1
|
Wang X, Luan XM, Yang J, Liu C, Sun QH, Li ZZ, Yang Y, Rong R. A HPLC-assisted mathematical prediction method of ternary solvent systems to develop an intelligent online selection system for countercurrent chromatography solvent system. J Chromatogr A 2024; 1741:465585. [PMID: 39709896 DOI: 10.1016/j.chroma.2024.465585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Countercurrent chromatography (CCC) is an efficient technique for purifying bioactive natural compounds, but selecting the solvent system can be a time-consuming and crucial process for successful separation. This paper discussed the HPLC-assisted mathematical prediction method for the n-hexane/alcohol solvents/water (HAWat) and ethyl acetate/n-butanol/water (EBuWat) systems and designed an intelligent online selection system to simplify the separation process. First, the applicable rage of HAWat and EBuWat solvent systems were quantified by the methanol concentration at the column inlet when template molecules peak in a HPLC analysis (B%). Then, we analyzed the relationship between the logarithmic partition coefficient (log K) of template molecules and the alcohol solvent ratio by using different brands of chromatography columns. Moreover, the prediction function was developed by correlating the best solvent composition of CCC solvent system with the B% of template molecules. The results indicated that the HAWat system was suitable for separating compounds with B% > 85 %, while the EBuWat system was effective for compounds with 40 % < B% < 55 %. The quadratic function for HAWat systems and one universal EBuWat system (8.2:1.8:10) were determined and verified to develop the HPLC-assisted mathematical prediction function method. The method could select suitable solvent systems for separfigation easily and quickly. And a step of result correction was required for the occasional discrete value. Finally, an intelligent CCC online selection system that integrates established mathematical functions was designed to enable real-time solvent selection, on-demand solvent configuration, and automated sample separation. It eliminates the iterative process of shake-flask experiments and facilitates intelligent upgrading of CCC instrumentation.
Collapse
Affiliation(s)
- Xu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiu-Mei Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, PR China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Chen Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qi-Hui Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhuang-Zhuang Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, PR China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
2
|
Luan XM, Sun QH, Yang Y, Rong R, Wang X. Improvement of polarity-based solvent system for countercurrent chromatography in the guidance of solvent selectivity: n-hexane/ethyl acetate/ alcohol solvents/water as an example. J Chromatogr A 2024; 1736:465389. [PMID: 39332272 DOI: 10.1016/j.chroma.2024.465389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Solvent system selection based on polarity is a common strategy in a countercurrent chromatography (CCC) analysis. However, the solvent selectivity of solvent system is often ignored, despite its significant impact on the separation efficiency of CCC. In this study, the role of solvent in the overall properties of solvent system and the selective classification of solvent system were discussed to improve the solvent system selection based on polarity. Firstly, the mathematical relationship between logarithm of the partition coefficient (log K) of the template molecule and solvent composition of n-hexane/ethyl acetate/alcohol solvents (methanol, ethanol, and isopropanol)/water (HEAwat) system was analyzed and the optimal solvent system (K = 1) of the template molecules was determined. Then, the actual methanol concentration at the column inlet when the analyte peak in a HPLC analysis (B%) and the clustering results of the average polarity (P') of the optimal CCC solvent system were analyzed. Finally, the classification of HEAWat system in terms of its overall solvent properties by deducing equations of selectivity parameters (χe, χd, and χn) to explain the P' values clustering results. The results showed that HEAWat system was suitable for the separation of analytes with 55 % < B% < 100 %. However, the n-hexane/ethyl acetate/isopropanol/water (HEIWat) system proved more suitable for the separation of large polar compounds to other HEAWat system when the P' value decreased due to the change of alcohol solvents. The selected solvent systems were classified into group III and IV by Snyder's method. The solvent systems in group III were suitable for the separation of analytes with 85 % < B% < 100 %, and the distribution behavior of analytes was mainly influenced by the ratio of each solvent. The solvent systems in group IV were suitable for the separation of analytes with 55 % < B% < 85 %, and the distribution behavior of analytes was mainly influenced by the type of alcohol solvents.
Collapse
Affiliation(s)
- Xiu-Mei Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qi-Hui Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, PR China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Xu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
3
|
Queiroz EF, Guillarme D, Wolfender JL. Advanced high-resolution chromatographic strategies for efficient isolation of natural products from complex biological matrices: from metabolite profiling to pure chemical entities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2024; 23:1415-1442. [PMID: 39574436 PMCID: PMC11576662 DOI: 10.1007/s11101-024-09928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 11/24/2024]
Abstract
The isolation of pure compounds from extracts represents a key step common to all investigations of natural product (NP) research. Isolation methods have gone through a remarkable evolution. Current approaches combine powerful metabolite profiling methods for compounds annotation with omics mining results and/or bioassay for bioactive NPs/biomarkers priorisation. Targeted isolation of prioritized NPs is performed using high-resolution chromatographic methods that closely match those used for analytical profiling. Considerable progress has been made by the introduction of innovative stationary phases providing remarkable selectivity for efficient NPs isolation. Today, efficient separation conditions determined at the analytical scale using high- or ultra-high-performance liquid chromatography can be optimized via HPLC modelling software and efficiently transferred to the semi-preparative scale by chromatographic calculation. This ensures similar selectivity at both the analytical and preparative scales and provides a precise separation prediction. High-resolution conditions at the preparative scale can notably be granted using optimized sample preparation and dry load sample introduction. Monitoring by ultraviolet, mass spectrometry, and or universal systems such as evaporative light scattering detectors and nuclear magnetic resonance allows to precisely guide the isolation or trigger the collection of specific NPs with different structural scaffolds. Such approaches can be applied at different scales depending on the amounts of NPs to be isolated. This review will showcase recent research to highlight both the potential and constraints of using these cutting-edge technologies for the isolation of plant and microorganism metabolites. Several strategies involving their application will be examined and critically discussed. Graphical abstract
Collapse
Affiliation(s)
- Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
4
|
Wang Z, Yu J, Zhao L, Niu T, Wang X. Efficient discovery of active isolates from Dioscorea spongiosa by the combination of bioassay-guided macroporous resin column chromatography and high-speed counter-current chromatography. J Sep Sci 2024; 47:e2300741. [PMID: 38356225 DOI: 10.1002/jssc.202300741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024]
Abstract
In the present study, twelve compounds from Dioscorea spongiosa were successfully purified by an efficient technique combined bioassay-guided fractionation macroporous resin column chromatography (MRCC) pretreatment and high-speed counter-current chromatography (HSCCC) separation for the first time. Then, D101 MRCC was used to fractionate the crude extract into five parts, which further applied the bioassay-guided fractionation strategy to screen the active fractions of 2 and 4. As for the separation, 200 mg Fr.2 was purified by HSCCC using EtOAc/n-BuOH/H2 O (2:2:3, v/v), leading to annulatomarin (1), dioscoresides C (2), diosniponol C (3), methyl protodioscin (4), pseudoprotodioscin (5), protogracillin (6), as well as 200 mg Fr.4 yielding montroumarin (7), dioscorone A (8), diosniponol D (9), protodioscin (10), gracillin (11), and dioscin (12) using CH2 Cl2 /MeOH/H2 O (3:3:2, v/v) with the purities over 95.0%. Finally, the isolates were assayed for their anti-inflammatory, urico-lowering, and anti-diabetic activities in vitro, which indicated that the steroidal saponins of 5, 6, and 11 showed all these three activities.
