1
|
Szczęsna-Górniak W, Weżgowiec J, Tsirigotis-Maniecka M, Szyk-Warszyńska L, Michna A, Warszyński P, Saczko J, Wilk KA. Physicochemical Features and Applicability of Newly Fabricated Phytopharmaceutical-Loaded Hydrogel Alginate Microcarriers with Viscoelastic Polyelectrolyte Coatings. Chemphyschem 2024; 25:e202300758. [PMID: 38116981 DOI: 10.1002/cphc.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.
Collapse
Affiliation(s)
- Weronika Szczęsna-Górniak
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Weżgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425, Wroclaw, Poland
| | - Marta Tsirigotis-Maniecka
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
3
|
Kulawik P, Jamróz E, Kruk T, Szymkowiak A, Tkaczewska J, Krzyściak P, Skóra M, Guzik P, Janik M, Vlčko T, Milosavljević V. Active edible multi-layer chitosan/furcellaran micro/nanoemulsions with plant essential oils and antimicrobial peptides: Biological properties and consumer acceptance. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Mateos-Maroto A, E F Rubio J, Prévost S, Maestro A, Rubio RG, Ortega F, Guzmán E. Probing the effect of the capping polyelectrolyte on the internal structure of Layer-by-Layer decorated nanoliposomes. J Colloid Interface Sci 2023; 640:220-229. [PMID: 36863179 DOI: 10.1016/j.jcis.2023.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
HYPOTHESIS The internal organization of polyelectrolyte layers deposited on colloidal templates plays a very important role for the potential applications of these systems as capsules for drug delivery purposes. EXPERIMENTS The mutual arrangement of oppositely charged polyelectrolyte layers upon their deposition on positively charged liposomes has been studied by combining up three different scattering techniques and Electronic Spin Resonance, which has provided information about the inter-layer interactions and their effect on the final structure of the capsules. FINDINGS The sequential deposition of oppositely charged polyelectrolytes on the external leaflet of positively charged liposomes allows modulating the organization of the obtained supramolecular structures, impacting the packing and rigidity of the obtained capsules due to the change of the ionic cross-linking of the multi-layered film as a result of the specific charge of the last deposited layer. The possibility to modulate the properties of the LbL capsules by tuning the characteristics of the last deposited layers offers a very interesting route for the design of materials for encapsulation purposes with their properties controlled almost at will by changing the number of deposited layers and their chemistry.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - José E F Rubio
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
| | - Sylvain Prévost
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018-San, Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009-Bilbao, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain; Unidad de Materia Condensada. Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain; Unidad de Materia Condensada. Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Gradzielski M. Polyelectrolyte-Surfactant Complexes As a Formulation Tool for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13330-13343. [PMID: 36278880 DOI: 10.1021/acs.langmuir.2c02166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aqueous polyelectrolyte-surfactant complexes (PESCs) are very rich with respect to their properties and the structures formed by them. By design they normally contain hydrophobic micellar surfactant aggregates complexed by long polyelectrolyte chains, thereby combining the formation of small hydrophobic domains given by the surfactant with large-scale structuring due to the presence of the polyelectrolyte chain. In addition, they contain highly polar regions of surfactant head groups in contact with polyelectrolyte, forming a shell around the micellar aggregates, which often also possesses a certain hydrophobic character. Accordingly, the ability for solubilization of water-insoluble compounds of different sorts is particularly versatile in PESCs. Their solubilization sites with very different polarities and hydrophobic characters make them very flexible in adapting to the requirements of a given drug molecule. This renders them attractive for potential applications in drug delivery. In addition, modification of the rheological properties via self-assembly and network formation can be very important in PESC applications. In the following, we discuss the structures of PESCs and their properties, with a focus on the solubilization properties. Subsequently, examples are described where PESCs have been employed in the context of drug solubilization and delivery. These comprise examples with individual aggregates, cross-linked hydrogels, and ones taking advantage of the high solubilization capacity of microemulsions.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124 Sekr. TC 7, D-10623Berlin, Germany
| |
Collapse
|
6
|
Mahapatra P, Ohshima H, Gopmandal PP. Electrophoresis of Dielectric and Hydrophobic Spherical Fluid Droplets Possessing Uniform Surface Charge Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11421-11431. [PMID: 36083152 DOI: 10.1021/acs.langmuir.2c01702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present article deals with the theoretical study on electrophoresis of hydrophobic and dielectric spherical fluid droplets possessing uniform surface charge density. Unlike the ideally polarizable liquid droplet bearing constant surface ζ-potential, the tangential component of the Maxwell stress is nonzero for dielectric fluid droplets with uniform surface charge density. We consider the continuity of the tangential component of total stress (sum of the hydrodynamic and Maxwell stresses) and jump in dielectric displacement along the droplet-to-electrolyte interface. The typical situation is considered here for which the interfacial tension of the fluid droplet is sufficiently high so that the droplet retains its spherical shape during its motion. The present theory can be applied to nanoemulsions, hydrophobic oil droplets, gas bubbles, droplets of immiscible liquid suspended in aqueous medium, etc. Based on weak field and low charge assumptions and neglecting the Marangoni effect, the resultant electrokinetic equations are solved using linear perturbation analysis to derive the closed form expression for electrophoretic mobility applicable for the entire range of Debye-Hückel parameter. We further deduced an alternate approximate expression for electrophoretic mobility without involving exponential integrals. Besides, we have derived analytical results for mobility pertaining to various limiting cases. The results are further illustrated to show the impact of pertinent parameters on the overall electrophoretic mobility.
