1
|
Yang Q, Wu Y, Zhang S, Xie H, Han D, Yan H. Recent advancements in the extraction and analysis of phthalate acid esters in food samples. Food Chem 2025; 463:141262. [PMID: 39298858 DOI: 10.1016/j.foodchem.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.
Collapse
Affiliation(s)
- Qian Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Yangqing Wu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Xie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Bedair A, Abdelhameed RM, Hammad SF, Abdallah IA, Mansour FR. Applications of metal organic frameworks in dispersive micro solid phase extraction (D-μ-SPE). J Chromatogr A 2024; 1732:465192. [PMID: 39079363 DOI: 10.1016/j.chroma.2024.465192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) are a fascinating family of crystalline porous materials made up of metal clusters and organic linkers. In comparison with other porous materials, MOFs have unique characteristics including high surface area, homogeneous open cavities, and permanent high porosity with variable shapes and sizes. For these reasons, MOFs have recently been explored as sorbents in sample preparation by solid-phase extraction (SPE). However, SPE requires large amounts of sorbents and suffers from limited contact surfaces with analytes, which compromises extraction recovery and efficiency. Dispersive SPE (D-SPE) overcomes these limitations by dispersing the sorbents into the sample, which in turn increases contact with the analytes. Miniaturization of the microextraction procedure, particularly the amount of sorbent reduces the amount consumed of the organic solvent and shorten the time required to attain the equilibrium state. This may explain the reported high efficiency and applicability of MOFs in dispersive micro SPE (D-µ-SPE). This method retains all the advantages of solid phase extraction while also being simpler, faster, cheaper, and, in some cases, more effective in comparison with D-SPE. Besides, D-µ-SPE requires smaller amounts of the sorbents which reduces the overall cost, and the amount of waste generated from the analytical process. In this review, we discuss the applications of MOFs in D-µ-SPE of various analytes including pharmaceuticals, pesticides, organic dyes from miscellaneous matrices including water samples, biological samples and food samples.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Monufia, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza 12622, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111 Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Monufia, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111 Egypt.
| |
Collapse
|
3
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
4
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
5
|
Salehi Nasab F, Ahmadi Azqhandi MH, Ghalami-Choobar B. Evaluating the efficacy of recyclable nanostructured adsorbents for rapid removal of methylparaben from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 244:117964. [PMID: 38135102 DOI: 10.1016/j.envres.2023.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
In this study, we evaluate the efficiency of two novel nanostructured adsorbents - chitosan-graphitic carbon nitride@magnetite (CS-g-CN@Fe3O4) and graphitic carbon nitride@copper/zinc nanocomposite (g-CN@Cu/Zn NC) - for the rapid removal of methylparaben (MPB) from water. Our characterization methods, aimed at understanding the adsorbents' structures and surface areas, informed our systematic examination of influential parameters including sonication time, adsorbent dosage, initial MPB concentration, and temperature. We applied advanced modeling techniques, such as response surface methodology (RSM), generalized regression neural network (GRNN), and radial basis function neural network (RBFNN), to evaluate the adsorption process. The adsorbents proved highly effective, achieving maximum adsorption capacities of 255 mg g-1 for CS-g-CN@Fe3O4 and 218 mg g-1 for g-CN@Cu/Zn NC. Through genetic algorithm (GA) optimization, we identified the optimal conditions for the highest MPB removal efficiency: a sonication period of 12.00 min and an adsorbent dose of 0.010 g for CS-g-CN@Fe3O4 NC, with an MPB concentration of 17.20 mg L-1 at 42.85 °C; and a sonication time of 10.25 min and a 0.011 g dose for g-CN@Cu/Zn NC, with an MPB concentration of 13.45 mg L-1 at 36.50 °C. The predictive accuracy of the RBFNN and GRNN models was confirmed to be satisfactory. Our findings demonstrate the significant capabilities of these synthesized adsorbents in effectively removing MPB from water, paving the way for optimized applications in water purification.