Collapse
Affiliation(s)
- Zhenqiang Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Jinqian Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Lei Zhao
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Tong Niu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| |
Collapse
|
5
|
Li W, Zhu L, Zhang F, Han C, Li P, Jiang J. A novel strategy by combining foam fractionation with high-speed countercurrent chromatography for the rapid and efficient isolation of antioxidants and cytostatics from Camellia oleifera cake. Food Res Int 2024; 176:113798. [PMID: 38163709 DOI: 10.1016/j.foodres.2023.113798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Camellia oleifera cake is a by-product, which is rich in functional chemical components. However, it is typically used as animal feed with no commercial value. The purpose of this study was to isolate and identify compounds from Camellia oleifera cake using a combination of foam fractionation and high-speed countercurrent chromatography (HSCCC) and to investigate their biological activities. Foam fractionation with enhanced drainage through a hollow regular decahedron (HRD) was first established for simultaneously enriching flavonoid glycosides and saponins for further separation of target compounds. Under suitable operating conditions, the introduction of HRD resulted in a threefold increase in enrichment ratio with no negative effect on recovery. A novel elution-extrusion countercurrent chromatography (EECCC) coupled with the consecutive injection mode was established for the successful simultaneous isolation of flavonoid glycosides and saponins. As a result, 38.7 mg of kaemferol-3-O-[2-O-D-glucopyranosyl-6-O-α-L-rhamnopyranosyl]-β-D-glucopyranoside (purity of 98.17%, FI), 70.8 mg of kaemferol-3-O-[2-O-β-D-xylopyranosyl-6-O-α-L-rhamnopyranosyl]-β-D-glucopyranoside (purity of 97.52%, FII), and 560 mg of an oleanane-type saponin (purity of 92.32%, FIII) were separated from the sample (900 mg). The present study clearly showed that FI and II were natural antioxidants (IC50 < 35 μg/mL) without hemolytic effect. FIII displayed the effect of inhibiting Hela cell proliferation (IC50 < 30 μg/mL). Further erythrocyte experiments showed that this correlated with the extremely strong hemolytic effect of FIII. Overall, this study offers a potential strategy for efficient and green isolation of natural products, and is beneficial to further expanding the application of by-products (Camellia oleifera cake) in food, cosmetics, and pharmacy.
Collapse
Affiliation(s)
- Weixin Li
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Chunrui Han
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
de Souza Wuillda ACJ, das Neves Costa F, Garrett R, Dos Santos de Carvalho M, Borges RM. High-speed countercurrent chromatography with offline detection by electrospray mass spectrometry and nuclear magnetic resonance detection as a tool to resolve complex mixtures: A practical approach using Coffea arabica leaf extract. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:40-52. [PMID: 37527932 DOI: 10.1002/pca.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION Many secondary metabolites isolated from plants have been described in the literature owing to their important biological properties and possible pharmacological applications. However, the identification of compounds present in complex plant extracts has remained a great scientific challenge, is often laborious, and requires a long research time with high financial cost. OBJECTIVES The aim of this study was to develop a method that allows the identification of secondary metabolites in plant extracts with a high degree of confidence in a short period of time. MATERIAL AND METHODS In this study, an ethanolic extract of Coffea arabica leaves was used to validate the proposed method. Countercurrent chromatography was chosen as the initial step for extraction fractionation using gradient elution. Resulting fractions presented a variation of compounds concentrations, allowing for statistical total correlation spectroscopy (STOCSY) calculations between liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and NMR across fractions. RESULTS The proposed method allowed the identification of 57 compounds. Of the annotated compounds, 20 were previously described in the literature for the species and 37 were reported for the first time. Among the inedited compounds, we identified flavonoids, alkaloids, phenolic acids, coumarins, and terpenes. CONCLUSION The proposed method presents itself as a valid alternative for the study of complex extracts in an effective, fast, and reliable way that can be reproduced in the study of other extracts.
Collapse
Affiliation(s)
| | - Fernanda das Neves Costa
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Moreira Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Silva ML, Sales FS, Levatti EVC, Antar GM, Tempone AG, Lago JHG, Jerz G. Evaluation of Anti- Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography. Molecules 2023; 29:212. [PMID: 38202795 PMCID: PMC10780275 DOI: 10.3390/molecules29010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Endemic in 21 countries, Chagas disease, also known as American Trypanosomiasis, is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi. The available drugs for the treatment of this disease, benznidazole and nifurtimox, are outdated and display severe side effects. Thus, the discovery of new drugs is crucial. Based on our continuous studies aiming towards the discovery of natural products with anti-T. cruzi potential, the MeOH extract from aerial parts of Baccharis sphenophylla Dusén ex. Malme (Asteraceae) displayed activity against this parasite and was subjected to high-performance countercurrent chromatography (HPCCC), to obtain one unreported syn-labdane diterpene - sphenophyllol (1) - as well as the known compounds gaudichaudol C (2), ent-kaurenoic acid (3), hispidulin (4), eupafolin (5), and one mixture of di-O-caffeoylquinic acids (6-8). Compounds 1-8 were characterized by analysis of nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. When tested against trypomastigote forms, isolated labdane diterpenes 1 and 2 displayed potent activity, with EC50 values of 20.1 μM and 2.9 μM, respectively. The mixture of chlorogenic acids 6-8, as well as the isolated flavones 4 and 5, showed significant activity against the clinically relevant amastigotes, with EC50 values of 24.9, 12.8, and 2.7 μM, respectively. Nonetheless, tested compounds 1-8 displayed no cytotoxicity against mammalian cells (CC50 > 200 μM). These results demonstrate the application of HPCCC as an important tool to isolate bioactive compounds from natural sources, including the antitrypanosomal extract from B. sphenophylla, allowing for the development of novel strategic molecular prototypes against tropical neglected diseases.
Collapse
Affiliation(s)
- Matheus L. Silva
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil; (M.L.S.); (F.S.S.)
| | - Felipe S. Sales
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil; (M.L.S.); (F.S.S.)
| | - Erica V. C. Levatti
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05508-040, Brazil; (E.V.C.L.); (A.G.T.)
| | - Guilherme M. Antar
- Department of Agrarian and Biological Sciences, Federal University of Espírito Santo, São Mateus 29932-540, Brazil;
| | - Andre G. Tempone
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05508-040, Brazil; (E.V.C.L.); (A.G.T.)
| | - João Henrique G. Lago
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil; (M.L.S.); (F.S.S.)
| | - Gerold Jerz
- Institute of Food Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023:1-22. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Dembowski M, Rasmussen HE, Rowley JE, Droessler JE, Goff GS, May I. Separation of rare earth element radioisotopes by reverse-phase high-speed counter-current chromatography. J Chromatogr A 2023; 1712:464478. [PMID: 37926007 DOI: 10.1016/j.chroma.2023.464478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Analytical scale purification of rare earth element (REE) radioisotopes is typically accomplished using cation-exchange resins (e.g. AG 50W-X8) and high-performance liquid chromatography (HPLC). Despite the variety of improvements made since the development of this separation process in the 1950s, nearest neighbor separations remain a challenge, as does the issue of irreversible sample adsorption. Herein, we report a study that evaluates the potential of high-speed counter-current chromatography (HSCCC) as an alternative method for purifying REE elements, with specific reference to separations of fission product REE of interest to nuclear forensics. Complementary HSCCC REE separation experiments, one spiked with radiotracer and REE fission product activity, allowed for in depth analysis of resulting fractions from both an elemental (inductively coupled plasma atomic emission spectroscopy, ICP-AES) and radiological (gamma-ray spectrometry, beta counting) purity perspective. The highly reproducible nature of separation profiles generated from HSCCC instruments was leveraged to simplify work-up of samples containing radioisotopes. Subsequent radioanalytical evaluation revealed minimal carryover of Eu into neighboring Sm and Tb fractions (as indicated by presence of 150Eu), and trace contamination of the Tb fraction with Y (as indicated by presence of 91Y). Subtle differences in stationary phase retention across the two columns were reflected in significant variations in decontamination factors of duplicate parallel separations. These differences paired with obtained distribution of radioisotopes provided valuable insights into future improvements. Collectively, this study represents a significant step forward in development of HSCCC technology for task specific REE radioisotope purification.