Collapse
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science Noda, Chiba 278-8510, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India
| |
Collapse
|
7
|
Customizing polyelectrolytes through hydrophobic grafting. Adv Colloid Interface Sci 2022; 306:102721. [DOI: 10.1016/j.cis.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
|
8
|
Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, Fornasier M, Caltagirone C, Mezzenga R, Murgia S. Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS NANO 2022; 16:5427-5438. [PMID: 35333516 PMCID: PMC9047672 DOI: 10.1021/acsnano.1c09367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/21/2022] [Indexed: 05/29/2023]
Abstract
In recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er3+ and Yb3+ codoped NaYF4 nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent. Cellular uptake and NIR-induced photodynamic therapy were evaluated in vitro against human skin melanoma (MeWo) and ovarian (SKOV-3) cancer cells. Results evidenced the preferential uptake of the theranostic cubosomes in SKOV-3 cells in comparison to uptake in MeWo cells, and this effect was enhanced by the folic acid functionalization of the cubosomes surface. Nanocarriers coloaded with the hybrid fluorophores exhibited a superior NIR-induced photodynamic activity, also confirmed by the improved mitochondrial activity and the most affecting f-actin fibers of cytoskeleton. Similar results, but with higher photocytotoxicity, were detected when folic acid-functionalized cubosomes were incubated with SKOV-3 cells. Taken on the whole, these results prove these hybrid cubosomes are good candidates for the photodynamic treatment of tumor lesions.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Department
of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Dominika Wawrzyńczyk
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Julita Kulbacka
- Department
of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Giacomo Picci
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
| | - Livia Salvati Manni
- School
of Medical Sciences, School of Chemistry and University of Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- ETH
Zurich Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich 8093, Switzerland
| | - Stephan Handschin
- ETH
Zurich Scientific Center for Optical and Electron Microscopy (ScopeM), Otto-Stern-Weg 3, Zurich 8093, Switzerland
| | - Marco Fornasier
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
- Department
of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Claudia Caltagirone
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
| | - Raffaele Mezzenga
- ETH
Zurich Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich 8093, Switzerland
- ETH
Zurich
Department of Materials, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland
| | - Sergio Murgia
- Department
of Life and Environmental Sciences, University
of Cagliari and CSGI, via Ospedale 72, I-09124 Cagliari, Italy
| |
Collapse
|
9
|
Schnurbus M, Hardt M, Steinforth P, Carrascosa-Tejedor J, Winnall S, Gutfreund P, Schönhoff M, Campbell RA, Braunschweig B. Responsive Material and Interfacial Properties through Remote Control of Polyelectrolyte-Surfactant Mixtures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4656-4667. [PMID: 35029383 DOI: 10.1021/acsami.1c18934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polyelectrolyte/surfactant (P/S) mixtures find many applications but are static in nature and cannot be reversibly reconfigured through the application of external stimuli. Using a new type of photoswitchable surfactants, we use light to trigger property changes in mixtures of an anionic polyelectrolyte with a cationic photoswitch such as electrophoretic mobilities, particle size, as well as their interfacial structure and their ability to stabilize aqueous foam. For that, we show that prevailing hydrophobic intermolecular interactions can be remotely controlled between poly(sodium styrene sulfonate) (PSS) and arylazopyrazole tetraethylammonium bromide (AAP-TB). Shifting the chemical potential for P/S binding with E/Z photoisomerization of the surfactants can reversibly disintegrate even large aggregates (>4 μm) and is accompanied by a substantial change in the net charging state of PSS/AAP-TB complexes, e.g., from negative to positive excess charges upon light irradiation. In addition to the drastic changes in the bulk solution, also at air-water interfaces, the interfacial stoichiometry and structure change drastically on the molecular level with E/Z photoisomerization, which can also drive the stability of aqueous foam on a macroscopic level.