Collapse
Affiliation(s)
- Farshad Salehi Nasab
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box: 19141, Rasht, Iran
| | | | - Bahram Ghalami-Choobar
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box: 19141, Rasht, Iran.
| |
Collapse
|
6
|
Pezhhanfar S, Farajzadeh MA, Kheirkhah Ghaleh M, Hosseini-Yazdi SA, Afshar Mogaddam MR. MIL-68 (Ga) for the extraction of derivatized and non-derivatized parabens from healthcare products. Sci Rep 2023; 13:21304. [PMID: 38042936 PMCID: PMC10693546 DOI: 10.1038/s41598-023-48880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
This study was the first-ever attempt to apply MIL-68 (Ga) in developing an analytical method. The method extracts and preconcentrates some parabens from mouthwash and hydrating gel samples. The variable extraction parameters were optimized, and the figures of merit were documented. Avogadro software was used besides discussing intermolecular interactions to clarify the absorption process. ComplexGAPI software was also exploited to assess the greenness of the method. After the derivatization of the parabens using acetic anhydride in the presence of sodium carbonate, sodium chloride was added to the solution and vortexed to dissolve. A few milligrams of MIL-68 (Ga) were added into the solution and vortexed. Centrifugation separated the analyte-loaded absorbent, which was treated with mL volume of methanol through vortexing for desorption aim. A few microliters of 1,2-dibromoethane were merged with the methanolic phase and injected into a sodium chloride solution. One microliter of the extracted phase was injected into a gas chromatograph equipped with a flame ionization detector. High enrichment factors (200-330), reasonable extraction recoveries (40-66%), wide linear ranges (265-30,000 µg L-1), and appreciable coefficients of determination (0.996-0.999) were documented. The applicability of dispersive solid phase extraction for extracting polar analytes, imposing no additional step for performing derivatization, the capability of MIL-68 (Ga) for the absorption of both derivatized and non-derivatized parabens, the use of only 10 mg absorbent, and one-pot synthesis besides no high temperature or long reaction time in the sorbent provision are the highlights of the method.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Mersin 10, 99138, Nicosia, North Cyprus, Turkey.
| | - Mahdi Kheirkhah Ghaleh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Bodaghabadi F, Amiri A, Mirzaei M. Magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from water samples using magnetic carbon nanofiber/MIL-101(Cr) nanocomposites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5526-5534. [PMID: 37846501 DOI: 10.1039/d3ay01356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this study, magnetic carbon nanofibers (Fe3O4@CNF) were modified with MIL-101(Cr) (Fe3O4@CNF@MIL-101) and used as sorbents for magnetic solid-phase extraction (MSPE) to extract polycyclic aromatic hydrocarbons (PAHs) from real water samples. Gas chromatography coupled with a flame ionization detector (GC-FID) was used for the determination of the PAHs. The effect of experimental variables on the extraction efficiency of PAHs was investigated and optimized. These variables include the quantity of sorbent, the kind and volume of the elution solvent, the duration of extraction and desorption, and the salt concentration. The linear range was found to be 0.01 to 200 ng mL-1 with correlation coefficients ranging from 0.9906 to 0.9931 after the effective extraction parameters were optimized. Its detection limits (LOD) were also calculated to be between 0.003 and 0.005 ng mL-1 (S/N = 3). The method's repeatability was tested at three different concentration levels (0.1, 1, and 10 ng mL-1), and relative standard deviations (RSDs%) were obtained in the range of 2.3 to 5.0%. Finally, using the MSPE-GC-FID method, PAHs were extracted from tap water, wastewater, seawater, and spring water samples. The relative recoveries were in the range of 95.7 to 99.8%.
Collapse
Affiliation(s)
- Faezeh Bodaghabadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
- Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, 9185173911, Khorasan Razavi, Iran
| |
Collapse
|
8
|
Ma J, Zhang X, Huang X, Gong J, Xie Z, Li P, Chen Y, Liao Q. Advanced porous organic materials for sample preparation in pharmaceutical analysis. J Sep Sci 2023; 46:e2300205. [PMID: 37525342 DOI: 10.1002/jssc.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
The development of novel sample preparation media plays a crucial role in pharmaceutical analysis. To facilitate the extraction and enrichment of pharmaceutical molecules in complex samples, various functionalized materials have been developed and prepared as adsorbents. Recently, some functionalized porous organic materials have become adsorbents for pharmaceutical analysis due to their unique properties of adsorption and recognition. These advanced porous organic materials, combined with consequent analytical techniques, have been successfully used for pharmaceutical analysis in complex samples such as environmental and biological samples. This review encapsulates the progress of advanced porous materials for pharmaceutical analysis including pesticides, antibiotics, chiral drugs, and other compounds in the past decade. In addition, we also address the limitations and future trends of these porous organic materials in pharmaceutical analysis.