Collapse
Affiliation(s)
- Mateusz Dembowski
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States.
| | - Hope E Rasmussen
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - John E Rowley
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | | | - George S Goff
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Iain May
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| |
Collapse
|
10
|
Sun W, Tang B, Dong L, Xu J, Zhao Y, Liu F. A novel and high-efficient method for the preparation of heat-stable antifungal factor from Lysobacter enzymogenes by high-speed counter-current chromatography. Front Microbiol 2023; 14:1227244. [PMID: 37645219 PMCID: PMC10461446 DOI: 10.3389/fmicb.2023.1227244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Heat-stable antifungal factor (HSAF) produced by the biocontrol bacterium Lysobacter enzymogenes shows considerable antifungal activity and has broad application potential in the agricultural and medical fields. There is a great demand for pure HSAF compounds in academic or industrial studies. However, an efficient preparation method that produces a high yield and high purity of HSAF is lacking, limiting the development of HSAF as a new drug. In the present study, high-speed counter-current chromatography (HSCCC) combined with column chromatography was successfully developed for the separation and preparation of HSAF from the crude extract of L. enzymogenes OH11. The crude extract was obtained by macroporous resin adsorption and desorption, and the main impurities were partly removed by ultraviolet light (254 nm) and gel filtration (Sephadex LH-20). In the HSCCC procedure, the selected suitable two-phase solvent system (n-hexane/ethyl acetate/methanol/water = 3:5:4:5, v/v, the lower phase added with 0.1% TFA) with a flow rate of 2.0 mL/min and a sample loading size of 100 mg was optimized for the separation. As a result, a total of 42 mg HSAF with a purity of 97.6% and recovery of 91.7% was yielded in one separation. The structure elucidation based on HR-TOF-MS, 1H and 13C NMR, and antifungal activities revealed that the isolated compound was unambiguously identified as HSAF. These results are helpful for separating and producing HSAF at an industrial scale, and they further demonstrate that HSCCC is a useful tool for isolating bioactive constituents from beneficial microorganisms.
Collapse
Affiliation(s)
- Weibo Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liangliang Dong
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
11
|
Neves NCV, de Mello MP, Zaidan I, Sousa LP, Braga AV, Machado RR, Kukula-Koch W, Boylan F, Caliari MV, Castilho RO. Campomanesia lineatifolia Ruiz & Pavón (Myrtaceae): Isolation of major and minor compounds of phenolic-rich extract by high-speed countercurrent chromatography and anti-inflammatory evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116417. [PMID: 36990302 DOI: 10.1016/j.jep.2023.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Campomanesia lineatifolia Ruiz & Pavón (Myrtaceae), an edible species found in Brazilian Forest, possesses leaves that are traditionally used for the treatment of gastrointestinal disorders in Brazil. Extracts of C. lineatifolia are rich in phenolics and exhibit antioxidant, and gastric antiulcer properties. Furthermore, Campomanesia spp. have been described to possess anti-inflammatory properties, but studies related to chemical constituents of C. lineatifolia are scarce in the literature. AIM OF THE STUDY This work aims to identify the chemical composition of the phenolic-rich ethanol extract (PEE) from C. lineatifolia leaves and evaluate the anti-inflammatory activity that could be related to its ethnopharmacological use. MATERIALS AND METHODS The high-speed countercurrent chromatography (HSCCC), using an isocratic and a step gradient elution method, and NMR, HPLC-ESI-QTOF-MS/MS were used to isolate and identify the chemicals of PEE, respectively. Lipopolysaccharide-(LPS)-stimulated THP-1 cells were used to evaluate the anti-inflammatory activities from PEE and the two majority flavonoids isolated by measure TNF-α and NF-κB inhibition assays. RESULTS Fourteen compounds were isolated from the PEE, further identified by NMR and HPLC-ESI-QTOF-MS/MS, twelve of them are new compounds, and two others are already known for the species. The PEE, quercitrin and myricitrin promoted a concentration-dependent inhibition of TNF-α, and PEE promoted an inhibition of NF-κB pathway. CONCLUSIONS PEE from C. lineatifolia leaves demonstrated significant anti-inflammatory activity that may be related to the traditional use to treat gastrointestinal disorders.
Collapse
Affiliation(s)
- Nívea Cristina Vieira Neves
- GnosiaH, Pharmacognosy and Homeopathy Laboratory, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Pharmacy, Centro Universitário Santa Rita, Área Rural, SN, KM 206, Caixa Postal 26, 31.270-901, Conselheiro Lafaiete, MG, Brazil.
| | - Morgana Pinheiro de Mello
- GnosiaH, Pharmacognosy and Homeopathy Laboratory, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Isabella Zaidan
- Signalling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Lirlândia Pires Sousa
- Signalling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alysson Vinícius Braga
- Department of Pharmaceutical Products, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes Resende Machado
- Department of Pharmaceutical Products, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093, Lublin, Poland.
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Rachel Oliveira Castilho
- GnosiaH, Pharmacognosy and Homeopathy Laboratory, School of Pharmacy, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, São Paulo, 05449-070, Brazil.
| |
Collapse
|
12
|
Vega J, Bárcenas-Pérez D, Fuentes-Ríos D, López-Romero JM, Hrouzek P, Figueroa FL, Cheel J. Isolation of Mycosporine-like Amino Acids from Red Macroalgae and a Marine Lichen by High-Performance Countercurrent Chromatography: A Strategy to Obtain Biological UV-Filters. Mar Drugs 2023; 21:357. [PMID: 37367682 DOI: 10.3390/md21060357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Marine organisms have gained considerable biotechnological interest in recent years due to their wide variety of bioactive compounds with potential applications. Mycosporine-like amino acids (MAAs) are UV-absorbing secondary metabolites with antioxidant and photoprotective capacity, mainly found in organisms living under stress conditions (e.g., cyanobacteria, red algae, or lichens). In this work, five MAAs were isolated from two red macroalgae (Pyropia columbina and Gelidium corneum) and one marine lichen (Lichina pygmaea) by high-performance countercurrent chromatography (HPCCC). The selected biphasic solvent system consisted of ethanol, acetonitrile, saturated ammonium sulphate solution, and water (1:1:0.5:1; v:v:v:v). The HPCCC process for P. columbina and G. corneum consisted of eight separation cycles (1 g and 200 mg of extract per cycle, respectively), whereas three cycles were performed for of L. pygmaea (1.2 g extract per cycle). The separation process resulted in fractions enriched with palythine (2.3 mg), asterina-330 (3.3 mg), shinorine (14.8 mg), porphyra-334 (203.5 mg) and mycosporine-serinol (46.6 mg), which were subsequently desalted by using precipitation with methanol and permeation on a Sephadex G-10 column. Target molecules were identified by HPLC, MS, and NMR.
Collapse
Affiliation(s)
- Julia Vega
- Centro Experimental Grice Hutchinson, Lomas de San Julián, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 2, 29004 Málaga, Spain
| | - Daniela Bárcenas-Pérez
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - David Fuentes-Ríos
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Juan Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Félix López Figueroa
- Centro Experimental Grice Hutchinson, Lomas de San Julián, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 2, 29004 Málaga, Spain
| | - José Cheel
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
13
|
Li S, Hou W, Li Y, Liu Z, Yun H, Liu Q, Niu H, Liu C, Zhang Y. Modeling and optimization of the protocol of complex chromatography separation of cyclooxygenase-2 inhibitors from Ganoderma lucidum spore. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:431-442. [PMID: 36958357 DOI: 10.1002/pca.3224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The spores of the medicinal fungus Ganoderma lucidum possess hepatoprotective properties. The main components, triterpenes, are particularly beneficial, making the screening and preparation of active triterpenes from Ganoderma lucidum significant. OBJECTIVES We aimed to screen and verify cyclooxygenase-2 inhibitors from G. lucidum spores, establish a rapid online hyphenated technique for the preparation of active ingredients, and analyze the structures of the active ingredients. METHODS Ultrafiltration LC combined with an enzyme inhibition assay and molecular docking was employed to screen and evaluate cyclooxygenase-2 ligands, which were prepared by pressurized liquid extraction coupled online with countercurrent chromatography and semi-preparative LC. The structures of the compounds were identified by nuclear magnetic resonance spectroscopy. RESULTS Six cyclooxygenase-2 inhibitors, namely, ganoderic acids I, C2 , G, B, and A and ganoderenic acid A, were screened and evaluated. They were prepared using the online hyphenated technique, following which their structures were identified. CONCLUSION This study provides opportunities for the discovery and development of new therapeutic drugs from other natural resources, as the present instrumental setup achieved efficient and systematic extraction and isolation of natural products compared with reference separation methods, thus exhibiting significant potential for industrial applications.