Collapse
Affiliation(s)
- Marco Schnurbus
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Michael Hardt
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Pascal Steinforth
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Javier Carrascosa-Tejedor
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, United Kingdom
| | - Samuel Winnall
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, United Kingdom
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Monika Schönhoff
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Richard A Campbell
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, United Kingdom
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
10
|
Mateos-Maroto A, Fernández-Peña L, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers (Basel) 2022; 14:polym14030479. [PMID: 35160468 PMCID: PMC8838751 DOI: 10.3390/polym14030479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022] Open
Abstract
Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in the biomedical field requires a deep understanding of the most fundamental bases underlying their assembly processes, and the control of their properties to fabricate novel materials with optimized ability for specific targeting and therapeutic capacity. This review presents an updated perspective on the multiple avenues opened for the application of PEMUCs to the biomedical field, aiming to highlight some of the most important advantages offered by the LbL method for the fabrication of platforms for their use in the detection and treatment of different diseases.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
11
|
Tsuei M, Sun H, Kim YK, Wang X, Gianneschi NC, Abbott NL. Interfacial Polyelectrolyte-Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:332-342. [PMID: 34967209 DOI: 10.1021/acs.langmuir.1c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolytes adsorbed at soft interfaces are used in contexts such as materials synthesis, stabilization of emulsions, and control of rheology. Here, we explore how polyelectrolyte adsorption to aqueous interfaces of thermotropic liquid crystals (LCs) influences surfactant-stabilized aqueous microdroplets that are elastically trapped within the LCs. We find that adsorption of poly(diallyldimethylammonium chloride) (PDDA) to the interface of a nematic phase of 4-cyano-4'-pentylbiphenyl (5CB) triggers the ejection of microdroplets decorated with sodium dodecylsulfate (SDS), consistent with an attractive electrical double layer interaction between the microdroplets and LC interface. The concentration of PDDA that triggers release of the microdroplets (millimolar), however, is three orders of magnitude higher than that which saturates the LC interfacial charge (micromolar). Observation of a transient reorientation of the LC during escape of microdroplets leads us to conclude that complexes of PDDA and SDS form at the LC interface and thereby regulate interfacial charge and microdroplet escape. Poly(sodium 4-styrenesulfonate) (PSS) also triggers escape of dodecyltrimethylammonium bromide (DTAB)-decorated aqueous microdroplets from 5CB with dynamics consistent with the formation of interfacial polyelectrolyte-surfactant complexes. In contrast to PDDA-SDS, however, we do not observe a transient reorientation of the LC when using PSS-DTAB, reflecting weak association of DTAB and PSS and slow kinetics of formation of PSS-DTAB complexes. Our results reveal the central role of polyelectrolyte-surfactant dynamics in regulating the escape of the microdroplets and, more broadly, that LCs offer the basis of a novel probe of the structure and properties of polyelectrolyte-surfactant complexes at interfaces. We demonstrate the utility of these new insights by triggering the ejection of microdroplets from LCs using peptide-polymer amphiphiles that switch their net charge upon being processed by enzymes. Overall, our results provide fresh insight into the formation of polyelectrolyte-surfactant complexes at aqueous-LC interfaces and new principles for the design of responsive soft matter.