Collapse
Affiliation(s)
- Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Barzin M, Pooladi M. Polyaniline-co-polyindole functionalized magnetic porous carbon derived from MIL-53(Fe) for separation/enrichment of nitrophenols pollutants before determination with high-performance liquid chromatography-ultraviolet detection. J Sep Sci 2023; 46:e2300193. [PMID: 37248655 DOI: 10.1002/jssc.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Herein, a novel polyaniline-co-polyindole functionalized magnetic porous carbon derived from MIL-53(Fe) was prepared and employed as an excellent nano-adsorbent to preconcentrate trace amounts of nitro-phenols in water and wastewater samples. Briefly, magnetic MIL-53(Fe) was synthesized by the addition of magnetite nanoparticles, terephthalic acid, and FeCl3 to the reaction medium. The magnetic MIL-53(Fe) was pyrolyzed under nitrogen protection to obtain a magnetic porous carbon nanocomposite, and finally, the nanomaterial was functionalized with polyaniline-co-polyindole via oxidation polymerization. The obtained nano-adsorbent was characterized via X-ray diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and transmission and scanning electron microscopies. After that, the fabricated nano-material was utilized as an excellent nano-adsorbent for the preconcentration of trace nitro-phenols (2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol) in environmental water, and wastewater samples. The detection limits were obtained from 0.1 to 0.15 μg/L after performing the optimization process. The new method was in the range of 0.4-300 μg/L. The proposed method exhibited a good precision from 3.2% to 9.6% for within-day assay, and 5.2%-13.2% for between-day assay at three concentration levels (1, 50, and 250 μg/L). Eventually, this method was utilized to preconcentrate/determine the target analytes in three water, and wastewater samples, satisfactory (relative standard deviations, 5.4%-9.3%; relative recovery, 88%-109%).
Collapse
Affiliation(s)
- Mahnaz Barzin
- Department of Medicinal Chemistry, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Pooladi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
10
|
Majeed SA. Recent advances in metal-organic framework/carbon nanotube nanocomposites for developing analytical applications. NANOSCALE 2023. [PMID: 37378958 DOI: 10.1039/d3nr01074k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanoscience shows promise for scientific advancement in many sectors, such as biology, energy, materials, environment, and manufacturing. Nanocomposites are mixtures of two or more materials, one of which is nanosized particles. The composites are expected to show combined features resulting in general enhancements in their physical and chemical properties. Metal-organic frameworks (MOFs) are coordination polymers that have attracted attention from researchers in recent years due to their porosity and controllable functionality. Another example of interesting nanomaterials is carbon nanotubes (CNTs) which are also known for their mechanical and thermal properties. Incorporation of both these materials into a nanocomposite has shown an enhancement in properties and conquered challenges in the defects of construction. This mini-review sheds light on the recent synthetic approaches and characterization of MOF-CNT nanocomposites in order to access porous selective nanocomposites that can improve analyte detection in environmental matrixes and biological systems. A summary of the chemical composition of nanocomposites, analytes in the target, and analytical techniques used is provided.
Collapse
Affiliation(s)
- Shereen A Majeed
- National Unit for Environmental Research and Services (NUERS), Research Sector, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| |
Collapse
|
11
|
Liu Y, Wang S, Li Z, Chu H, Zhou W. Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Mohseni SF, Manoochehri M, Afshar Taromi F. A novel poly(2-mercaptobenzothiazole) coated magnetic nanoadsorbent derived from ZIF-8 for preconcentration/determination of palladium and silver. RSC Adv 2022; 12:35849-35859. [PMID: 36545095 PMCID: PMC9752480 DOI: 10.1039/d2ra06193g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Herein, a novel poly(2-mercaptobenzothiazole) coated magnetic nanoadsorbent derived from zeolitic-imidazole framework-8 (ZIF-8) was synthesized and then employed for the extraction/preconcentration of trace amounts of palladium and silver in various real matrixes. In this way, magnetite was fabricated first, and then functionalized with tetraethyl orthosilicate. After that, the synthesized magnetite@silica was coated with the ZIF-8 to obtain magnetic ZIF-8. Afterward, the magnetic ZIF-8 was pyrolyzed under the protection of a nitrogen atmosphere to get a magnetic carbon nanoadsorbent. Finally, the magnetic carbon was functionalized with a conductive polymer (poly-2-mercaptobenzothiazole). Fabrication of the nanoadsorbent was affirmed with scanning and transmission electron microscopies, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The method is linear from 0.25 to 200 μg L-1 for silver, and from 0.5 to 250 μg L-1 for palladium. The detection limits are 0.07 and 0.15 μg L-1 for Ag and Pd, respectively. The precision was evaluated at three concentration levels (1, 75, 200 μg L-1, n = 5) and all the relative standard deviation (RSD) values were lower than 10.3%. In the end, the new method was utilized for the preconcentration/determination of trace amounts of palladium and silver in various real matrixes, satisfactorily (relative recovery: 86% to 104%; RSD%: 4.0-9.5%).