Collapse
Affiliation(s)
- Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Wanchao Hou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Zhen Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Haocheng Yun
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Qiang Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
14
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
15
|
Liu C, Lei Y, Liu Y, Guo J, Chen X, Tang Y, Dang J, Wu M. An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins. Antioxidants (Basel) 2023; 12:antiox12040835. [PMID: 37107210 PMCID: PMC10135234 DOI: 10.3390/antiox12040835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Natural products have been used extensively around the world for many years as therapeutic, prophylactic, and health-promotive agents. Ribes himalense Royle ex Decne, a plant used in traditional Tibetan medicine, has been demonstrated to have significant antioxidant and anti-inflammatory properties. However, the material basis of its medicinal effects has not been sufficiently explored. In this study, we established an integrated strategy by online HPLC-1,1-diphenyl-2-picrylhydrazyl, medium-pressure liquid chromatography, and HPLC to achieve online detection and separation of antioxidants in Ribes himalense extracts. Finally, four antioxidants with quercetin as the parent nucleus were obtained, namely, Quercetin-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside, Quercetin-3-O-β-D-xylopyranosyl(1-2)-β-D-glucopyranoside, Quercetin-3-O-β-D-glucopyranoside, and Quercetin-3-O-β-D-galactoside. Until now, the four antioxidants in Ribes himalense have not been reported in other literatures. Meanwhile, the free-radical-scavenging ability of them was evaluated by DPPH assay, and potential antioxidant target proteins were explored using molecular docking. In conclusion, this research provides insights into the active compounds in Ribes himalense which will facilitate the advancement of deeper studies on it. Moreover, such an integrated chromatographic strategy could be a strong driver for more efficient and scientific use of other natural products in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chuang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuqing Lei
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jingrou Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xingyi Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yifei Tang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jun Dang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- Correspondence: (J.D.); (M.W.)
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence: (J.D.); (M.W.)
| |
Collapse
|
16
|
Song Z, Chen T, Wang S, Shen C, Ma Y, Li A, Chen Z, Li Y. Large-scale preparation of five polar polyphenols including three isomers from Phyllanthus emblica Linn. by preparative high-speed counter-current chromatography. J Sep Sci 2023; 46:e2200748. [PMID: 36337042 DOI: 10.1002/jssc.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The separation of polar compounds is challenging work due to poor retention and insufficient selectivity. In the present study, an efficient strategy for large-scale preparation of five polar polyphenols including three isomers from Phyllanthus emblica Linn has been established by preparative high-speed counter-current chromatography. Macroporous resin column chromatography was used for the enrichment of the polar polyphenols. However, sugar and other ultra-polar impurities were co-washed out with the targets. Liquid-liquid extraction with ethyl acetate/water (1/1, v/v) solvent system was developed to remove the ultra-polar impurities with a clearance rate of 95%. Finally, the targets were introduced to preparative high-speed counter-current chromatography for separation using ethyl acetate/n-butanol/acetic acid/water (2/7/1/10, v/v/v/v) solvent system. As a result, 191 mg of Mucic acid 1,4-lactone 5-O-gallate, 370 mg of β-Glucogallin, 301 mg of Gallic acid, 195 mg of Mucic acid 1,4-lactone 3-O-gallate and 176 mg of Mucic acid 1,4-lactone 2-O-gallate with purity higher than 98% were obtained from 1.5 g of sample. Mucic acid 1,4-lactone 3-O-gallate, Mucic acid 1,4-lactone 3-O-gallate, and Mucic acid 1,4-lactone 2-O-gallate are isomers. The results showed that high-speed counter-current chromatography could be well developed for the separation of polar compounds from natural products.
Collapse
Affiliation(s)
- Zhibo Song
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Cheng Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Yumei Ma
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Aijing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhi Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, School of Life Sciences, Qinghai Normal University, Xining, P. R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| |
Collapse
|
17
|
Xiang H, Xu P, Qiu H, Wen W, Zhang A, Tong S. Two-dimensional chromatography in screening of bioactive components from natural products. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1161-1176. [PMID: 35934878 DOI: 10.1002/pca.3168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Screening and analysis of bioactive components from natural products is a fundamental part of new drug development and innovation. Two-dimensional (2D) chromatography has been demonstrated to be an effective method for screening and preparation of specific bioactive components from complex natural products. OBJECTIVE To collect details of application of 2D chromatography in screening of natural product bioactive components and to outline the research progress of different separation mechanisms and strategies. METHODOLOGY Three screening strategies based on 2D chromatography are reviewed, including traditional separation-based screening, bioactivity-guided screening and affinity chromatography-based screening. Meanwhile, in order to cover these aspects, selections of different separation mechanisms and modes are also presented. RESULTS Compared with traditional one-dimensional (1D) chromatography, 2D chromatography has unique advantages in terms of peak capacity and resolution, and it is more effective for screening and identifying bioactive components of complex natural products. CONCLUSION Screening of natural bioactive components using 2D chromatography helps separation and analysis of complex samples with greater targeting and relevance, which is very important for development of innovative drug leads.
Collapse
Affiliation(s)
- Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ailian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
18
|
Dembowski M, Rowley JE, Boland K, Droessler J, Hathcoat DA, Marchi A, Goff GS, May I. Rare earth element separations by high-speed counter-current chromatography. J Chromatogr A 2022; 1682:463528. [PMID: 36179601 DOI: 10.1016/j.chroma.2022.463528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Following the initial development of High-Speed Counter-Current Chromatography (HSCCC) in the 1960s, several studies have explored its applicability in the separation of rare earth elements (REEs). More recently, however, HSCCC publications have transitioned towards the separation of natural products or pharmaceuticals, leaving the application for REEs largely unexplored from a practical standpoint. Herein, we expand upon prior work in this field by evaluating the suitability of HSCCC to separation of a subset of non-radioactive REEs (Nd, Sm, Eu, Tb, and Y) at 10-4 mol levels using di-(2-ethylhexyl)phosphoric acid (HDEHP) in n-heptane as the stationary phase and hydrochloric acid as the mobile phase. First, the effect of flow rate on the stationary phase volume retention ratio and resolution of Nd/Sm/Eu subgroup was evaluated followed by optimization of step-gradient elution profiles resulting in additional recovery of Tb and Y within a seven-hour window. The five REEs were separated at the baseline resolution level or above. Elution profiles obtained from multiple runs across two independently operated columns and across independent runs were cross analyzed. Reproducibility in elution profiles point to future applications in radioelement separation chemistry, where both chemical and radiochemical purity are of importance.