Collapse
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hao Sun
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyengbuk 37673, Korea
| | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Eugenol emulsions stabilized by a natural-derived nonionic palmitate surfactant/polyacrylic acid complex. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Saha S, D'souza D, Londhe VY. Exploring the concepts of various nano-formulations loaded with herbal drugs moieties against breast cancer using PRISMA analysis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Szczęch M, Hinz A, Łopuszyńska N, Bzowska M, Węglarz WP, Szczepanowicz K. Polyaminoacid Based Core@shell Nanocarriers of 5-Fluorouracil: Synthesis, Properties and Theranostics Application. Int J Mol Sci 2021; 22:ijms222312762. [PMID: 34884566 PMCID: PMC8657732 DOI: 10.3390/ijms222312762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the most important health problems of our population, and one of the common anticancer treatments is chemotherapy. The disadvantages of chemotherapy are related to the drug’s toxic effects, which act on cancer cells and the healthy part of the body. The solution of the problem is drug encapsulation and drug targeting. The present study aimed to develop a novel method of preparing multifunctional 5-Fluorouracil (5-FU) nanocarriers and their in vitro characterization. 5-FU polyaminoacid-based core@shell nanocarriers were formed by encapsulation drug-loaded nanocores with polyaminoacids multilayer shell via layer-by-layer method. The size of prepared nanocarriers ranged between 80–200 nm. Biocompatibility of our nanocarriers as well as activity of the encapsulated drug were confirmed by MTT tests. Moreover, the ability to the real-time observation of developed nanocarriers and drug accumulation inside the target was confirmed by fluorine magnetic resonance imaging (19F-MRI).
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Alicja Hinz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.H.); (M.B.)
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (N.Ł.); (W.P.W.)
| | - Monika Bzowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.H.); (M.B.)
| | - Władysław P. Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (N.Ł.); (W.P.W.)
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
- Correspondence:
| |
Collapse
|
15
|
Tran E, Richmond GL. Interfacial Steric and Molecular Bonding Effects Contributing to the Stability of Neutrally Charged Nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12643-12653. [PMID: 34662126 DOI: 10.1021/acs.langmuir.1c02020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In cosmetic, pharmaceutical, and food applications, many active ingredients have limited bioavailability in an aqueous environment, and in that context, nanoemulsions provide a mechanism for encapsulation, protection, and transport. These dispersed oil droplets are on the order of 100s of nanometers in diameter and owe their long-term stability to emulsifiers that are commonly charged. More recently, applications have been utilizing nonionic species as stabilizing agents due to their enhanced biosafety. DLVO (named after Derjaguin, Landau, Verwey, and Overbeek) theory has been central in the description of colloid stability, which emphasizes repulsive electrostatic forces, while extended DLVO theory also accounts for steric effects. Past studies of nanoemulsions have largely employed charged surfactants and polyelectrolytes, making it difficult to decouple electrostatic and steric effects as they relate to droplet stability. To better understand steric and molecular factors contributing to the stability of "uncharged" droplets, we have created nanoemulsions with sodium dodecyl sulfate (SDS) and poly(N-vinylacetamide) (PNVA). Though SDS is anionic, with PNVA coating the droplet surfaces, the ζ-potentials of these nanoemulsions are ∼0 mV. Despite minimizing electrostatic contributions, these nanoemulsions are stable for upward of a month with interesting dynamics. By employing dynamic light scattering, vibrational sum frequency scattering spectroscopy, and calculating interaction pair potentials using extended DLVO theory, we learn that the thickness of the PNVA layer plays a critical role in stabilizing these "uncharged" nanoemulsions. Beyond the sterics, the molecular conformation of the PNVA strands also contributes to the droplet stability. The adsorbed PNVA strands are shown to form stratified, rigid polymer networks that prevent the nanoemulsions from rapid destabilization.
Collapse
Affiliation(s)
- Emma Tran
- University of Oregon, Eugene, Oregon 97403, United States
| | | |
Collapse
|
16
|
Long W, Kim JC. Poly (ethylenimine)/(phenylthio) acetic acid ion pair self-assembly incorporating indocyanine green and its NIR–responsive release property. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Altman RM, Christoffersen EL, Jones KK, Krause VM, Richmond GL. Playing Favorites: Preferential Adsorption of Nonionic over Anionic Surfactants at the Liquid/Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12213-12222. [PMID: 34607422 DOI: 10.1021/acs.langmuir.1c02189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While many studies have investigated synergic interactions between surfactants in mixed systems, understanding possible competitive behaviors between interfacial components of binary surfactant systems is necessary for the optimized efficacy of applications dependent on surface properties. Such is the focus of these studies in which the surface behavior of a binary surfactant mixture containing nonionic (Span-80) and anionic (AOT) components adsorbing to the oil/water interface was investigated with vibrational sum-frequency (VSF) spectroscopy and surface tensiometry experimental methods. Time-dependent spectroscopic studies reveal that while both nonionic and anionic surfactants initially adsorb to the interface, anionic surfactants desorb over time as the nonionic surfactant continues to adsorb. Concentration studies that vary the ratio of Span-80 to AOT in bulk solution show that the nonionic surfactant preferentially adsorbs to the oil/water interface over the anionic surfactant. These studies have important implications for applications in which mixed surfactant systems are used to alter interfacial properties, such as pharmaceuticals, industrial films, and environmental remediation.
