1
|
Skjennum KA, Krahn KM, Sørmo E, Wolf R, Goranov AI, Hatcher PG, Hartnik T, Arp HPH, Zimmerman AR, Zhang Y, Cornelissen G. The impact of biochar's physicochemical properties on sorption of perfluorooctanoic acid (PFOA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177191. [PMID: 39490842 DOI: 10.1016/j.scitotenv.2024.177191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
To better characterize properties governing the sorption of per- and polyfluoroalkyl substances (PFAS) to biochar, twenty-three diverse biochars were characterized and evaluated as sorbents for perfluorooctanoic acid (PFOA). Biochars were produced at various temperatures, using two different technologies, and made from sewage sludge, food waste reject, wood wastes, and one reference substrate (wood pellets). The biochars were characterized in terms of surface area, pore volume and pore size distributions, elemental composition, leachable elements, ash content, pH, zeta potential, condensed aromatic carbon (ConAC) content (determined by benzenepolycarboxylic acid (BPCA) markers), and their -OH functional group content (infrared spectroscopy). PFOA sorption isotherms were determined using Polanyi-Dubinin-Manes (PDM) and Freundlich models. The sludge-based biochars [Freundlich coefficients (log KF) between 2.56 ± 0.11 and 6.72 ± 0.22 (μg/kg)/(μg/L)nF; fitted free energy of adsorption (E) and pore volume (Vo) from the PDM model between 13.27 and 17.26 kJ/mol, and 0.50 and 523.51 cm3/kg] outperformed wood biochars [log KF between 1.02 and 4.56 ± 0.22 (μg/kg)/(μg/L)nF; E between 9.87 and 17.44 kJ/mol; Vo between 0.21 and 7.16 cm3/kg] as PFOA sorbents. Multivariate statistical analysis revealed that the sorption capacity was mainly controlled by pore volume within the pore diameter region that could accommodate the molecular size of PFOA (3-6 nm). Hydrophobic interactions between PFOA and aromatic carbon rich regions controlled sorption affinity, especially in the wood biochars.
Collapse
Affiliation(s)
- Karen Ane Skjennum
- Lindum AS, 3036 Drammen, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Erlend Sørmo
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway; Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Raoul Wolf
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Thomas Hartnik
- Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Yaxin Zhang
- College of Environmental Sciences and Engineering, Hunan University, Lushan Gate, Lushan South Road, Yuelu District, Changsha 100084, China
| | - Gerard Cornelissen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway; Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway.
| |
Collapse
|
2
|
Megson D, Niepsch D, Spencer J, Santos CD, Florance H, MacLeod CL, Ross I. Non-targeted analysis reveals hundreds of per- and polyfluoroalkyl substances (PFAS) in UK freshwater in the vicinity of a fluorochemical plant. CHEMOSPHERE 2024; 367:143645. [PMID: 39476983 DOI: 10.1016/j.chemosphere.2024.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
There are now over 7 million recognised per- and polyfluoroalkyl substances (PFAS), however the majority of routine monitoring programmes and policy decisions are based on just a handful of these. There is need for a shift towards gaining a better understanding of the total PFAS present in a sample rather than relying on targeted analysis alone. Total PFAS methods help us to understand if targeted methods are missing a mass of PFAS, but they do not identify which PFAS are missing. Non-targeted methods fill this knowledge gap by using high resolution mass spectrometry to identify the PFAS present in a sample. In this manuscript we use complimentary targeted and non-targeted analysis (NTA) to detect hundreds of PFAS in five freshwater samples obtained from the Northwest of the UK. Targeted analysis revealed PFOA at a maximum concentration of 12,100 ng L-1, over three orders of magnitude greater than the proposed environmental quality standard (EQS) of 100 ng L-1. A conservative assessment calculated an average total PFAS concentration of approximately 40 μg L-1 across all samples. A suspect screening approach identified between 1175 (least conservative) to 89 (most conservative) PFAS at confidence level 4. Exploratory data analysis was used to identify 33 PFAS at confidence level 3 and 10 PFAS at a confidence level of 2. Only 8 of these 43 PFAS (representing 17% of the total PFAS peak area) are regularly monitored in the UK as part of the UK DWI 47 PFAS. Our results suggested the presence of a novel group of unsaturated perfluoroalkyl ether carboxylic acids (U-PFECAs) related to EEA-NH4, a perfluoroalkyl ether carboxylic acid (PFECA), providing an example of the benefits of non-targeted screening. This study highlights the merits of non-targeted methods and demonstrates that future monitoring programmes and regulations would benefit from incorporating a non-targeted element.
Collapse
Affiliation(s)
- David Megson
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; Chemistry Matters, Alberta, Canada.
| | - Daniel Niepsch
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Jonathan Spencer
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Claudio Dos Santos
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Hannah Florance
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Cecilia L MacLeod
- School of Engineering, University of Greenwich, Chatham, Maritime, Kent, UK; Microbio Ltd, Morecambe, Lancashire, UK
| | - Ian Ross
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; CDM Smith Monterey, CA, USA
| |
Collapse
|
3
|
Zheng YH, Carter E, Zou S, Williams CF, Chow AT, Chen H. Using syringe filtration after lab-scale adsorption processes potentially overestimates PFAS adsorption removal efficiency from non-conventional irrigation water. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39414564 DOI: 10.1002/jeq2.20640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
The adsorption process, known for its cost-effectiveness and high efficiency, has been extensively investigated at the laboratory scale for removing per- and polyfluoroalkyl substances (PFAS) from non-conventional irrigation water. However, a syringe filtration step is commonly used when quantifying PFAS removal during this adsorption process, potentially leading to PFAS retention onto the filters and an overestimate of adsorption removal efficiency. Here, we assessed the retention of three prevalent PFAS (i.e., perfluorooctanoic acid [PFOA], perfluorooctane sulfonic acid [PFOS], and perfluorobutanoic acid [PFBA]) on six syringe filters. When filtering distilled deionized water spiked with 1 µg/L and 100 µg/L of each PFAS, we observed the highest and lowest PFAS recovery percentages by mixed cellulose ester (MCE) (0.20 µm, 25 mm; 97 ± 11%, 101 ± 4.8%) and polytetrafluoroethylene (0.45 µm, 13 mm; 61 ± 37%, 80 ± 28%), respectively. Under the initial concentration of 1 µg/L and 100 µg/L, PFOS had recovery percentages of 55 ± 25% and 68 ± 24%, significantly lower than 96 ± 12% and 99 ± 5% for PFOA and 95 ± 8% and 97 ± 4% for PFBA, highlighting the importance of PFAS functional groups. PFAS recovery percentage increased with filtration volume in the order of 80 ± 28% (1 mL) < 85 ± 21% (5 mL) < 90 ± 18% (10 mL). Using MCE to filter treated municipal wastewater spiked with 1 µg/L and 100 µg/L of each PFAS, we found recovery percentages >90% for all three PFAS. Our study underscores the significance of syringe filter selection and potential overestimate of PFAS removal efficacy by the lab-scale adsorption processes.