Collapse
Affiliation(s)
| | - John E Rowley
- Los Alamos National Laboratory, Los Alamos, NM 87545, Mexico
| | - Kevin Boland
- Los Alamos National Laboratory, Los Alamos, NM 87545, Mexico
| | | | | | | | - George S Goff
- Los Alamos National Laboratory, Los Alamos, NM 87545, Mexico
| | - Iain May
- Los Alamos National Laboratory, Los Alamos, NM 87545, Mexico
| |
Collapse
|
19
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Jing JX, Muhire J, Sun X, Pei D, Huang XY. The separation regularity of the three-phase solvent system of counter-current chromatography based on polarity parameter modeling. J Chromatogr A 2022; 1677:463319. [PMID: 35853428 DOI: 10.1016/j.chroma.2022.463319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
Abstract
The three-phase solvent system of counter-current chromatography can separate compounds with a wide range of polarity, but there is no study of its separation regularity. Therefore, in this work, the separation regularity of the three-phase solvent system was initially investigated from the perspective of solvent polarities and compound polarities. The standard compounds covering a wide polarity range were selected, and three-phase solvent systems, n-hexane/methyl acetate/acetonitrile/water, and n-hexane/methyl tert-butyl ether/acetonitrile/water were used for modeling. The results showed that in the three-phase solvent system, the partition coefficient for the middle and lower phases (lgKM/L) increased with increasing logP values in three intervals logP < 0, 0 < logP < 4, and logP > 4. In addition, the partition coefficient for the upper and middle phases (lgKU/M) between the upper and middle phases of the small polarity compounds increases with increasing logP values. LogP vs lgKM/L of 7 solvent systems were employed for the smoothing spline fit through a predictive model design of the curve fitting toolbox in MATLAB software, and good results were achieved. LogP versus lgKM/L for n-hexane/methyl tert-butyl ether/acetonitrile/water solvent systems were used for the second-order power fit, and satisfactory results were obtained. The relationship between polarity parameters and separation case parameters was explored using a heat map approach. The separation regularity of the three-phase solvent system was preliminarily investigated. This regularity study gives hope of assistance to the chemists studying three-phase solvents and counter-current chromatography.
Collapse
Affiliation(s)
- Jun-Xian Jing
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jules Muhire
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Solvent strength of organic phase for two biphasic solvent systems in high speed countercurrent chromatography. J Chromatogr A 2022; 1680:463422. [PMID: 36037578 DOI: 10.1016/j.chroma.2022.463422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
In this work, relationships between solvent strength of organic phase (ψ) for two biphasic solvent systems in high speed countercurrent chromatography, hexane-ethyl-acetate-methanol-water (HEMWat) and ethyl acetate-n-butanol-water (EBuWat), and partition coefficient (K) were investigated using four retention models, including Jandera's model (ABM), Neue-Kuss model (NK), linear-solvent-strength model (LSS) and quadratic-solvent-strength model (QSS). Experimental results showed that ABM model had the best fitting results for HEMWat system while NK model and QSS model had good fitting results in EBuWat system. Thus, a mathematical relationship between partition coefficient (K) and solvent strength of organic phase (ψ) could be obtained by measurement of partition coefficients of the target compounds with three different volume ratios of organic phase. At the same time, a functional map was proposed to construct to get a maneuverable region so that an optimal two-phase solvent system for separation of a target compound could be selected easily, which saved a lot of manpower for high speed countercurrent chromatographic separation. The application of this new method was declared by successful separation of two components, apigenin-6-C-β-D-xylopyranosyl-8-C-α-L-arabinopyranoside and vicenin-3, from dried leaves of Dendrobium officinale Kimura et Migo using high speed countercurrent chromatography.
Collapse
|
22
|
Kishore K, Selvasudha N, Subi M TM, Vasanthi HR. The multifaceted role of pectin in keratin based nanocomposite with antimicrobial and anti-oxidant activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Silver@quercetin Nanoparticles with Aggregation-Induced Emission for Bioimaging In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23137413. [PMID: 35806418 PMCID: PMC9266968 DOI: 10.3390/ijms23137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Fluorescent materials based on aggregation-induced emission luminogens (AIEgens) have unique advantages for in situ and real-time monitoring of biomolecules and biological processes because of their high luminescence intensity and resistance to photobleaching. Unfortunately, many AIEgens require time-consuming and expensive syntheses, and the presence of residual toxic reagents reduces their biocompatibility. Herein, silver@quercetin nanoparticles (Ag@QCNPs), which have a clear core–shell structure, were prepared by redox reaction of quercetin (QC), a polyphenolic compound widely obtained from plants, including those used as foods, and silver ions. Ag@QCNPs show both aggregation-induced luminescence and the distinct plasma scattering of silver nanoparticles, as well as good resistance to photobleaching and biocompatibility. The Ag@QCNPs were successfully used for cytoplasmic labeling of living cells and for computerized tomography imaging in tumor-bearing mice, demonstrating their potential for clinical applications.
Collapse
|
24
|
Screening and Isolation of Potential Anti-Inflammatory Compounds from Saxifraga atrata via Affinity Ultrafiltration-HPLC and Multi-Target Molecular Docking Analyses. Nutrients 2022; 14:nu14122405. [PMID: 35745138 PMCID: PMC9230087 DOI: 10.3390/nu14122405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, a 100 g sample of Saxifraga atrata was processed to separate 1.3 g of 11-O-(4′-O-methylgalloyl)-bergenin (Fr1) after 1 cycle of MCI GEL® CHP20P medium pressure liquid chromatography using methanol/water. Subsequently, COX-2 affinity ultrafiltration coupled with reversed-phase liquid chromatography was successfully used to screen for potential COX-2 ligands in this target fraction (Fr1). After 20 reversed-phase liquid chromatography runs, 74.1 mg of >99% pure 11-O-(4′-O-methylgalloyl)-bergenin (Fr11) was obtained. In addition, the anti-inflammatory activity of 11-O-(4′-O-methylgalloyl)-bergenin was further validated through molecular docking analyses which suggested it was capable of binding strongly to ALOX15, iNOS, ERBB2, SELE, and NF-κB. As such, the AA metabolism, MAPK, and NF-κB signaling pathways were hypothesized to be the main pathways through which 11-O-(4′-O-methylgalloyl)-bergenin regulates inflammatory responses, potentially functioning by reducing pro-inflammatory cytokine production, blocking pro-inflammatory factor binding to cognate receptors and inhibiting the expression of key proteins. In summary, affinity ultrafiltration-HPLC coupling technology can rapidly screen for multi-target bioactive components and when combined with molecular docking analyses, this approach can further elucidate the pharmacological mechanisms of action for these compounds, providing valuable information to guide the further development of new multi-target drugs derived from natural products.
Collapse
|
25
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
26
|
Li L, Zhao J, Yang T, Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: a review. Food Res Int 2022; 153:110956. [DOI: 10.1016/j.foodres.2022.110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
27
|
Zuo G, Je KH, Guillen Quispe YN, Shin KO, Kim HY, Kim KH, Arce PHG, Lim SS. Separation and Identification of Antioxidants and Aldose Reductase Inhibitors in Lepechinia meyenii (Walp.) Epling. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122773. [PMID: 34961244 PMCID: PMC8707451 DOI: 10.3390/plants10122773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 05/08/2023]
Abstract
We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were subjected to fractionation, followed by separation using high-speed counter-current chromatography (HSCCC) and preparative HPLC. Separation and identification revealed the presence of caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and butyl rosmarinate. Of these, rosmarinic acid, methyl rosmarinate, and butyl rosmarinate possessed remarkable antioxidant and AR inhibitory activities. The other compounds were less active. In particular, rosmarinic acid is the key contributor to the antioxidant and AR inhibitory activities of L. meyenii; it is rich in the MeOH extract (333.84 mg/g) and 50% MeOH extract (135.41 mg/g) of L. meyenii and is especially abundant in the EtOAc and n-BuOH fractions (373.71-804.07 mg/g) of the MeOH and 50% MeOH extracts. The results clarified the basis of antioxidant and AR inhibitory activity of L. meyenii, adding scientific evidence supporting its traditional use as an anti-diabetic herbal medicine. The HSCCC separation method established in this study can be used for the preparative separation of rosmarinic acid from natural products.