Collapse
Affiliation(s)
- Rebecca M Altman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Evan L Christoffersen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Konnor K Jones
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Virginia M Krause
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
18
|
Ruano M, Mateos-Maroto A, Ortega F, Ritacco H, Rubio JE, Guzmán E, Rubio RG. Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6189-6200. [PMID: 33945690 PMCID: PMC9205565 DOI: 10.1021/acs.langmuir.1c00341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 06/01/2023]
Abstract
This work presents a simple methodology for coating small unilamellar liposomes bearing different degrees of positive charge with polyelectrolyte multilayers using the sequential layer-by-layer deposition method. The liposomes were made of mixtures of 1,2-dioleyl-sn-glycero-3-phosphocoline and dimethyl dioctadecyl ammonium bromide (DODAB) and coated by alternated layers of the sodium salt of poly(4-styrenesulfonate) (PSS) and poly(allylamine) (PAH) as polyanions and polycations, respectively. The results show that the zeta potential of the liposomes was not very sensitive to the mole fraction of DODAB in the membrane, XD, in the range 0.3 ≤ XD ≤ 0.8. We were able to coat the liposomes with up to four polymer bilayers. The growth of the capsule size was followed by dynamic light scattering, and in some cases, by cryo-transmission electron microscopy, with good agreement between both techniques. The thickness of the layers, measured from the hydrodynamic radius of the coated liposome, depends on the polyelectrolyte used, so that the PSS layers adopt a much more packaged conformation than the PAH layers. An interesting finding is that the PSS amount needed to reach the isoelectric point of the capsules increases linearly with the charge density of the bare liposomes, whereas the amount of PAH does not depend on it. As expected, the preparation of the multilayers has to be done in such a way that when the system is close to the isoelectric point, the capsules do not aggregate. For this, we dropped the polyelectrolyte solution quickly, stirred it fast, and used dilute liposome suspensions. The method is very flexible and not limited to liposomes or polyelectrolyte multilayers; also, coatings containing charged nanoparticles can be easily made. Once the liposomes have been coated, lipids can be easily eliminated, giving rise to polyelectrolyte nanocapsules (polyelectrosomes) with potential applications as drug delivery platforms.
Collapse
Affiliation(s)
- Marta Ruano
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Ana Mateos-Maroto
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Hernán Ritacco
- Instituto
de Física del Sur (IFISUR)-Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - José E.
F. Rubio
- Centro
de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramon G. Rubio
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| |
Collapse
|
19
|
Tran E, Mapile AN, Richmond GL. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions. J Colloid Interface Sci 2021; 599:706-716. [PMID: 33984763 DOI: 10.1016/j.jcis.2021.04.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Layer-by-layer deposition of polyelectrolytes is a useful technique for modifying surface functionalities. For drug delivery systems, alternating layers of biopolymers coat nanoemulsions, which house and protect the cargo until the time and destination of delivery. Here, we investigate molecular factors contributing to the stability and interfacial properties of nanoemulsions prepared by a co-adsorption of polymers poly(styrene sulfonate) and polyethylenimine (PEI), and surfactant dodecyltrimethylammonium bromide. We hypothesize the interplay between electrosteric and hydrophobic effects upon multi-polymer co-adsorption contributes to both macroscopic and molecular-level interfacial properties of nanoemulsions. EXPERIMENTS To probe interfacial layering properties, we use vibrational sum frequency scattering spectroscopy with ζ-potential measurements to determine the adsorptive behavior and molecular conformational arrangement of the polymer layers. Complementing these interfacial studies are dynamic light scattering experiments measuring the nanoemulsion size distribution and polydispersity index over a 30-day period. FINDINGS Our light scattering, ζ-potential, and spectroscopic results of the nanoemulsion surface show that the duration of droplet stability and the degree of molecular orientation of adsorbed polymers can be tuned by surfactant concentration, PEI concentration, and pH. These results illustrate how molecular surface properties of multi-polymer coated nanoemulsions contribute to synergistic effects and droplet stability, enabling advancements in applications surrounding biopharmaceuticals, cosmetics, and food sciences.
Collapse
Affiliation(s)
- Emma Tran
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, United States.
| | - Ashley N Mapile
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, United States.
