination of those free active phosphate metabolites are challenged due to their unstable and easily hydrolyzed property and relatively low sensitivity, especially diphosphates and triphosphates. In the current study, we successfully developed a strategy by 3-aminomethyl pyridine (AMPy) derivatization coupled with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) for simultaneous determination of multiple types of phosphate metabolites with good stability in 48 h and 29 to 126-fold improvement of the limit of detection (LOD). Based on the diagnostic fragment ions of different types of AMPy-derivatized phosphate metabolites, characteristic MRM ion pairs were successfully performed for global profiling of the phosphate metabolites in phosphate ester/anhydride metabolic network, including nucleotide/deoxynucleotide mono/di/triphosphates, glycosyl mono/diphosphates, and other key phosphates, such as 5-phosphoribosyl-1-pyrophosphate (PRPP), SAICARP and FAICARP in HPF, HUVEC and PBMCs cells without standards. The developed strategy greatly expanded the coverage of applying a single derivatization reaction to analyze active phosphate metabolites. Finally, the established method was performed to investigate the phosphate esters and anhydrides based on a glioma rat model. For the first time, phosphate metabolites were comprehensively characterized based on phosphate ester and anhydride metabolic network, covering nucleotide metabolism, glycolysis and pentose phosphate pathways, etc. The results demonstrated that the applicability of the method could be extended to a wider range of active phosphate compounds and could facilitate to related applications in the future studies.
Collapse
Affiliation(s)
- Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Hongyi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Menglin Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
12
|
Zhang K, Guo L, Cheng W, Liu B, Li W, Wang F, Xu C, Zhao X, Ding Z, Zhang K, Li K. SH1-dependent maize seed development and starch synthesis via modulating carbohydrate flow and osmotic potential balance. BMC PLANT BIOLOGY 2020; 20:264. [PMID: 32513104 PMCID: PMC7282075 DOI: 10.1186/s12870-020-02478-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/01/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND As the main form of photoassimilates transported from vegetative tissues to the reproductive organs, sucrose and its degradation products are crucial for cell fate determination and development of maize kernels. Despite the relevance of sucrose synthase SH1 (shrunken 1)-mediated release of hexoses for kernel development, the underlying physiological and molecular mechanisms are not yet well understood in maize (Zea mays). RESULTS Here, we identified a new allelic mutant of SH1 generated by EMS mutagenesis, designated as sh1*. The mutation of SH1 caused more than 90% loss of sucrose synthase activity in sh1* endosperm, which resulted in a significant reduction in starch contents while a dramatic increase in soluble sugars. As a result, an extremely high osmolality in endosperm cells of sh1* was generated, which caused kernel swelling and affected the seed development. Quantitative measurement of phosphorylated sugars showed that Glc-1-P in endosperm of sh1* (17 μg g- 1 FW) was only 5.2% of that of wild-type (326 μg g- 1 FW). As a direct source of starch synthesis, the decrease of Glc-1-P may cause a significant reduction in carbohydrates that flow to starch synthesis, ultimately contributing to the defects in starch granule development and reduction of starch content. CONCLUSIONS Our results demonstrated that SH1-mediated sucrose degradation is critical for maize kernel development and starch synthesis by regulating the flow of carbohydrates and maintaining the balance of osmotic potential.
Collapse
Affiliation(s)
- Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Li Guo
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong China
| | - Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Wendi Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Changzheng Xu
- School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237 China
| |
Collapse
|
13
|
Qiu L, Wei XY, Wang SJ, Wang JJ. Characterization of trehalose-6-phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:185-192. [PMID: 31973856 DOI: 10.1016/j.pestbp.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Biological control potential of entomopathogenic fungi depending on conidiation capacity, conidial stress tolerance and virulence can be improved through genetic engineering. To explore a possible role of trehalose biosynthesis pathway in improving fungal pest-control potential, we characterized biological functions of trehalose-6-phosphate phosphatase (BbTPP) in Beauveria bassiana, an insect mycopathogen that serves as a main source of fungal insecticides. Deletion of BbTPP resulted in abolished trehalose biosynthesis, reduced conidiation capacity, decreases in conidial thermotolerance and UV-B resistance, increased hyphal sensitivities to chemical stresses, and attenuated virulence. By contrast, over-expression of BbTPP led to increased trehalose accumulation, decreased T6P accumulation, and enhanced stress tolerance and virulence despite little impact on growth and conidiation under normal conditions. These results indicate that BbTPP serves as not only a key player in control of trehalose biosynthesis required for multiple cellular functions but also a potential candidate to be exploited for genetic improvement of fungal potential against insect pests.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Xiao-Yu Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shou-Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
14
|
Czajka JJ, Kambhampati S, Tang YJ, Wang Y, Allen DK. Application of Stable Isotope Tracing to Elucidate Metabolic Dynamics During Yarrowia lipolytica α-Ionone Fermentation. iScience 2020; 23:100854. [PMID: 32058965 PMCID: PMC7005465 DOI: 10.1016/j.isci.2020.100854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 11/15/2022] Open
Abstract
Targeted metabolite analysis in combination with 13C-tracing is a convenient strategy to determine pathway activity in biological systems; however, metabolite analysis is limited by challenges in separating and detecting pathway intermediates with current chromatographic methods. Here, a hydrophilic interaction chromatography tandem mass spectrometry approach was developed for improved metabolite separation, isotopologue analysis, and quantification. The physiological responses of a Yarrowia lipolytica strain engineered to produce ∼400 mg/L α-ionone and temporal changes in metabolism were quantified (e.g., mevalonate secretion, then uptake) indicating bottleneck shifts in the engineered pathway over the course of fermentation. Dynamic labeling results indicated limited tricarboxylic acid cycle label incorporation and, combined with a measurable ATP shortage during the high ionone production phase, suggested that electron transport and oxidative phosphorylation may limit energy supply and strain performance. The results provide insights into terpenoid pathway metabolic dynamics of non-model yeasts and offer guidelines for sensor development and modular engineering. A HILIC method is demonstrated for efficient separation of 57 cellular metabolites Production of α-ionone was ∼400 mg/L in bench-top bioreactors Engineered Y. lipolytica secreted then consumed mevalonate during fermentation Oxidative phosphorylation may limit performance in high-cell-density fermentations
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | | | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA.
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Avenue, St Louis, MO, USA.
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA; United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, USA.
| |
Collapse
|