Collapse
Affiliation(s)
- Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Kang-Hoon Je
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea;
| | - Yanymee N. Guillen Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151742, Korea;
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Hyun Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Kang Hyuk Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Paul H. Gonzales Arce
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural—Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 14-0434, Peru;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea;
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2133; Fax: +82-33-256-3420
| |
Collapse
|
28
|
Selective separation of dyes by colloidal gas aphrons: Conventional flotation vs countercurrent chromatography. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Development of a double-monitoring method for the determination of total antioxidant capacity as ascorbic acid equivalent using CUPRAC assay with RP-HPLC and digital image-based colorimetric detection. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03923-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Yang Y, Guo S, Gu D. A strategy to process hundred-gram level complex sample using liquid-liquid-refining extraction and consecutive counter-current chromatography: Toona sinensis case study. J Chromatogr A 2021; 1661:462717. [PMID: 34864236 DOI: 10.1016/j.chroma.2021.462717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Large-scale preparation of target compounds from complex samples is facing great challenges. In the present study, an efficient strategy for large-scale preparation of target compound was proposed and successfully applied in the separation of active components from Toona sinensis. The pretreatment technology of liquid-liquid refining extraction (LLRE) combined with consecutive high-speed counter-current chromatography (HSCCC) was used to process hundred grams of extractions. Firstly, two phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (5:5:5:5, v/v) and (2:5:2:5, v/v) were used to remove low polar and high polar impurities from 100 g crude extracts of T. sinensis, respectively, and 9.25 g of crude sample was obtained. And then, n-hexane-ethyl acetate-methanol-water (2.5:5:2.5:5, v/v) was used as the solvent system for HSCCC separation. The isocratic elution mode with max loading and consecutive injections mode were investigated to obtain more target compound. As a result, ethyl gallate with purity of 97% was successfully separated by 5 times consecutive counter-current chromatography. The separation was repeated once. Finally, ethyl gallate (3.73 g) was isolated from 9.25 g of crude sample (100 g crude extracts). The results demonstrated that the yield increased from 0.26 g/h/L of untreated crude extract to 0.93 g/h/L of LLRE pre-treated sample for single injection, and further increased to 1.62 g/h/L for 5 consecutive injections mode with the present method.
Collapse
Affiliation(s)
- Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
31
|
Wang Q, Chen T, Cui Y, Li S, Jiang X, Zhao G, Li Y, Zou D. The applicability of pH-zone-refining counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J Chromatogr A 2021; 1657:462582. [PMID: 34614468 DOI: 10.1016/j.chroma.2021.462582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Biosynthesis is a research hot-spot in recent years, however, the purification of its final products is a tough work. Liquid stationary phase and large-scale separation ability of PZRCCC could easily avoid the commonly disadvantages occurred in traditional column chromatography. These characteristics makes PZRCCC particularly applicable for final products separation in biosynthesis. In this study, the glycosylation products of ellagic acid by one-pot glycosylation were successfully purified by PZRCCC to show the applicability of PZRCCC for preparative separation of biosynthesis products. An optimized ethyl acetate/n-buthanol/water (3:3:5, v/v/v) system was applied in this study, where 5 mM trifluoroacetic acid (TFA) as the retainer and 30 mM triethylamine (TEA) as the eluter were added. As a result, four ellagic acid glycosylation products, including 51 mg of ellagic acid-4, 3'-O-β-D-diglucoside (EG-1), 24 mg of ellagic acid-4, 4'-O-β-D-diglucoside (EG-2), 11 mg of ellagic acid-4-O-β-D-glucosyl (1→2)-β-D-glucoside (EG-3) and 64 mg of ellagic acid-4-O-β-D-glucoside (EG-4) were simultaneously separated from 500 mg of glycosylation crude products, with the purity of 93.3%, 91.2%, 89.4% and 95.5%, respectively. Their structures were identified by spectroscopic analysis.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Yunbin Cui
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Si Li
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Xinhao Jiang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Guodong Zhao
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.
| | - Denglang Zou
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China.
| |
Collapse
|
32
|
Online pressurized liquid extraction enables directly chemical analysis of herbal medicines: A mini review. J Pharm Biomed Anal 2021; 205:114332. [PMID: 34455204 DOI: 10.1016/j.jpba.2021.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Extraction is responsible for transferring components from solid materials into solvent. Tedious extraction procedures are usually involved in liquid chromatography-based chemical analysis of herbal medicines (HMs), resulting in extensive consumptions of organic solvents, time, energy, and materials, as well as the significant chemical degradation risks for those labile compounds. Fortunately, an emerging online pressurized liquid extraction (OLE, also known as online liquid extraction) technique has been developed for the achievement of directly chemical analysis for solid matrices in recent years, and in a short period, this versatile technique has been widely applied for the chemical analysis of HMs. In the present mini-review, we aim to briefly summarize the principles, the instrumentation, along with the application progress of this robust and flexible extraction technique in the latest six years, and the emerging challenges and future prospects are discussed as well. Special attention is paid onto the hyphenation of the versatile OLE module with LC-MS instrument. The described information is expected to introduce a promising OLE approach and to provide the guidance for the achievement of directly chemical analysis of, but not limited to, HMs.
Collapse
|
33
|
Zou D, Cui Y, Li S, Sang D, Liu W, Zhao T, Gu X, Chen T, Li Y. The applicability of high-speed counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J Sep Sci 2021; 44:4368-4375. [PMID: 34687498 DOI: 10.1002/jssc.202100544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
Biosynthesis is a promising way to manufacture desired products, however, the purification of its final products is a tough work due to the huge amount of reaction matrix. Liquid stationary phase of high-speed counter-current chromatography could easily avoid the commonly disadvantages that occurred in traditional column chromatography in the field of biosynthesized products purification. This characteristic makes high-speed counter-current chromatography particularly applicable for final products separation in biosynthesis. In this study, the glycosylation products of Silybin B by one-pot glycosylation were successfully purified by high-speed counter-current chromatography to show the applicability of high-speed counter-current chromatography for preparative separation of biosynthesis products. An optimized n-hexane/ethyl acetate/methanol/water (2:5:2:3, v/v/v/v) system was applied in this study. As a result, four Silybin B glycosylation products, including 7 mg of Silybin B-5-O-β-D-glucoside (SG-1), 12 mg of Silybin B-3-O-β-D-glucoside (SG-2), 10 mg of Silybin B-7-O-β-D-glucoside (SG-3), and 24 mg of Silybin B-20-O-β-D-glucoside (SG-4), were simultaneously separated from 200 mg of glycosylation crude products, with the purity of 89.3, 95.2, 96.4, and 97.5%, respectively. Their structures were identified by spectroscopic analysis.