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, United States.
| |
Collapse
|
20
|
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021; 13:polym13081221. [PMID: 33918844 PMCID: PMC8069484 DOI: 10.3390/polym13081221] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
Collapse
|
21
|
Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 2021; 13:pharmaceutics13020191. [PMID: 33535563 PMCID: PMC7912766 DOI: 10.3390/pharmaceutics13020191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
An investigation of the interactions between bio-polymeric nanoparticles (NPs) and the RAW 264.7 mouse murine macrophage cell line has been presented. The cell viability, immunological response, and endocytosis efficiency of NPs were studied. Biopolymeric NPs were synthesized from a nanoemulsion using the phase inversion composition (PIC) technique. The two types of biopolymeric NPs that were obtained consisted of a biocompatible polymer, polycaprolactone (PCL), either with or without its copolymer with poly(ethylene glycol) (PCL-b-PEG). Both types of synthesized PCL NPs passed the first in vitro quality assessments as potential drug nanocarriers. Non-pegylated PCL NPs were internalized more effectively and the clathrin-mediated pathway was involved in that process. The investigated NPs did not affect the viability of the cells and did not elicit an immune response in the RAW 264.7 cells (neither a significant increase in the expression of genes encoding pro-inflammatory cytokines nor NO (nitric oxide) production were observed). It may be concluded that the synthesized NPs are promising candidates as nanocarriers of therapeutic compounds.
Collapse
|
22
|
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021; 11:1690. [PMID: 33462270 PMCID: PMC7814039 DOI: 10.1038/s41598-020-79702-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.
Collapse
Affiliation(s)
- Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sławomir Drozdek
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
23
|
Adsorption Properties of Soft Hydrophobically Functionalized PSS/MA Polyelectrolytes. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the adsorption properties of the newly synthesized, hydrophobically functionalized polyelectrolyte (HF-PE), poly(4-styrenesulfonic-co-maleic acid) copolymer (PSS/MA). The hydrophobic alkyl side chains (C12 or C16) were incorporated into the polyelectrolyte backbone via the labile amid linker to obtain the soft HF-PE product with the assumed amount of 15% and 40% degree of grafting for every length of the alkyl chain, i.e., PSS/MA-g-C12NH2 (15% or 40%) as well as PSS/MA-g-C16NH2 (15% or 40%). In the present contribution, we determined both the effect of grafting density and the length of alkyl chain on adsorption at water/air and water/decane interfaces, as well as on top of the polyelectrolyte multilayer (PEM) deposited on a solid surface. The dependence of the interfacial tension on copolymer concentration was investigated by the pendant drop method, while the adsorption at solid surface coated by poly(diallyldimethylammonium chloride)/poly(styrene sulphonate) PEM by the quartz crystal microbalance with dissipation (QCM-D), attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR) and contact angle analysis. We found that surface activity of the hydrophobized copolymer was practically independent of the grafting ratio for C16 side chains, whereas, for C12, the copolymer with a lower grafting ratio seemed to be more surface active. The results of QCM-D and FTIR-ATR experiments confirmed the adsorption of hydrophobized copolymer at PEM along with the modification of water structure at the interface. Finally, it can be concluded that the hydrophobically modified PSS/MA can be successfully applied either as the efficacious emulsifier for the formation of (nano)emulsions for further active substances encapsulation using the sequential adsorption method or as one of the convenient building blocks for the surface modification materials.
Collapse
|
24
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
25
|
Encapsulation of fragrances and oils by core-shell structures from silica nanoparticles, surfactant and polymer: Effect of particle size. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Lucia A, Guzmán E, Rubio RG, Ortega F. Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Szczęch M, Orsi D, Łopuszyńska N, Cristofolini L, Jasiński K, Węglarz WP, Albertini F, Kereïche S, Szczepanowicz K. Magnetically responsive polycaprolactone nanocarriers for application in the biomedical field: magnetic hyperthermia, magnetic resonance imaging, and magnetic drug delivery. RSC Adv 2020; 10:43607-43618. [PMID: 35519668 PMCID: PMC9058288 DOI: 10.1039/d0ra07507h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
There are huge demands on multifunctional nanocarriers to be used in nanomedicine. Herein, we present a simple and efficient method for the preparation of multifunctional magnetically responsive polymeric-based nanocarriers optimized for biomedical applications. The hybrid delivery system is composed of drug-loaded polymer nanoparticles (poly(caprolactone), PCL) coated with a multilayer shell of polyglutamic acid (PGA) and superparamagnetic iron oxide nanoparticles (SPIONs), which are known as bio-acceptable components. The PCL nanocarriers with a model anticancer drug (Paclitaxel, PTX) were formed by the spontaneous emulsification solvent evaporation (SESE) method, while the magnetically responsive multilayer shell was formed via the layer-by-layer (LbL) method. As a result, we obtained magnetically responsive polycaprolactone nanocarriers (MN-PCL NCs) with an average size of about 120 nm. Using the 9.4 T preclinical magnetic resonance imaging (MRI) scanner we confirmed, that obtained MN-PCL NCs can be successfully used as a MRI-detectable drug delivery system. The magnetic hyperthermia effect of the MN-PCL NCs was demonstrated by applying a 25 mT radio-frequency (f = 429 kHz) alternating magnetic field. We found a Specific Absorption Rate (SAR) of 55 W g-1. The conducted research fulfills the first step of investigation for biomedical application, which is mandatory for the planning of any in vitro and in vivo studies.