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mohseni
- Department of Chemistry, Central Tehran Branch, Islamic Azad University1467686831TehranIran+98 2188385798+98 9127242698
| | - Mahboobeh Manoochehri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University1467686831TehranIran+98 2188385798+98 9127242698
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology424 Hafez Avenue, P. O. Box: 15875-4413TehranIran
| |
Collapse
|
13
|
Haghighat H. A new magnetic metal–organic framework composite synthesized via a post-synthetic functionalization approach for ultra-trace extraction/determination of mercury in real matrixes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
15
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
16
|
Wang S, Zhang L, Guo R, Ling G, Zhang P. Application of Fe 3O 4@CNFs combined with deep eutectic solvent-based dual microextraction: a novel and green strategy for rapid determination of pesticides in edible oil samples. Mikrochim Acta 2022; 189:274. [PMID: 35804247 DOI: 10.1007/s00604-022-05346-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
A novel, green, and effective strategy employing Fe3O4-modified carbon nanofibers (CNFs) combined with deep eutectic solvent (DES) is proposed as an extraction agent to extract five pesticides in edible oil samples via dual microextraction modes, followed by high-performance liquid chromatography for determination. The Fe3O4@CNFs nanomaterial and a sequence of hydrophilic DES were prepared at first and then characterized by multiple techniques. Subsequently, the extraction performance of DES and Fe3O4@CNFs-DES was compared and Fe3O4@CNFs-DES exhibited better extraction ability. After that, several influencing parameters such as the composition of DES, the amount of Fe3O4@CNFs-DES, the dispersion methods, and the extraction time were investigated and optimized. Eventually, Fe3O4@CNFs as the solid adsorbent combined with tetrabutylammonium chloride-lactic acid-based DES as the extraction solvent were selected to extract target pesticides from oil samples. The established method received good linearity in the range 25-1000 ng·g-1. The limits of detection for all analytes were in the range 2.25-7.50 ng·mL-1. Satisfactory recoveries of target pesticides were obtained (ranging from 82 to 117%) with a relative standard deviation of 0.26-9.46%. The proposed method has been successfully applied to the rapid detection of target pesticides in oil samples, demonstrating its great potential for quick screening and analysis.
Collapse
Affiliation(s)
- Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Razavi N, Taghi Hamed Mosavian M, Es'haghi Z. Curcumin-loaded magnetic chitosan-based solid-phase extraction-gas chromatography of migrated phthalate esters from pacifiers and plastic toys into baby saliva. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Barzin M, Pooladi M. A novel post-synthetic modification of magnetic MIL-101(Cr) metal–organic framework with 1,8-diaminonaphthalene chelator and its utilization for separation/determination of cadmium and nickel in food samples. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Three-dimensional acanthosphere-like hierarchical Co@graphitic carbon for dispersive magnetic solid-phase extraction of nitroimidazole. J Chromatogr A 2022; 1675:463163. [PMID: 35623194 DOI: 10.1016/j.chroma.2022.463163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Herein, a magnetic three-dimensional acanthosphere-like hierarchical Co@graphitic carbon (3D Co@GC) is introduced as an efficient adsorbent for extraction of three nitroimidazoles (NMZs: metronidazole (MNZ), ornidazole (ONZ) and tinidazole (TNZ)) from environmental water and food samples. The proposed 3D Co@GC was synthesized by a simple template-free method, which consisted of plentiful freely arranged one-dimensional nanowires. The adsorption properties of 3D Co@GC for three NMZs were investigated systematically by adsorption kinetic and isotherm studies. 3D Co@GC exhibits good adsorption capacity and fast adsorption kinetics toward three NMZs by virtue of its unique hierarchical structure. In addition, it was also found that a bit of methanol can effectively elute the adsorbed NMZs, eliminating the need for other dangerous strong acid or base solutions. Thus, 3D Co@GC as adsorbent to extraction three trace NMZs followed by direct quantification detection of targets with high-performance liquid chromatography with ultraviolet-visible detector (HPLC-UV) was developed. The parameters of dispersed magnetic solid-phase extraction (d-MSPE) were optimized by univariate and multivariate methods (Box-Behnken design). This established method revealed wide linear range and low limits of detection. Furthermore, the satisfactory recoveries of NMZs (86.7-106.7%) were acquired in spiked river water, honey, milk, and muscle samples. This study might provide a potential strategy for the efficient extraction and sensitive analysis of trace NMZs in river water, honey, milk, and muscle samples.