Collapse
Affiliation(s)
- Denglang Zou
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Yunbin Cui
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Si Li
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Duocheng Sang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Weimeng Liu
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Tianshu Zhao
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Xueli Gu
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| |
Collapse
|
34
|
Wang W, Liu Y, Che F, Li H, Liu J, Wu N, Gu Y, Wei Y. Isolation and purification of flavonoids from Euonymus alatus by high-speed countercurrent chromatography and neuroprotective effect of rhamnazin-3-O-rutinoside in vitro. J Sep Sci 2021; 44:4422-4430. [PMID: 34670011 DOI: 10.1002/jssc.202100607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The flavonoids from Euonymus alatus exhibit many biological activities including significant antioxidant, anti-inflammatory, anti-cancer. In this work, a high-speed countercurrent chromatography method for the isolation and purification of flavonoids from crude extracts of Euonymus alatus was established. The effects of several solvent systems on the separation efficiency of target compounds in the extract of Euonymus alatus were studied. The solvent system composed of n-hexane-ethyl acetate-methanol-water at a volume ratio of (3:5:3:5, v/v) was chosen, in which the lower phase was used as the mobile phase at the rotation speed of 800 rpm and flow rate of 2.0 mL/min. The three flavonoids were obtained and identified as patuletin-3-O-rutinoside, rhamnazin-3-O-rutinoside, and dehydrodicatechin A by mass spectroscopy and nuclear magnetic resonance, and the quantities of patuletin-3-O-rutinoside, rhamnazin-3-O-rutinoside, and dehydrodicatechin A were 2.2, 9.7, and 1.8 mg, respectively. The results indicated that high-speed countercurrent chromatography was a simple and efficient method for the isolation and purification of flavonoids from the crude extracts of Euonymus alatus. The cellular antioxidant activity experimental result indicated that rhamnazin-3-O-rutinoside could alleviate H2 O2 -induced oxidative stress.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Fenfang Che
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Nan Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yanxiang Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
35
|
Zhang W, Zhang Y, Wang J, Duan W, Liu F. Combined Ultrahigh Pressure Extraction and High-Speed Counter-Current Chromatography for Separation and Purification of Three Glycoside Compounds from Dendrobium officinale Protocorm. Molecules 2021; 26:molecules26133934. [PMID: 34203202 PMCID: PMC8271780 DOI: 10.3390/molecules26133934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under 300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary separation products were obtained. In addition, the products (150 mg) were separated by HSCCC under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding 31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the best antioxidant capacity and its IC50 value was 0.0497 mg/mL.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Yingjie Zhang
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Jinying Wang
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Wenjuan Duan
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Feng Liu
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
- Correspondence: or ; Tel.: +86-0531-8260-5319
| |
Collapse
|
36
|
Zuo G, Kim HY, Guillen Quispe YN, Wang Z, Kim KH, Gonzales Arce PH, Lim SS. Valeriana rigida Ruiz & Pav. Root Extract: A New Source of Caffeoylquinic Acids with Antioxidant and Aldose Reductase Inhibitory Activities. Foods 2021; 10:1079. [PMID: 34068163 PMCID: PMC8152971 DOI: 10.3390/foods10051079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Valeriana rigida Ruiz & Pav. (V. rigida) has long been used as a herbal medicine in Peru; however, its phytochemicals and pharmacology need to be scientifically explored. In this study, we combined the offline 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)-/ultrafiltration-high-performance liquid chromatography (HPLC) and high-speed counter-current chromatography (HSCCC)/pH-zone-refining counter-current chromatography (pH-zone-refining CCC) to screen and separate the antioxidants and aldose reductase (AR) inhibitors from the 70% MeOH extract of V. rigida, which exhibited remarkable antioxidant and AR inhibitory activities. Seven compounds were initially screened as target compounds exhibiting dual antioxidant and AR inhibitory activities using DPPH-/ultrafiltration-HPLC, which guided the subsequent pH-zone-refining CCC and HSCCC separations of these target compounds, namely 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-O-di-caffeoylquinic acid, 3,5-O-di-caffeoylquinic acid, 4,5-O-di-caffeoylquinic acid, and 3,4,5-O-tri-caffeoylquinic acid. These compounds are identified for the first time in V. rigida and exhibited remarkable antioxidant and AR inhibitory activities. The results demonstrate that the method established in this study can be used to efficiently screen and separate the antioxidants and AR inhibitors from natural products and, particularly, the root extract of V. rigida is a new source of caffeoylquinic acids with antioxidant and AR inhibitory activities, and it can be used as a potential functional food ingredient for diabetes.
Collapse
Affiliation(s)
- Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (H.-Y.K.); (Y.N.G.Q.); (K.-H.K.)
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (H.-Y.K.); (Y.N.G.Q.); (K.-H.K.)
| | - Yanymee N. Guillen Quispe
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (H.-Y.K.); (Y.N.G.Q.); (K.-H.K.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151742, Korea
| | - Zhiqiang Wang
- College of Public Health, Hebei University, Baoding 071002, China;
| | - Kang-Hyuk Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (H.-Y.K.); (Y.N.G.Q.); (K.-H.K.)
| | - Paul H. Gonzales Arce
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural–Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 14-0434, Peru;
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (H.-Y.K.); (Y.N.G.Q.); (K.-H.K.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
| |
Collapse
|
37
|
Sheng LQ, Ma JL. Preparative separation of two isomeric antimalaria alkaloids febrifugine and isofebrifugine from Dichroa febrifuga roots by countercurrent chromatography. J Sep Sci 2021; 44:2153-2159. [PMID: 33811736 DOI: 10.1002/jssc.202001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Two antimalaria alkaloids, febrifugine and isofebrifugine, were successfully separated from total alkaloids of Dichroa febrifuga roots by one-step preparative countercurrent chromatography with a selected biphasic solvent system. The selected biphasic solvent system was composed of chloroform: methanol: water (2:1:1, v/v) according to partition performance of the two target components. Selection of biphasic solvent system was conducted by high performance liquid chromatography combined with high performance thin layer chromatography, which greatly assisted the screening procedure for biphasic solvent system. Totally, 50 mg of total alkaloid was separated by one-step preparative countercurrent chromatography, yielding 12 mg of febrifugine and 9 mg of isofebrifugine with more than 98.0% purity, respectively.
Collapse
Affiliation(s)
- Liu-Qing Sheng
- Pharmaceutical College, Jinhua Polytechnic Jinhua, Zhejiang, P. R. China
| | - Jia-Lei Ma
- Pharmaceutical College, Jinhua Polytechnic Jinhua, Zhejiang, P. R. China
| |
Collapse
|
38
|
Tong C, Shi F, Tong X, Shi S, Ali I, Guo Y. Shining natural flavonols in sensing and bioimaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Gong Y, Huang XY, Liu JF, Pei D, Sun X, Di DL. Development of an effective method based upon second-order overlapping repeated sample injections for isolation of carotenoids from Lycium barbarum L. fruits with elution-extrusion counter-current chromatography. J Chromatogr A 2021; 1645:462026. [PMID: 33839576 DOI: 10.1016/j.chroma.2021.462026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023]
Abstract
Carotenoids are one of the main active components in Lycium barbarum L. fruit, which has a wide range of excellent biological activities. In this study, a novel second-order overlapping repeated injection method with elution-extrusion counter-current chromatography was developed for isolation and preparation of carotenoids from L. barbarum fruits. And three carotenoids were successfully separated using the solvent system composed of n-hexane/dichloromethane/acetonitrile (10:3.5:6.5, v/v) with the injection before equilibrium method. The entire separation process consisted of three complete elution-extrusion cycles with a total of 9 injections (80 mg crude extract per injection). Finally, three target compounds including zeaxanthin (28.5 mg), zeaxanthin monopalmitate (45.8 mg), and zeaxanthin dipalmitate (161.5 mg) with average purities of 87.9%, 88.9%, and 91.2% were successfully obtained in one complete second-order overlapping repeated elution-extrusion CCC process within 651 min. The result indicated that this second-order overlapping repeated method is efficient for large-scale preparation of carotenoids based on its advantages of large amount of sample injection and low solvent consumption. So this novel second-order overlapping repeated elution-extrusion counter-current chromatography separation method has enormous potential for largely preparative separation of natural bioactive compounds, such as carotenoids, which have good biological activity but possess unstable or other special chemical structure. It is worth noting that this overlapping repeated injections method requires target compounds to meet the requirements of elution-extrusion counter-current chromatography, and the normal implementation of this method is closely related to the sufficient interval of elution time between the target compounds.
Collapse
Affiliation(s)
- Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, Shandong, P. R. China
| | - Xiao Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
40
|
H 2O-Induced Hydrophobic Interactions in MS-Guided Counter-Current Chromatography Separation of Anti-Cancer Mollugin from Rubia cordifolia. Molecules 2021; 26:molecules26030751. [PMID: 33540504 PMCID: PMC7867130 DOI: 10.3390/molecules26030751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Counter-current chromatography (CCC) is a unique liquid–liquid partition chromatography and largely relies on the partition interactions of solutes and solvents in two-phase solvents. Usually, the two-phase solvents used in CCC include a lipophilic organic phase and a hydrophilic aqueous phase. Although a large number of partition interactions have been found and used in the CCC separations, there are few studies that address the role of water on solvents and solutes in the two-phase partition. In this study, we presented a new insight that H2O (water) might be an efficient and sensible hydrophobic agent in the n-hexane-methanol-based two-phase partition and CCC separation of lipophilic compounds, i.e., anti-cancer component mollugin from Rubia cordifolia. Although the n-hexane-methanol-based four components solvent systems of n-hexane-ethyl acetate-methanol-water (HEMWat) is one of the most popular CCC solvent systems and widely used for natural products isolation, this is an interesting trial to investigate the water roles in the two-phase solutions. In addition, as an example, the bioactive component mollugin was targeted, separated, and purified by MS-guided CCC with hexane-methanol and minor water as a hydrophobic agent. It might be useful for isolation and purification of lipophilic mollugin and other bioactive compounds complex natural products and traditional Chinese medicines.