Collapse
Affiliation(s)
- Yu-Hua Zheng
- Department of Forestry and Environmental Conservation, Clemson University, South Carolina, USA
| | - Erika Carter
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, USA
| | - Shiqiang Zou
- Department of Civil and Environmental Engineering, Auburn University, Alabama, USA
| | | | - Alex T Chow
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, USA
| |
Collapse
|
4
|
Pettersson M, Ericson Jogsten I, van Hees P, Karlsson P, Axelsson M, Yeung LWY. Sampling of per- and polyfluoroalkyl substances in drainage water from a waste management facility. CHEMOSPHERE 2024; 364:143031. [PMID: 39117088 DOI: 10.1016/j.chemosphere.2024.143031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used for decades in a broad range of consumer products and industrial applications. A variety of waste and products containing PFAS inevitably end up at waste management facilities when they are no longer considered useful. Drainage water samples (n = 157) were collected from eight subsections at a waste management facility in Sweden and analyzed for 23 PFAS and extractable organofluorine (EOF). Two different sampling methods were used, grab sampling (n = 32, without filtration) and composite sampling (n = 8, produced by pooling 16 filtered samples taken at the same subsection). Although PFAS have been studied at waste sites, the information is scarce regarding how the concentrations and homologue profiles could differ within the sites. In this study, we investigated if composite sampling could be an alternative to grab sampling for PFAS monitoring purposes. Herein, the PFAS concentrations ranged from <1 to 22 μg/L; the grab samples showed systematic higher concentrations than their corresponding composite sample. Short-chain perfluoroalkyl sulfonic acids (C4 and C5) were the largest contributing sub-class, followed by short-chain perfluoroalkyl carboxylic acids (C4 to C6). EOF was measured up to approximately 140 μg/L F with 99% being unexplained by the fluorine mass balance analysis. The results from this study showed that both sampling methods were comparable for target analysis and that 11 compounds represented most of the PFAS concentrations. However, the discrepancy between the sampling methods was greater for EOF analysis and may be due to the preparation of composite samples and/or due to fluctuating discharges during the sampling period. Composite sampling was observed to be comparable to grab sampling for target analysis.
Collapse
Affiliation(s)
- Mio Pettersson
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden
| | - Patrick van Hees
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden; Eurofins Food & Feed Testing Sweden AB, 531 40, Lidkoping, Sweden
| | - Patrik Karlsson
- Eurofins Food & Feed Testing Sweden AB, 531 40, Lidkoping, Sweden
| | | | - Leo W Y Yeung
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden.
| |
Collapse
|
5
|
Folorunsho O, Kizhakkethil JP, Bogush A, Kourtchev I. Effect of short-term sample storage and preparatory conditions on losses of 18 per- and polyfluoroalkyl substances (PFAS) to container materials. CHEMOSPHERE 2024; 363:142814. [PMID: 38986773 DOI: 10.1016/j.chemosphere.2024.142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
There is a lack of agreement on a suitable container material for per- and polyfluoroalkyl substances (PFAS) analysis, particularly at trace levels. In this study, the losses of 18 short- and long-chain (C4-C10) PFAS to commonly used labware materials (high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polypropylene co-polymer (PPCO), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and glass were investigated. The influence of sample storage and preparation conditions, i.e., storage time, solvent composition, storage temperatures (4 °C and 20 °C), and sample agitation techniques (shaking and centrifugation) on PFAS losses to the container materials were investigated. The results showed higher losses for most of the considered PFAS (up to 50.9%) in 100% aqueous solutions after storage for 7 days regardless of the storage temperature compared to those after 3 days. Overall, the order of losses to different materials varied for individual PFAS, with the highest losses of long-chain PFAS observed to PP and HDPE after 7-day storage at room temperature. The addition of methanol to aqueous PFAS solutions reduced the losses of long-chain PFAS to all tested materials. The use of sample centrifugation and shaking did not influence the extent of losses for most of the PFAS in 80:20 water:methanol (%, v/v) to container materials except for 8:2 fluorotelomer sulfonic acid (8:2 FTS), 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS), perfluorodecanoic acid (PFDA) and 4:2 fluorotelomer sulfonic acid (4:2 FTS). This study demonstrates lower losses of both long- and short-chain PFAS to glass and PET. It also highlights the need for caution when deciding on sample preparatory steps and storage during the analysis of PFAS.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | | | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
6
|
Ejerssa WW, Seid MG, Lim SJ, Han J, Chae SH, Son A, Hong SW. Loss of micropollutants on syringe filters during sample filtration: Machine learning approach for selecting appropriate filters. CHEMOSPHERE 2024; 359:142327. [PMID: 38754483 DOI: 10.1016/j.chemosphere.2024.142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Prefiltration before chromatographic analysis is critical in the monitoring of environmental micropollutants (MPs). However, in an aqueous matrix, such monitoring often leads to out-of-specification results owing to the loss of MPs on syringe filters. Therefore, this study investigated the loss of seventy MPs on eight different syringe filters by employing Random Forest, a machine learning algorithm. The results indicate that the loss of MPs during filtration is filter specific, with glass microfiber and polytetrafluoroethylene filters being the most effective (<20%) compared with nylon (>90%) and others (regenerated-cellulose, polyethersulfone, polyvinylidene difluoride, cellulose acetate, and polypropylene). The Random Forest classifier showed outstanding performance (accuracy range 0.81-0.95) for determining whether the loss of MPs on filters exceeded 20%. Important factors in this classification were analyzed using the SHapley Additive exPlanation value and Kruskal-Wallis test. The results show that the physicochemical properties (LogKow/LogD, pKa, functional groups, and charges) of MPs are more important than the operational parameters (sample volume, filter pore size, diameter, and flow rate) in determining the loss of most MPs on syringe filters. However, other important factors such as the implications of the roles of pH for nylon and pre-rinsing for PTFE syringe filters should not be ignored. Overall, this study provides a systematic framework for understanding the behavior of various MP classes and their potential losses on syringe filters.