Collapse
|
20
|
Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Khongkla S, Phonchai A, Nurerk P, Bunkoed O. A hierarchical composite ZnO@Carbon foam/PVA cryogel sorbent for the extraction and enrichment of parabens and synthetic phenolic antioxidant in fruit juice. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Zhang S, Wang R, Wu Y, Chen Z, Tong P, He Y, Lin Z, Cai Z. One-Pot Synthesis of Magnetic Covalent Organic Frameworks for Highly Efficient Enrichment of Phthalate Esters from Fine Particulate Matter. J Chromatogr A 2022; 1667:462906. [DOI: 10.1016/j.chroma.2022.462906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
|
23
|
Napolitano-Tabares PI, Gutiérrez-Serpa A, Jiménez-Abizanda AI, Jiménez-Moreno F, Pasán J, Pino V. Hybrid Materials Formed with Green Metal-Organic Frameworks and Polystyrene as Sorbents in Dispersive Micro-Solid-Phase Extraction for Determining Personal Care Products in Micellar Cosmetics. Molecules 2022; 27:813. [PMID: 35164078 PMCID: PMC8838677 DOI: 10.3390/molecules27030813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated μ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 μg·L-1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 μg·L-1 and 650 μg·L-1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.
Collapse
Affiliation(s)
- Patricia I. Napolitano-Tabares
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Adrián Gutiérrez-Serpa
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| | - Ana I. Jiménez-Abizanda
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Francisco Jiménez-Moreno
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| |
Collapse
|
24
|
Polyhedral Oligomeric Silsesquioxane–Based Hybrid Monolithic Column On-line In-Tube Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Five Phthalate Esters in Bottled Water. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Bakhshizadeh Aghdam M, Farajzadeh MA, Afshar Mogaddam MR. Magnetic dispersive solid phase extraction based on carbonized cellulose-ferromagnetic nanocomposite for screening phthalate esters in aqueous samples. J Chromatogr A 2021; 1663:462756. [PMID: 34954530 DOI: 10.1016/j.chroma.2021.462756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
Abstract
In this work, a sorbent of the carbonized cellulose-ferromagnetic nanocomposite has been proposed for the magnetic dispersive solid phase extraction of some plasticizers in aqueous samples. Carbonized cellulose nanoparticles were prepared by treatment of cellulose filter paper with concentrated sulfuric acid and then loaded on Fe3O4 nanoparticles using coprecipitation. This sorbent is compatible with aqueous samples and can be considered as a viable sorbent for extraction of plasticizers from aqueous samples. In this study, magnetic dispersive solid phase extraction is followed by a dispersive liquid-liquid microextraction method. This combination makes the proposed approach as an efficient clean-up method with high enrichment factors for the selected analytes. The enriched analytes are monitored by gas chromatography equipped with a flame ionization detector. Parameters affecting the method efficiency were investigated in details. Under the optimized extraction conditions, limits of detection could reach up to of 0.15-0.50 µg L-1. The satisfactory enrichment factors of 286-403 were obtained, and the extraction recoveries were found to be in the range of 57-80%. Relative standard deviations were in the range of 3-7% for intra-day and inter-day precisions for six replicate extractions at 25 µg L-1 of each plasticizer. Calibration curves were linear in wide ranges with coefficients of determination ≥ 0.995. Eventually, efficiency of the prepared sorbent was confirmed by the extraction of some plasticizers from real samples including fruit juices, mineral water, injection solution, cola, and yoghourt drink packed in plastic containers.