Collapse
|
41
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Schwarz M, Weber F, Durán-Guerrero E, Castro R, Rodríguez-Dodero MDC, García-Moreno MV, Winterhalter P, Guillén-Sánchez D. HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography. Foods 2021; 10:foods10010131. [PMID: 33435411 PMCID: PMC7826704 DOI: 10.3390/foods10010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 01/18/2023] Open
Abstract
In the present work, the polyphenolic profile of a complex matrix such as Amontillado sherry has been processed by means of high-speed counter-current chromatography (HSCCC) and characterized by HPLC-DAD-MS. An Amberlite XAD-7 column was used to obtain the wine extract, and three different biphasic solvent systems were applied for HSCCC separation: MTBE (methyl tert-butyl ether)/n-butanol/acetonitrile/water (1.1/3/1.1/5+0.1% trifluoroacetic acid), MTBE/n-butanol/acetonitrile/water (2/2/1/5), and hexane/ethyl acetate/ethanol/water (1/5/1/5). As a result, 42 phenolic compounds and furanic derivatives have been identified by means of HPLC-DAD-MS, with 11 of them being identified for the first time in Sherry wines: 3-feruloylquinic acid, isovanillin, ethyl vanillate, furoic acid, dihydro-p-coumaric acid, 6-O-feruloylglucose, ethyl gallate, hydroxytyrosol, methyl protocatechuate, homoveratric acid and veratraldehyde. In addition, the antioxidant capacity (ABTS) of the obtained fractions was determined, revealing higher values in those fractions in which compounds such as gallic acid, protocatechuic acid, protocatechualdehyde, trans-caftaric acid, syringic acid, isovanillin or tyrosol, among others, were present. This is the first time that HSCCC has been used to characterize the phenolic composition of Sherry wines.
Collapse
Affiliation(s)
- Mónica Schwarz
- “Salus Infirmorum” Faculty of Nursing, University of Cadiz, 11001 Cadiz, Spain;
- Nutrition and Bromatology Area, Faculty of Medicine, University of Cadiz, Plaza Falla, 9, 11003 Cadiz, Spain
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany;
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
- Correspondence: ; Tel.: +34-956-016-456
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - María del Carmen Rodríguez-Dodero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - Maria Valme García-Moreno
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany;
| | - Dominico Guillén-Sánchez
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| |
Collapse
|
43
|
Efficient Separation of Phytochemicals from Muehlenbeckia volcanica (Benth.) Endl. by Polarity-Stepwise Elution Counter-Current Chromatography and Their Antioxidant, Antiglycation, and Aldose Reductase Inhibition Potentials. Molecules 2021; 26:molecules26010224. [PMID: 33406776 PMCID: PMC7796107 DOI: 10.3390/molecules26010224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Muehlenbeckia volcanica (Benth.) Endl. (M. volcanica), native to South America, is a traditional Peruvian medicinal plant that has multi-therapeutic properties; however, no phytochemicals have been identified from it yet. In this study, a five-step polarity-stepwise elution counter-current chromatography (CCC) was developed using methanol/water (1:5, v/v) as the stationary phase and different ratios of n-hexane, ethyl acetate, and n-butanol as mobile phases to separate the compounds from the 70% methanol extract of M. volcanica, by which six compounds with a wide range of polarities were separated in a single run of CCC and were identified as gallic acid, protocatechuic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid, rutin, quercitrin, and quercetin. Then, two compounds from the fractions of stepwise elution CCC were separated using conventional high-speed CCC, pH-zone-refining CCC, and preparative high-performance liquid chromatography, and identified as shikimic acid and miquelianin. These compounds are reported from M. volcanica for the first time. Notably, except for shikimic acid, all other compounds showed anti-diabetic potentials via antioxidant, antiglycation, and aldose reductase inhibition. The results suggest that the polarity-stepwise elution CCC can be used to efficiently separate or fractionate compounds with a wide range of polarities from natural products. Moreover, M. volcanica and its bioactive compounds are potent anti-diabetic agents.
Collapse
|
44
|
Kostanyan AA, Voshkin AA, Belova VV. Analytical, Preparative, and Industrial-Scale Separation of Substances by Methods of Countercurrent Liquid-Liquid Chromatography. Molecules 2020; 25:E6020. [PMID: 33353256 PMCID: PMC7766798 DOI: 10.3390/molecules25246020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Countercurrent liquid-liquid chromatographic techniques (CCC), similar to solvent extraction, are based on the different distribution of compounds between two immiscible liquids and have been most widely used in natural product separations. Due to its high load capacity, low solvent consumption, the diversity of separation methods, and easy scale-up, CCC provides an attractive tool to obtain pure compounds in the analytical, preparative, and industrial-scale separations. This review focuses on the steady-state and non-steady-state CCC separations ranging from conventional CCC to more novel methods such as different modifications of dual mode, closed-loop recycling, and closed-loop recycling dual modes. The design and modeling of various embodiments of CCC separation processes have been described.
Collapse
Affiliation(s)
| | - Andrey A. Voshkin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii pr., 119991 Moscow, Russia; (A.A.K.); (V.V.B.)
| | | |
Collapse
|
45
|
Duan WD, Quan KJ, Huang XY, Gong Y, Xiao S, Liu JF, Pei D, Di DL. Recovery and recycling of solvent of counter-current chromatography: The sample of isolation of zeaxanthin in the Lycium barbarum L. fruits. J Sep Sci 2020; 44:759-766. [PMID: 33253473 DOI: 10.1002/jssc.202000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022]
Abstract
An efficient method of recovering and recycling solvent for counter-current chromatography was established by which zeaxanthin was separated from Lycium barbarum L. fruits. A column with activated carbon combined with high performance counter-current chromatography formed the recovering and recycling solvent system. Using the solvent system of n-hexane-ethyl acetate-ethanol-water (8:2:7:3, v/v) from the references, five injections were performed with an almost unchanged purity of zeaxanthin (80.9, 81.2, 81.5, 81.3, and 80.2% respectively) in counter-current chromatography separation. Meanwhile, the mobile phase reduced by half than conventional counter-current chromatography. By this present method, an effective improvement of counter-current chromatography solvent utilization was achieved.
Collapse
Affiliation(s)
- Wen-Da Duan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, P. R. China
| | - Kai-Jun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sun Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
46
|
Zheng H, Zhen XT, Chen Y, Zhu SC, Ye LH, Yang SW, Wang QY, Cao J. In situ antioxidation-assisted matrix solid-phase dispersion microextraction and discrimination of chiral flavonoids from citrus fruit via ion mobility quadrupole time-of-flight high-resolution mass spectrometry. Food Chem 2020; 343:128422. [PMID: 33143965 DOI: 10.1016/j.foodchem.2020.128422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
A simple and sensitive in situ antioxidation process assisted with a matrix solid-phase dispersion method for extracting chiral flavonoids in citrus fruit was established, and samples were further analyzed using ion mobility quadrupole time-of-flight high-resolution mass spectrometry. The collision cross-sections of the target compounds were studied using single-field and stepped-field methods. The optimal conditions were obtained using 30 mg of C18 as a dispersant, methanol as an elution solvent and 0.6 mM 1,1-diphenyl-2-picrylhydrazyl (DPPH) as a radical solution. Additionally, the method showed satisfactory limits of detection (3.70-6.52 ng/mL) and good recoveries (96.78-104.67%) for four flavonoids in citrus fruit. The IC50 values of DPPH radical-scavenging activities ranged from 817.8 to 981.55 μg/mL for tested samples. The method was a good alternative for the microextraction and determination of antioxidant capacity and chiral differentiation of narirutin, naringin, hesperidin and neohesperidin in citrus fruit.
Collapse
Affiliation(s)
- Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xiao-Ting Zhen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Chen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou 310003, China.
| | - Si-Wei Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiu-Yan Wang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|