Collapse
Affiliation(s)
- Wondesen Workneh Ejerssa
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung Ji Lim
- Water and Wastewater Research Center, K-Water Research Institute, Korea, 125, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Jiyun Han
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Aseom Son
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
7
|
Zarębska M, Bajkacz S, Hordyjewicz-Baran Z. Assessment of legacy and emerging PFAS in the Oder River: Occurrence, distribution, and sources. ENVIRONMENTAL RESEARCH 2024; 251:118608. [PMID: 38447604 DOI: 10.1016/j.envres.2024.118608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The purpose of the study was to evaluate the occurrence and distribution of emerging contaminants, poly- and perfluoroalkyl substances (PFAS), in the Polish Oder River, aiming to uncover new insights into their environmental impact. The research aimed to identify potential sources of PFAS, assess water quality levels, and verify compliance with European Union environmental quality standards. The concentrations of 25 PFAS (20 legacy and 5 emerging) in 20 samples from intakes upstream and downstream of urban areas were analyzed using novel, developed in these studies, environmental analytical procedures involving solid phase extraction and liquid chromatography-tandem mass spectrometry. The presence of 14 PFAS was confirmed, and the concentration of Σ14PFAS ranged from 7.6 to 68.0 ng/L. The main components were short-chain analogs. PFBA was the most abundant, accounting for about one-third of all PFAS detected. An exception was observed in the waters of the Gliwice Canal, where ADONA represented half of the detected Σ14PFAS. Alternative PFOS replacements were found in all samples. In 11 of 20 water samples, environmental quality standards for PFOS exceeded the limit of 0.65 ng/L. In 5 of 9 cases, the ability of urban areas to increase PFAS levels in the river was determined. 9.5%-54.4% share of alternative PFAS in relation to the sum of the targeted PFAS showing their increasing use as substitutes for phased-out PFOS. Hierarchical cluster analysis was used to identify potential sources of PFAS. Analysis revealed that PFAS in the Oder River most likely originated from domestic and agricultural wastewater, as well as chemical industry discharges. However, the occurrence of PFAS in the Oder River is low and comparable to other recent European studies. These findings provide valuable insights for environmental management to mitigate the risks associated with PFAS pollution in Polish rivers. Moreover, the developed analytical procedure provides a valuable tool that can be successfully applied by other researchers to monitor PFAS in rivers around the world.
Collapse
Affiliation(s)
- Magdalena Zarębska
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., Gliwice, 44-100, Poland; Lukasiewicz Research Network- Institute of Heavy Organic Synthesis "Blachownia", 9 Energetyków Str., Kędzierzyn-Koźle, 47-225, Poland.
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., Gliwice, 44-100, Poland.
| | - Zofia Hordyjewicz-Baran
- Lukasiewicz Research Network- Institute of Heavy Organic Synthesis "Blachownia", 9 Energetyków Str., Kędzierzyn-Koźle, 47-225, Poland.
| |
Collapse
|
8
|
Shen N, Tang J, Chen J, Sheng C, Han T, He X, Liu C, Han C, Li X. Occurrence and prevalence of per- and polyfluoroalkyl substances in the sediment pore water of mariculture sites: Novel findings of PFASs from the Bohai and Yellow Seas using a newly established analytical method. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134256. [PMID: 38640673 DOI: 10.1016/j.jhazmat.2024.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.
Collapse
Affiliation(s)
- Nan Shen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Cancan Sheng
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Chenguang Liu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Geiger MJ, Morrison JM, Carmack DJ, Lockwood-O'Brien SY, Stagliano MC, Karrer TA. A high-throughput small volume matrix based calibration using isotope dilution liquid chromatography tandem mass spectrometry analysis for 42 per and polyfluoroalkyl substances in groundwater. J Chromatogr A 2024; 1716:464633. [PMID: 38246069 DOI: 10.1016/j.chroma.2024.464633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
A novel method for the determination of per- and polyfluoroalkyl substances (PFAS) in groundwater is presented using a subsample, matrix-matched calibrators, 96-well plate solid phase extraction (SPE), and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Accuracy, precision, measurement of uncertainty (MOU), method detection limit (MDL), method quantitation limit (MQL), analytical measurement range, interferences/ion suppression, and analyte stability were determined as part of the in-house method validation. The method quantitates 42 PFAS compounds from nine different compound classes. Accuracy for the reference material (RM) and matrix spike (MS) ranged from 52.3 to 117.8 %, and precision for the MS and matrix spike duplicate (MSD) had a coefficient of variation (CV) from 2.0 % to 23.3 %. MDLs spanned from 0.07 to 1.97 ng L-1, with MQLs ranging from 0.20 to 5.90 ng L-1. Suppression studies determined that iron and manganese have effects on analytes that do not have paired isotopically labeled standards. The results from the in-house validation indicated that this Michigan Department of Health and Human Services laboratory developed test meets the necessary accuracy, precision, MDL, MQL and reporting limits requirement established by the laboratory's quality system essentials (QSEs) and select criteria from the Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories and American Industrial Hygiene Association Laboratory Accreditation Program, LLC (AIHA LAP, LLC) accrediting International Standard Organization (ISO/IEC 17025:2017) check list.