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Krakow Poland +48-124251923 +48-126395121
| | - Davide Orsi
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parma Italy
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Luigi Cristofolini
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parma Italy
| | - Krzysztof Jasiński
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Władysław P Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Franca Albertini
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR) Parma Italy
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University Prague Czech Republic
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Krakow Poland +48-124251923 +48-126395121
| |
Collapse
|
28
|
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020; 15:8673-8696. [PMID: 33192061 PMCID: PMC7654520 DOI: 10.2147/ijn.s231477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanomaterials have become a prominent area of research in the field of drug delivery. Their application in nanomedicine can improve bioavailability, pharmacokinetics, and, therefore, the effectiveness of various therapeutics or contrast agents. There are many studies for developing new polymeric nanocarriers; however, their clinical application is somewhat limited. In this review, we present new complex and multifunctional polymeric nanocarriers as promising and innovative diagnostic or therapeutic systems. Their multifunctionality, resulting from the unique chemical and biological properties of the polymers used, ensures better delivery, and a controlled, sequential release of many different therapeutics to the diseased tissue. We present a brief introduction of the classical formulation techniques and describe examples of multifunctional nanocarriers, whose biological assessment has been carried out at least in vitro. Most of them, however, also underwent evaluation in vivo on animal models. Selected polymeric nanocarriers were grouped depending on their medical application: anti-cancer drug nanocarriers, nanomaterials delivering compounds for cancer immunotherapy or regenerative medicine, components of vaccines nanomaterials used for topical application, and lifestyle diseases, ie, diabetes.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
29
|
Graphene oxide as a functional excipient in buccal films for delivery of clotrimazole: Effect of molecular interactions on drug release and antifungal activity in vitro. Int J Pharm 2020; 589:119811. [DOI: 10.1016/j.ijpharm.2020.119811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
|
30
|
Kuznetsova DA, Gabdrakhmanov DR, Kuznetsov DM, Lukashenko SS, Zakharova LY. Polymer Colloid Complexes Based on an Imidazolium Surfactant and Polyacrylic Acid. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Akanno A, Guzmán E, Ortega F, Rubio RG. Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer-surfactant interactions. Phys Chem Chem Phys 2020; 22:23360-23373. [PMID: 33047113 DOI: 10.1039/d0cp02470h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The adsorption of mixtures formed by chitosan and sodium lauryl ether sulfate (SLES) at the water/vapor interface has been studied on the basis of their impact on the equilibrium surface tension of the interface, and the response of such an interface to mechanical deformations. The analysis of the surfactant binding to the chitosan chains evidenced that the chitosan-SLES solutions were mixtures of polyelectrolyte-surfactant complexes and a non-negligible amount of free surfactant molecules. The interfacial properties showed two well-differentiated regions for interfacial adsorption as a function of the SLES concentration: (i) at a low surfactant concentration, co-adsorption of chitosan and SLES occurs, and (ii) at high concentrations, the surface is mostly occupied by SLES molecules. This behavior may be interpreted in terms of a complex equilibration mechanism of the interfacial layers, where different coupled dynamic processes may be involved. Furthermore, the use of the time-concentration superposition principle has confirmed the different dynamic behaviors of the chitosan-SLES adsorption as a function of the SLES concentration. This work sheds light on some of the most fundamental bases governing the physico-chemical behavior of mixtures formed by a biopolymer and a surfactant, where their complex behavior is governed by an intricate balance of bulk and interfacial interactions.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
32
|