Collapse
Affiliation(s)
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, Mersin 10, Nicosia, North Cyprus 99138, Turkey.
| | | |
Collapse
|
26
|
A composite of magnetic GOx@MOF incorporated in alginate hydrogel fiber adsorbent for the extraction of phthalate esters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Yin SJ, Wang X, Jiang H, Lu M, Yang FQ. Preparation of yolk-shell structure NH 2-MIL-125 magnetic nanoparticles for the selective extraction of nucleotides. Mikrochim Acta 2021; 188:419. [PMID: 34782919 DOI: 10.1007/s00604-021-05071-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022]
Abstract
Yolk-shell structure magnetic metal-organic framework nanoparticles were prepared via post solvothermal method and employed as a magnetic solid-phase extraction adsorbent for selective pre-concentration of 5'-ribonucleotides by π stacking interaction, hydrogen bonding, and the strong interaction between titanium ions (Ti4+) and phosphate group. The properties of the materials were confirmed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, vibrating sample magnetometer, infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller analysis. The main parameters affecting the adsorption-desorption process, including adsorbent amount, incubation time, incubation temperature, sample pH, shaking speed, elution solution, and elution time, were systematically optimized. Finally, 1.0 mg of adsorbent mixed with 1.0 mL sample solution (10.0 mmol⋅L-1 NaCl, pH 3.0) and shaken at 135 rpm for 5 min at 40 °C, washed with 1.0 mL Na3PO4-NH3∙H2O under vortex for 5 min were selected as optimized adsorption-desorption conditions. The binding performance of adsorbent towards five nucleotides was evaluated by static adsorption experiments. The data are well-fitted to the Langmuir isotherm model and the maximum adsorption capacity is 27.8 mg g-1 for adenosine 5'-monophosphate. The limit of detection of the method is 19.44-38.41 ng mL-1. Under the optimal conditions, the adsorbent was successfully applied to magnetic solid-phase extraction and high performance liquid chromatography determination of five nucleotides in octopus, chicken, fish, and pork samples.
Collapse
Affiliation(s)
- Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Xu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Hui Jiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Min Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
28
|
Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 2021; 1655:462484. [PMID: 34487879 DOI: 10.1016/j.chroma.2021.462484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD). FESEM images illustrated irregular and bead-free nanofibers with a diameter range of 126.9-269.6 nm. Thanks to the incorporation of Co-MOF-74 into the polyfam network, the electrospun nanofibers displayed a large surface area, high porosity, and significant extraction efficiency toward target analytes. Under optimal experimental conditions, the linearity was achieved in the range of 0.1-1500.0 µg L-1 for sorafenib and 0.5-1500.0 µg L-1 for dasatinib and erlotinib hydrochloride, with a coefficient of determination of ≥0.9996. The detection limits (LODs) were calculated within the range of 0.03-0.20 µg L-1. The relative standard deviation values (RSDs %) were in the range of 3.1%-8.6% (intra-day, n = 6) and 7.0%-10.3% (inter-day, n=3) in the span of three days. Ultimately, the application of the developed method was appraised for the quantification of trace amounts of the intended analytes in various spiked samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
29
|
Veisi B, Lorestani B, Ardakani SS, Cheraghi M, Tayebi L. Synthesis of magnetite@MIL‐53(Fe)‐NH‐CS
2
via postsynthetic modification for extraction/separation of ultra‐trace Hg (II) from some real samples and its subsequent quantification by CVAAS. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Behzad Veisi
- Department of the Environment, College of Basic Sciences, Hamedan Branch Islamic Azad University Hamedan Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch Islamic Azad University Hamedan Iran
| | - Soheil Sobhan Ardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch Islamic Azad University Hamedan Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch Islamic Azad University Hamedan Iran
| | - Lima Tayebi
- Department of Fisheries Science, Faculty of Natural Resources and Environment Malayer University Malayer Iran
| |
Collapse
|
30
|