Collapse
Affiliation(s)
- Matthew J Geiger
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA; University of South Florida candidate for Doctor of Public Health (DrPH) in Public Health and Clinical Laboratory Science and Practice, 4202 E. Flower Ave, Tampa, FL 33620, USA.
| | - Jessica M Morrison
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Douglas J Carmack
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Sarah Y Lockwood-O'Brien
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Michael C Stagliano
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Timothy A Karrer
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| |
Collapse
|
10
|
Long M, Chen Y, Senftle TP, Elias W, Heck K, Zhou C, Wong MS, Rittmann BE. Method of H 2 Transfer Is Vital for Catalytic Hydrodefluorination of Perfluorooctanoic Acid (PFOA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1390-1398. [PMID: 38165826 DOI: 10.1021/acs.est.3c07650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The efficient transfer of H2 plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H2 transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (Pd0NPs). Pd0NPs were synthesized through an in situ autocatalytic reduction of Pd2+ driven by H2 from the membrane. The Pd0 nanoparticles were directly deposited onto the membrane fibers to form the catalyst film. Direct delivery of H2 to Pd0NPs through the walls of nonporous gas transfer membranes enhanced the hydrodefluorination of PFOA, compared to delivering H2 through the headspace. A higher H2 lumen pressure (20 vs 5 psig) also significantly increased the defluorination rate, although 5 psig H2 flux was sufficient for full reductive defluorination of PFOA. Calculations made using density functional theory (DFT) suggest that subsurface hydrogen delivered directly from the membrane increases and accelerates hydrodefluorination by creating a higher coverage of reactive hydrogen species on the Pd0NP catalyst compared to H2 delivery through the headspace. This study documents the crucial role of the H2 transfer method in the catalytic hydrogenation of PFOA and provides mechanistic insights into how membrane delivery accelerates hydrodefluorination.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Chen
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Welman Elias
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kimberly Heck
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Chen Zhou
- Institute for the Environment and Health, Nanjing University, Suzhou Campus, Suzhou 215163, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Fagan WP, Thayer SR, Weavers LK. Kinetics and Mechanism of Ultrasonic Defluorination of Fluorotelomer Sulfonates. J Phys Chem A 2023. [PMID: 37490391 DOI: 10.1021/acs.jpca.3c03011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ultrasound degrades "legacy" per- and polyfluoroalkyl substances (PFAS) via thermolysis at the interface of cavitation bubbles. However, compared to "legacy" PFAS, polyfluoroalkyl substances have a lesser affinity to the interface and may react with •OH. To understand the effect of size on degradation kinetics and mechanism of polyfluoroalkyl substances, this work compared ultrasonic treatment (f = 354 kHz) of n:2 fluorotelomer sulfonates (FTSAs) of varying chain lengths (n = 4, 6, 8). Of the congeners tested, 4:2 fluorotelomer sulfonate (FtS) degraded the fastest in individual solutions and in mixtures. Sonolytic rate constants correlated to diffusion coefficients of FTSAs, indicating that diffuse short-chain FTSAs outcompete long-chain FTSAs to adsorb and react at the bubble interface. Interestingly, 4:2 and 8:2 FtS had different evolutions of fluoride-to-sulfate ratios, [F-]/[SO42-], over time. Initially, [F-]/[SO42-]4:2 FtS and [F-]/[SO42-]8:2 FtS were respectively higher and lower than theoretical ratios. This difference was attributed to the lower maximum surface excess of 8:2 FtS, hindering its ability to pack and, consequently, defluorinate at the interface. In the presence of an •OH scavenger, FTSAs had similar %F- release compared to no scavenger, whereas %SO42- release was drastically diminished. Therefore, thermolysis is the primary degradation pathway of FTSAs; •OH supplements SO42- formation. These results indicate that ultrasound directly cleaves C-F bonds within the fluoroalkyl chain. This work shows that ultrasound efficiently degrades FTSAs of various sizes and may potentially treat other classes of polyfluoroalkyl substances.
Collapse
Affiliation(s)
- William P Fagan
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shannon R Thayer
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Linda K Weavers
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Lin EZ, Nason SL, Zhong A, Fortner J, Godri Pollitt KJ. Trace analysis of per- and polyfluorinated alkyl substances (PFAS) in dried blood spots - Demonstration of reproducibility and comparability to venous blood samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163530. [PMID: 37094673 PMCID: PMC10248884 DOI: 10.1016/j.scitotenv.2023.163530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have been widely used in consumer, personal care, and household products for their stain- and water-repellent properties. PFAS exposure has been linked to various adverse health outcomes. Such exposure has commonly been evaluated in venous blood samples. While this sample type can be obtained from healthy adults, a less invasive method of blood collection is required when evaluating vulnerable populations. Dried blood spots (DBS) have gained attention as a biomatrix for exposure assessment given the relative ease of collection, transport, and storage. The objective of this study was to develop and validate an analytical method to measure PFAS in DBS. A workflow is presented for extracting PFAS from DBS, chemical analysis by liquid chromatography-high resolution mass spectrometry, normalization for blood mass, and blank correction to account for potential contamination. Over 80 % recovery was achieved for the 22 PFAS measured with an average coefficient of variation of 14 %. Comparison of PFAS concentrations detected in DBS and paired whole blood samples from six healthy adults was correlated (R2 > 0.9). Findings demonstrate trace levels of a broad range of PFAS in DBS can be reproducibly measured and are comparable to liquid whole blood samples. DBS can offer novel insights to environmental exposures, including during critical windows of susceptibility (i.e., in utero, early life), which have been largely uncharacterized.
Collapse
Affiliation(s)
- Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Sara L Nason
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Alexander Zhong
- Department of Quantitative Theory and Methods, Emory University, Atlanta, GA 30322, USA
| | - John Fortner
- Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Hubert M, Arp HPH, Hansen MC, Castro G, Meyn T, Asimakopoulos AG, Hale SE. Influence of grain size, organic carbon and organic matter residue content on the sorption of per- and polyfluoroalkyl substances in aqueous film forming foam contaminated soils - Implications for remediation using soil washing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162668. [PMID: 36894086 DOI: 10.1016/j.scitotenv.2023.162668] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A soil that was historically contaminated with Aqueous Film Forming Foam (AFFF) was dry sieved into size fractions representative of those produced during soil washing. Batch sorption tests were then conducted to investigate the effect of soil parameters on in situ per- and polyfluoroalkyl substances (PFAS) sorption of these different size fractions: < 0.063 mm, 0.063 to 0.5 mm, 0.5 to 2 mm, 2 to 4 mm, 4 to 8 mm, and soil organic matter residues (SOMR). PFOS (513 ng/g), 6:2 FTS (132 ng/g) and PFHxS (58 ng/g) were the most dominant PFAS in the AFFF contaminated soil. Non-spiked, in situ Kd values for 19 PFAS ranged from 0.2 to 138 L/Kg (log Kd -0.8 to 2.14) for the bulk soil and were dependant on the head group and perfluorinated chain length (spanning C4 to C13). The Kd values increased with decreasing grain size and increasing organic carbon content (OC), which were correlated to each other. For example, the PFOS Kd value for silt and clay (< 0.063 mm, 17.1 L/Kg, log Kd 1.23) were approximately 30 times higher compared to the gravel fraction (4 to 8 mm, 0.6 L/Kg, log Kd -0.25). The highest PFOS Kd value (116.6 L/Kg, log Kd 2.07) was found for the SOMR fraction, which had the highest OC content. Koc values for PFOS ranged from 6.9 L/Kg (log Koc 0.84) for the gravel fraction to 1906 L/Kg (log Koc 3.28) for the silt and clay, indicating that the mineral composition of the different size fractions also influenced sorption. The results here emphasize the need to separate coarse-grained fractions and fine-grained fractions, and in particular the SOMR, to optimize the soil washing process. Higher Kd values for the smaller size fractions indicate that coarser soils are better suited for soil washing.
Collapse
Affiliation(s)
- Michel Hubert
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway.
| | - Hans Peter H Arp
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway
| | | | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Thomas Meyn
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway
| |
Collapse
|
14
|
Medon B, Pautler BG, Sweett A, Roberts J, Risacher FF, D'Agostino LA, Conder J, Gauthier JR, Mabury SA, Patterson A, McIsaac P, Mitzel R, Hakimabadi SG, Pham ALT. A field-validated equilibrium passive sampler for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:980-995. [PMID: 37128709 DOI: 10.1039/d2em00483f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labelled PFAS M2PFOA and M4PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br- and M3PFPeA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M8PFOA and C8H17SO3-), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water samples obtained adjacent to the sampler deployment locations. Neither biofouling of the rate-limiting barrier nor any physical change to it was observed on the sampler after retrieval. The passive sampler developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface water.
Collapse
Affiliation(s)
- Blessing Medon
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | - Florent F Risacher
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Lisa A D'Agostino
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Jason Conder
- Geosyntec Consultants Inc., Costa Mesa, California, 92626, USA
| | - Jeremy R Gauthier
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Patricia McIsaac
- Eurofins Environment Testing America, Oakton, Virginia, 22124, USA
| | - Robert Mitzel
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Seyfollah Gilak Hakimabadi
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
15
|
Razak MR, Aris AZ, Sukatis FF, Zaki MRM, Zainuddin AH, Haron DEM, Yusoff FM, Yusof ZNB. Development of a single-run liquid chromatography-mass spectrometry analysis for the detection of 11 multiclass contaminants of emerging concern using a direct filtration method. J Sep Sci 2023; 46:e2200282. [PMID: 36337037 DOI: 10.1002/jssc.202200282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
In toxicological analysis, the analytical validation method is important to assess the exact risk of contaminants of emerging concern in the environment. Syringe filters are mainly used to remove impurities from sample solutions. However, the loss of analyte to the syringe filter could be considerable, causing an underestimate of the analyte concentrations. The current study develops and validates simultaneous liquid chromatography-mass spectrometry analysis using a direct filtration method to detect four groups of contaminants of emerging concern. The adsorption of the analyte onto three different matrices and six types of syringe filters is reported. The lowest adsorption of analytes was observed in methanol (16.72%), followed by deionized water (48.19%) and filtered surface lake water (48.94%). Irrespective of the type of the matrices, the lowest average adsorption by the syringe filter was observed in the 0.45 μm polypropylene membrane (15.15%), followed by the 0.20 μm polypropylene membrane (16.10%), the 0.20 μm regenerated cellulose (16.15%), the 0.20 μm polytetrafluoroethylene membrane (47.38%), the 0.45 μm nylon membrane (64.87%) and the 0.20 μm nylon membrane (71.30%). In conclusion, the recommended syringe filter membranes for contaminants of emerging concern analysis are polypropylene membranes and regenerated cellulose, regardless of the matrix used.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Selangor, Malaysia.,International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
| | - Fahren Fazzer Sukatis
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Selangor, Malaysia
| | - Azim Haziq Zainuddin
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
| | - Didi Erwandi Mohamad Haron
- Shimadzu-UMMC Centre of Xenobiotic Studies, High Impact Research Central Facilities, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
16
|
Weed RA, Boatman AK, Enders JR. Recovery of per- and polyfluoroalkyl substances after solvent evaporation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2263-2271. [PMID: 36281820 PMCID: PMC9772059 DOI: 10.1039/d2em00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative chemicals that can be toxic at very low levels. Many of these compounds have unusual chemical properties that can have a large impact on analytical methods intended to quantitate them. When analyzing environmental samples, concentrating extraction eluents can greatly increase the sensitivity of PFAS extraction and analysis workflows. However, data on PFAS stability when evaporated under vacuum drying conditions are lacking. In this study two common sample preparation methods were replicated (methanol or methanolic ammonium hydroxide) to determine if PFAS material would undergo any observable loss during vacuum evaporation. Standards containing 49 different analytes from 7 different PFAS classes were evaporated to dryness under vacuum either with or without heat and reconstituted using one of two methods. It was found that recovery of some classes (e.g. PFSA, PFESA, FTS) was not greatly impacted by evaporation conditions or reconstitution method. Some analytes such as the very long chain PFCAs were not affected by evaporation conditions but saw drastic differences in recovery depending on the reconstitution method. Others analytes, for example PFSAms, experienced significant loss during evaporation that could not be mitigated by the chosen reconstitution method. This difference could be due to the number of fluorines present on the compound which correlated with a compound's hydrophobicity. Due to these findings, it is recommend that researchers consider PFAS class, chain length, and fluorine number when designing concentration and reconstitution protocols for PFAS to ensure conditions are optimal for the specific analytes of interest.