The enrichment and extraction of parabens with polydopamine-coated microporous carrageenan hydrogel beads incorporating a hierarchical composite of metal-organic frameworks and magnetite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Fang X, Ye J, Duan D, Cai X, Guo X, Li K. Aspartic acid assisted one-step synthesis of stable CsPbX 3@Asp-Cs 4PbX 6 by in situ growth in NH 2-MIL-53 for ratiometric fluorescence detection of 4-bromophenoxybenzene. Mikrochim Acta 2021; 188:204. [PMID: 34043073 DOI: 10.1007/s00604-021-04863-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
A molecularly imprinted ratiometric fluorescent sensor was synthesized for the detection of 4-bromophenoxybenzene (BDE-3) based on perovskite quantum dots and metal organic framework. First, aspartic acid (Asp) was introduced during the synthesis of perovskite CsPbX3 for the formation of a core-shell structure of CsPbX3@Asp-Cs4PbX6. Due to the protection of the shell layer Cs4PbX6, the stability of the core CsPbX3 was improved significantly. Compared to CsPb(BrI)3, the ultraviolet and thermal stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 were increased by 26 times and 32 times, respectively, and, compared to CsPbBr3, these stabilities of CsPbBr3@Asp-Cs4PbBr6 were increased by 3 times and 13 times, respectively. The water stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 and CsPbBr3@Asp-Cs4PbBr6 were greatly improved too. Then, a ratiometric fluorescence sensor was constructed by in situ growth of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 in metal organic framework (NH2-MIL-53) for the detection of BDE-3, in which the orange fluorescence of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 (614 nm) was regarded as the reference signal and the cyan fluorescence of NH2-MIL-53 (494 nm) was used as the fluorescence response signal. To improve the selectivity of the sensor, the molecular imprinting polymer (MIP) was modified on the NH2-MIL-53 and an imprinting factor of 3.17 was obtained. Under 365 nm light excitation, the fluorescent response signal at 494 nm was quenched gradually by BDE-3 in the range 11.4 to 68.5 nmol/L, while the reference signal at 614 nm remained unchanged. The limit of detection and limit of quantification were 3.35 and 11.2 nmol/L, respectively, and the fluorescent color of the sensor changed gradually from cyan to green to orange, which illustrated that the developed sensor has an ability to recognize BDE-3 specifically, a good anti-interference ability, and a sensitively visual detection ability. Moreover, the sensor was successfully applied to the BDE-3 detection in polyethylene terephthalate plastic bottle, polyvinyl chloride plastic bag, and circuit board with satisfactory recoveries (96.3-108.1%) and low relative standard deviations (5%). The preparation processes of NH2-MIL-53, NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6, and the MIP-NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6 composites.
Collapse
Affiliation(s)
- Xiaoyu Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianping Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ding Duan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China.
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Mousavi SH, Manoochehri M, Afshar Taromi F. Fabrication of a novel magnetic metal-organic framework functionalized with 2-aminothiophenol for preconcentration of trace silver amounts in water and wastewater. RSC Adv 2021; 11:13867-13875. [PMID: 35423912 PMCID: PMC8697535 DOI: 10.1039/d1ra00420d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel magnetic metal-organic framework functionalized (MMOF) with 2-aminothiophenol (2-ATP) was fabricated and employed for separation/preconcentration of trace silver amounts. At first magnetite nanoparticles (Fe3O4 NPs) were synthesized and then coated with SiO2. Thereafter, the Fe3O4@SiO2 nanoparticles were modified with 2-ATP. Finally, the functionalized MMOF was prepared by the fabrication of MIL-101(Cr) in the presence of Fe3O4@SiO2@2-ATP NPs. MIL-101(Cr)/Fe3O4@SiO2@2-ATP nanocomposite was characterized with FT-IR, SEM, elemental analysis, XRD and VSM and then utilized in the separation/determination of silver ions in various real samples. The effects of diverse experimental variables such as pH, uptake time, adsorbent amount, desorption time, eluent concentration and volume were studied comprehensively employing experimental design methodology. After optimization, LOD and linearity were 0.05 ng mL-1 and 0.2-200 ng mL-1, respectively. Repeatability of the new method was determined based on RSD value for 5, 50, 150 ng mL-1 (n = 5) concentrations which was 9.3%, 6.8% and 4.5%, respectively. Ultimately, the outlined method was utilized in the separation/determination of silver ions in various water and wastewater samples satisfactorily.
Collapse
Affiliation(s)
- Seyyed Hossein Mousavi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University Tehran 1467686831 Iran +98 2188385798 +98 9127242698
| | - Mahboobeh Manoochehri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University Tehran 1467686831 Iran +98 2188385798 +98 9127242698
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology 424 Hafez Avenue, P. O. Box: 15875-4413 Tehran Iran
| |
Collapse
|
33
|
Jiang Y, Zhang B, Li J, Sun Y, Wang X, Ma P, Song D. One-step fabrication of hydrophilic MIL-68(Al)/Chitosan-coated melamine sponge for vortex-assisted solid-phase extraction of parabens in water samples. Talanta 2021; 224:121799. [DOI: 10.1016/j.talanta.2020.121799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
34
|
Xu X, Feng X, Liu Z, Xue S, Zhang L. 3D flower-liked Fe 3O 4/C for highly sensitive magnetic dispersive solid-phase extraction of four trace non-steroidal anti-inflammatory drugs. Mikrochim Acta 2021; 188:52. [PMID: 33496871 DOI: 10.1007/s00604-021-04708-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
A low cost-effective and simple synthesis method was adopted to acquire three-dimensional flower-like structure Fe3O4/C that has large specific area, suitable pore structure and sufficient saturation magnetism. The obtained Fe3O4/C exhibits outstanding preconcentration ability and was applied to extracting non-steroidal anti-inflammatory drugs from complex environmental and biological samples. The parameters of magnetic solid-phase extraction were optimized by univariate and multivariate methods (Box-Behnken design). The high degree of linearity from 2.5 to 1000.0 ng mL-1 (R2 ≥ 0.9976), the limits of detection from 0.25 to 0.5 ng mL- 1 (S/N = 3), and the limits of quantitation from 1.0 to 2.0 ng mL- 1 (S/N = 10) were yielded by adopting this novel method after the optimization. Moreover, the recoveries of non-steroidal anti-inflammatory drugs from 89.6 to 107.0% were acquired in spiked plasma, urine and lake samples. In addition, the adsorption of non-steroidal anti-inflammatory drugs on Fe3O4/C was explored by adsorption isotherms and kinetic studies. Furthermore, the adsorption mechanism for non-steroidal anti-inflammatory drugs by Fe3O4/C was proposed, which was hydrogen bonding and π-π interaction between non-steroidal anti-inflammatory drugs and Fe3O4/C. Graphical abstract.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China.
| | - Xue Feng
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Zhen Liu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Shan Xue
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
35
|
Pajewska-Szmyt M, Biniewska E, Buszewski B, Gadzała-Kopciuch R. Synthesis of Magnetic Molecularly Imprinted Polymer Sorbents for Isolation of Parabens from Breast Milk. MATERIALS 2020; 13:ma13194328. [PMID: 33003301 PMCID: PMC7579064 DOI: 10.3390/ma13194328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) are an invaluable asset in the development of many methods in analytical chemistry, particularly sample preparation. Novel adsorbents based on MMIPs are characterized by high selectivity towards a specific analyte due to the presence of a specific cavity on their polymer surface, enabling the lock-key model interactions to occur. In addition, the magnetic core provides superparamagnetic properties that allow rapid separation of the sorbent from the sample solution. Such a combination of imprinted polymers with a magnetic core has an innovative influence on the development of separation techniques. Hence, the present study describes the synthesis of MMIPs with 17β-estradiol used as a template molecule in the production of imprinted polymers. The as-prepared sorbent was used for a sorption/desorption study of five parabens from breast milk samples. The obtained results were characterized by sorption efficiency exceeding 92%, which shows the high affinity of the analytes to the functional groups on the sorbent. The final determination of the selected analytes was done with high-performance liquid chromatography using a fluorometric detector. The determined linearity ranges for selected parabens were characterized by high determination coefficients (r2 from 0.9992 to 0.9999), and the calculated limit of detection (LOD) and limit of quantification (LOQ) for the identified compounds were low (LOD from 1.1-2.7 ng mL-1; LOQ from 3.6-8.1 ng mL-1), which makes their quantitative analysis in real samples feasible.
Collapse
Affiliation(s)
- Martyna Pajewska-Szmyt
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Ewelina Biniewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
- Correspondence:
| |
Collapse
|
36
|
Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Mikrochim Acta 2020; 187:508. [DOI: 10.1007/s00604-020-04483-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
|
37
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|
38
|
Core-shell microparticles formed by the metal-organic framework CIM-80(Al) (Silica@CIM-80(Al)) as sorbent material in miniaturized dispersive solid-phase extraction. Talanta 2020; 211:120723. [DOI: 10.1016/j.talanta.2020.120723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/18/2022]
|
39
|
Campos do Lago A, da Silva Cavalcanti MH, Rosa MA, Silveira AT, Teixeira Tarley CR, Figueiredo EC. Magnetic restricted-access carbon nanotubes for dispersive solid phase extraction of organophosphates pesticides from bovine milk samples. Anal Chim Acta 2020; 1102:11-23. [DOI: 10.1016/j.aca.2019.12.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 11/26/2022]
|