Collapse
Affiliation(s)
- Rebecca A Weed
- North Carolina State University at Raleigh, Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC, USA.
| | - Anna K Boatman
- Department of Chemistry, North Carolina State University at Raleigh, Raleigh, NC, USA
| | - Jeffrey R Enders
- North Carolina State University at Raleigh, Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University at Raleigh, Raleigh, NC, USA
| |
Collapse
|
17
|
Kassar C, Graham C, Boyer TH. Removal of perfluoroalkyl acids and common drinking water contaminants by weak-base anion exchange resins: Impacts of solution pH and resin properties. WATER RESEARCH X 2022; 17:100159. [PMID: 36387934 PMCID: PMC9650071 DOI: 10.1016/j.wroa.2022.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
The underlying chemistry of weak-base (WB) anion exchange resins (AERs) for contaminant removal from water is not well documented in the literature. To address this, batch adsorption experiments were conducted at pH 4, 7, and 10 using two representative WB-AERs (polyacrylic IRA67 and polystyrene IRA96) and two representative strong-base (SB) AERs (polyacrylic IRA458 and polystyrene A520E), of differing polymer composition, for the removal of nitrate, sulfate, 3-phenylpropionic acid (3-PPA) as surrogate for natural organic matter, and six perfluoroalkyl acids (PFAAs). Under acidic (pH 4) and neutral (pH 7) conditions, the selectivity of AERs for each contaminant was predominantly influenced by polymer composition followed by the size of the resin functional group. This result reflected the WB-AERs being fully protonated and functioning identical to SB-AERs. Isotherm model parameters revealed WB-AER had higher capacity than SB-AER with analogous polymer composition and porosity regardless of resin selectivity for each contaminant. Under basic conditions (≥ pH 10), contaminant removal by WB-AERs declined due to deprotonation of the tertiary amine functional groups. Removal of PFAAs by the more hydrophobic polystyrene WB-AER (IRA96) remained approximately constant with changing pH, which was possibly due to electrostatic interactions with remaining protonated amine functional groups on the resin.
Collapse
|
18
|
Sörengård M, Travar I, Kleja D, Ahrens L. Fly ash-based waste for ex-situ landfill stabilization of per- and polyfluoroalkyl substance (PFAS)-contaminated soil. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Campos-Pereira H, Makselon J, Kleja DB, Prater I, Kögel-Knabner I, Ahrens L, Gustafsson JP. Binding of per- and polyfluoroalkyl substances (PFASs) by organic soil materials with different structural composition - Charge- and concentration-dependent sorption behavior. CHEMOSPHERE 2022; 297:134167. [PMID: 35276112 DOI: 10.1016/j.chemosphere.2022.134167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The charge- and concentration-dependent sorption behavior of a range of per- and polyfluoroalkyl substances (PFASs) was studied for three organic soil samples with different organic matter quality, one Spodosol Oe horizon (Mor Oe) and two Sphagnum peats with different degrees of decomposition (Peat Oi and Peat Oe). Sorption to the two peat materials was, on average, four times stronger compared to that onto the Mor Oe material. In particular, longer-chained PFASs were more strongly bound by the two peats as compared to the Mor Oe sample. The combined results of batch sorption experiments and 13C NMR spectroscopy suggested sorption to be positively related to the content of carbohydrates (i.e., O-alkyl carbon). Sorption of all PFAS subclasses was inversely related to the pH value in all soils, with the largest pH effects being observed for perfluoroalkyl carboxylates (PFCAs) with C10 and C11 perfluorocarbon chain lengths. Experimentally determined sorption isotherms onto the poorly humified Peat Oi did not deviate significantly from linearity for most substances, while for the Mor Oe horizon, sorption nonlinearity was generally more pronounced. This work should prove useful in assessing PFAS sorption and leaching in organic soil horizons within environmental risk assessment.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Jennifer Makselon
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Dan B Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden; Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Isabel Prater
- Soil Science, Research Department Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Ingrid Kögel-Knabner
- Soil Science, Research Department Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
20
|
Zhao Z, Yue L, Qiao H, Li Y, Cheng X, Hua X, Lin T, Li Q, Sun H. Perfluoroalkyl acids in dust on residential indoor/outdoor window glass in Chinese cities: occurrence, composition, and toddler exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13881-13892. [PMID: 34595719 DOI: 10.1007/s11356-021-16653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The dust on indoor and outdoor surfaces of the window glasses were collected using sterile cotton balls in 11 cities from China. Two sampling campaigns were conducted with the time interval of 7 days to investigate the accumulation especially during the Spring festival holidays. Twenty-nine perfluoroalkyl acids (PFAA) were quantified to investigate concentration, composition, and toddlers' exposure. The concentrations of ∑PFAA ranged from no detection (nd) to 43 ng/m2 (mean 8.9 ± 10 ng/m2). Perfluorobutanoic acid (PFBA) was detected in 78% samples and accounted for 55 ± 21% of ∑PFAA concentrations. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were detected in more than 50% samples indicating the use of alternatives. Fluorotelomer carboxylic acid (FTCA) and fluorotelomer unsaturated acid (FTUCA) were found in the dust, implying the degradation of fluorotelomer alcohols (FTOH). The highest concentration of ∑PFAA (43 ng/m2) was found in outdoor dust from Xinzhou, Shanxi Province. Higher ∑PFAA concentrations were found in indoor dust than outdoor in 6 paired samples (3 from Feb. 14 and 3 from Feb. 21). In Tianjin and Handan, the concentrations of ∑PFAA from outdoor surfaces were higher in sampling campaign I (SC I, Feb. 21) than in sampling campaign II (SC II, Feb. 14), implying intensive outdoor release. The exposure of 2-year-old toddlers to PFAA via hand-to-mouth ingestion and dermal absorption was estimated; the mean values of intake were 2.1 and 1.5 pg/kg body weight, respectively, assuming an exposure time of 1 h.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hongqin Qiao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yinong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xianghui Cheng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xia Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Wang Y, Darling SB, Chen J. Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60789-60814. [PMID: 34911297 PMCID: PMC8719322 DOI: 10.1021/acsami.1c16517] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of engineered chemicals that have been widely used in industrial production. PFAS have drawn increasing attention due to their frequent occurrence in the aquatic environment and their toxicity to animals and humans. Developing effective and efficient detection and remediation methods for PFAS in aquatic systems is critical to mitigate ongoing exposure and promote water reuse. Adsorption-based removal is the most common method for PFAS remediation since it avoids hazardous byproducts; in situ sensing technology is a promising approach for PFAS monitoring due to its fast response, easy operation, and portability. This review summarizes current materials and devices that have been demonstrated for PFAS adsorption and sensing. Selectivity, the key factor underlying both sensor and sorbent performance, is discussed by exploring the interactions between PFAS and various probes. Examples of selective probes will be presented and classified by fluorinated groups, cationic groups, and cavitary groups, and their synergistic effects will also be analyzed. This review aims to provide guidance and implication for future material design toward more selective and effective PFAS sensors and sorbents.
Collapse
Affiliation(s)
- Yuqin Wang
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Seth B. Darling
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Junhong Chen
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Long M, Donoso J, Bhati M, Elias WC, Heck KN, Luo YH, Lai YS, Gu H, Senftle TP, Zhou C, Wong MS, Rittmann BE. Adsorption and Reductive Defluorination of Perfluorooctanoic Acid over Palladium Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14836-14843. [PMID: 34496574 DOI: 10.1021/acs.est.1c03134] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a group of widespread and recalcitrant contaminants that are attracting increasing concern due to their persistence and adverse health effects. This study evaluated removal of one of the most prevalent PFAS, perfluorooctanoic acid (PFOA), in H2-based membrane catalyst-film reactors (H2-MCfRs) coated with palladium nanoparticles (Pd0NPs). Batch tests documented that Pd0NPs catalyzed hydrodefluorination of PFOA to partially fluorinated and nonfluorinated octanoic acids; the first-order rate constant for PFOA removal was 0.030 h-1, and a maximum defluorination rate was 16 μM/h in our bench-scale MCfR. Continuous-flow tests achieved stable long-term depletion of PFOA to below the EPA health advisory level (70 ng/L) for up to 70 days without catalyst loss or deactivation. Two distinct mechanisms for Pd0-based PFOA removal were identified based on insights from experimental results and density functional theory (DFT) calculations: (1) nonreactive chemisorption of PFOA in a perpendicular orientation on empty metallic surface sites and (2) reactive defluorination promoted by physiosorption of PFOA in a parallel orientation above surface sites populated with activated hydrogen atoms (Hads*). Pd0-based catalytic reduction chemistry and continuous-flow treatment may be broadly applicable to the ambient-temperature destruction of other PFAS compounds.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Manav Bhati
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
23
|
Mottaleb MA, Ding QX, Pennell KG, Haynes EN, Morris AJ. Direct injection analysis of per and polyfluoroalkyl substances in surface and drinking water by sample filtration and liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1653:462426. [PMID: 34352431 DOI: 10.1016/j.chroma.2021.462426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023]
Abstract
We developed and validated a method for direct determination of per- and polyfluoroalkylated substances (PFASs) in environmental water samples without prior sample concentration. Samples are centrifuged and supernatants passed through an Acrodisc Filter (GXF/GHP 0.2 um, 25 mm diameter). After addition of ammonium acetate, samples are analyzed by UPLC-MS/MS using an AB Sciex 6500 plus Q-Trap mass spectrometer operated in negative multiple reaction-monitoring (MRM) mode. The instrument system incorporates a delay column between the pumps and autosampler to mitigate interference from background PFAS. The method monitors eight short-/long-chain PFAS which are identified by monitoring specific precursor product ion pairs and by their retention times and quantified using isotope mass-labeled internal standard based calibration plots. Average spiked recoveries (n = 8) of target analytes ranged from 84 to 110% with 4-9% relative standard deviation (RSD). The mean spiked recoveries (n = 8) of four surrogates were 94-106% with 3-8% RSD. For continuous calibration verification (CCV), average spiked recoveries (n = 8) for target analytes ranged from 88 to 114% with 4-11% RSD and for surrogates ranged from 104-112% with 3-11% RSD. The recoveries (n = 6) of matrix spike (MX), matrix spike duplicate (MXD), and field reagent blank (FRB) met our acceptance criteria. The limit of detection for the target analytes was between 0.007 and 0.04 ng/mL. The method was used to measure PFAS in tap water and surface water.
Collapse
Affiliation(s)
- M Abdul Mottaleb
- Superfund Research Center, University of Kentucky, Lexington KY, 40506, United States; Center for Appalachian Research in Environmental Sciences, University of Kentucky, Lexington KY, 40506, United States; Division of Cardiovascular, Medicine, College of Medicine, University of Kentucky and Lexington VA Medical Center, Lexington, KY, 40536, United States. ; Pressent address: Institute of Drug & Biotherapeutic Innovation, DRC, 1100 South Grand Blvd, Saint Louis University, Saint Louis, MO 63104 United States.
| | - Qunxing X Ding
- Department of Biology, College of Arts and Sciences, Kent State University, Kent, OH, 44242, United States.
| | - Kelly G Pennell
- Superfund Research Center, University of Kentucky, Lexington KY, 40506, United States; Center for Appalachian Research in Environmental Sciences, University of Kentucky, Lexington KY, 40506, United States; Department of Civil Engineering, College of Engineering, University of Kentucky, Lexington KY, 40506, United States.
| | - Erin N Haynes
- Superfund Research Center, University of Kentucky, Lexington KY, 40506, United States; Center for Appalachian Research in Environmental Sciences, University of Kentucky, Lexington KY, 40506, United States; Department of Epidemiology, College of Public Health, University of Kentucky, Lexington KY, 40536, United States.
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington KY, 40506, United States; Center for Appalachian Research in Environmental Sciences, University of Kentucky, Lexington KY, 40506, United States; Division of Cardiovascular, Medicine, College of Medicine, University of Kentucky and Lexington VA Medical Center, Lexington, KY, 40536, United States. ; Pressent address: Institute of Drug & Biotherapeutic Innovation, DRC, 1100 South Grand Blvd, Saint Louis University, Saint Louis, MO 63104 United States.
| |
Collapse
|
24
|
Campos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, Gustafsson JP. The Adsorption of Per- and Polyfluoroalkyl Substances (PFASs) onto Ferrihydrite Is Governed by Surface Charge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15722-15730. [PMID: 33244971 PMCID: PMC7745537 DOI: 10.1021/acs.est.0c01646] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Dan B. Kleja
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
- Swedish
Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden
| | - Carin Sjöstedt
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Wantana Klysubun
- Synchrotron
Light Research Institute, 111 Moo 6, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Jon Petter Gustafsson
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
- Department
of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| |
Collapse
|
25
|
Borrull J, Colom A, Fabregas J, Pocurull E, Borrull F. A liquid chromatography tandem mass spectrometry method for determining 18 per- and polyfluoroalkyl substances in source and treated drinking water. J Chromatogr A 2020; 1629:461485. [DOI: 10.1016/j.chroma.2020.461485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
|
26
|
Jin Q, Liu H, Wei X, Li W, Chen J, Yang W, Qian S, Yao J, Wang X. Dam operation altered profiles of per- and polyfluoroalkyl substances in reservoir. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122523. [PMID: 32197204 DOI: 10.1016/j.jhazmat.2020.122523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Information on the impact of dam operation on per- and polyfluoroalkyl substances (PFASs) distribution in reservoirs is very limited. In the present study, water, riparian soils and floating wastes samples were collected from the Three Gorges Reservoir, China during the storage and the discharge periods to characterize the PFASs distribution. The total PFASs concentrations of water samples in the storage period (50.4-146 ng/L) were 4.7 times higher than those in the discharge period (1.40-38.6 ng/L). The main types of PFASs in water samples changed from PFOA in the discharge period to short-chain species in the storage period. The main analogues in riparian soils and floating wastes were PFOA and PFOS. Wastes contributed little to PFASs mass in the reservoir, while PFASs accumulated in soils accounted for 49.7 % of the total mass when the riparian zone was submerged during the storage period. Changes in profiles of PFASs caused by dam operation suggested that the potential water safety and the shift of riparian soils between source and sink of PFASs may vary with the annual operation cycle of dam. The water resources protection in reservoirs needs strategies that consider the variation of dam operation cycle.
Collapse
Affiliation(s)
- Qiu Jin
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Huazu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Xiaoxiao Wei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wei Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China.
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Wei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
27
|
Sanan T, Magnuson M. Analysis of per- and polyfluorinated alkyl substances in sub-sampled water matrices with online solid phase extraction/isotope dilution tandem mass spectrometry. J Chromatogr A 2020; 1626:461324. [PMID: 32797817 DOI: 10.1016/j.chroma.2020.461324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Sorption of PFASs onto surfaces of laboratory materials has been frequently reported. Due to the often complex and poorly understood nature of such sorption, workarounds have often included use of whole samples only, accompanied by sample vessel rinsing to desorb active surfaces. The resulting methods tend to require considerable sample preparation times and preclude typical activities such as aliquoting and dilution of water samples prior to extraction. This manuscript reports an approach for PFAS analysis which uses subsampling of water matrices from vessels including centrifuge tubes and autosampler vials, through the optimized use of solvent to reduce PFAS retention on subsampling vessels. Online solid phase extraction (SPE) using a weak anion exchange resin is then used to concentrate sample aliquots to improve sensitivity and allow for removal of matrix interferences. With the technique of ultra performance liquid chromatography (UPLC) coupled to isotope dilution tandem mass spectrometry, statistically based quantitation limits ranged from sub ng/L to single digit ng/L for carboxylate, sulfonate, and sulfonamide PFASs analytes from C4 to C12. Linear calibration ranges were from 0.25 to 4000 ng/L. Matrix effects relevant for drinking water treatment studies, such as cations, organic carbon, and competing PFAS compounds, were evaluated and found to not impact method performance within QC criteria consistent with study data quality objectives.
Collapse
Affiliation(s)
- Toby Sanan
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 W. Martin Luther King Drive, Cincinnati, OH 45268.
| | - Matthew Magnuson
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 W. Martin Luther King Drive, Cincinnati, OH 45268
| |
Collapse
|