Tokarska K, Lamch Ł, Piechota B, Żukowski K, Chudy M, Wilk KA, Brzózka Z. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:111981. [PMID: 32862088 DOI: 10.1016/j.jphotobiol.2020.111981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Malignant melanoma is an emerging problem worldwide due to the high degree of lethalness. Its aggressiveness and the ability to metastasize along with the heterogeneity at the molecular and cellular levels, limit the overall therapeutic efficacy. Despite significant advances in melanoma treatment over the last decade, there is still a need for improved therapeutic modalities. Thus, we demonstrate here a combinatorial approach that targets multiple independent therapeutic pathways, in which polymeric micelles (PMs) were used as efficacious colloidal nanocarriers loaded with both daunorubicin (DRB) as a cytotoxic drug and IR-768 as a photosensitizer. This afforded the dual drug loaded delivery system IR-768 + DRB in PMs. The fabricated mPEG-b-PLGA micelles (hydrodynamic diameters ≈ 25 nm) had a relatively narrow size distribution (PdI > ca. 0.3) with uniform spherical shapes. CLSM study showed that mPEG-b-PLGA micelles were uptaken by mitochondria, which further contributed to excellent singlet oxygen generation capacity for PDT in A375 melanoma cells. Furthermore, the PMs were efficiently internalized by tested cells through endocytosis, resulting in much higher cellular uptake comparing to the free drug. As a result of these properties, IR-768 + DRB in PMs exhibited very potent and synergistically enhanced anticancer activity against A375 cells. Additionally, this combination approach allowed to reduce drug doses and provided low side effects towards normal HaCaT. This study indicates excellent properties of mPEG-b-PLGA micelles resulting in great therapeutic potential possessed by the developed nanoscale drug delivery system for combined chemo-photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Katarzyna Tokarska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, POLAND
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, POLAND
| | - Beata Piechota
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND
| | - Kamil Żukowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, POLAND
| | - Michał Chudy
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, POLAND.
| | - Zbigniew Brzózka
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND.
| |
Collapse
|
33
|
Blocher McTigue WC, Voke E, Chang LW, Perry SL. The benefit of poor mixing: kinetics of coacervation. Phys Chem Chem Phys 2020; 22:20643-20657. [PMID: 32895678 DOI: 10.1039/d0cp03224g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Complex coacervation has become a prominent area of research in the fields of food science, personal care, drug stabilization, and more. However, little has been reported on the kinetics of assembly of coacervation itself. Here, we describe a simple, low-cost way of looking at the kinetics of coacervation by creating poorly mixed samples. In particular, we examine how polymer chain length, the patterning and symmetry of charges on the oppositely charged polyelectrolytes, and the presence of salt and a zwitterionic buffer affect the kinetics of complex coacervation. Our results suggest an interesting relationship between the time for equilibration and the order of addition of polymers with asymmetric patterns of charge. Furthermore, we demonstrated that increasing polymer chain length resulted in a non-monotonic trend in the sample equilibration times as a result of opposing factors such as excluded volume and diffusion. We also observed differences in the rate of sample equilibration based on the presence of a neutral, zwitterionic buffer, as well as the presence and identity of added salt, consistent with previous reports of salt-specific effects on the rheology of complex coacervates. While not a replacement for more advanced characterization strategies, this turbidity-based method could serve as a screening tool to identify interesting and unique phenomena for further study.
Collapse
Affiliation(s)
| | - Elizabeth Voke
- Department of Chemical Engineering, University of Massachusetts Amherst, USA.
| | - Li-Wei Chang
- Department of Chemical Engineering, University of Massachusetts Amherst, USA.
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, USA.
| |
Collapse
|
34
|
Szafraniec-Szczęsny J, Janik-Hazuka M, Odrobińska J, Zapotoczny S. Polymer Capsules with Hydrophobic Liquid Cores as Functional Nanocarriers. Polymers (Basel) 2020; 12:E1999. [PMID: 32887444 PMCID: PMC7565928 DOI: 10.3390/polym12091999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Recent developments in the fabrication of core-shell polymer nanocapsules, as well as their current and future applications, are reported here. Special attention is paid to the newly introduced surfactant-free fabrication method of aqueous dispersions of nanocapsules with hydrophobic liquid cores stabilized by amphiphilic copolymers. Various approaches to the efficient stabilization of such vehicles, tailoring their cores and shells for the fabrication of multifunctional, navigable nanocarriers and/or nanoreactors useful in various fields, are discussed. The emphasis is placed on biomedical applications of polymer nanocapsules, including the delivery of poorly soluble active compounds and contrast agents, as well as their use as theranostic platforms. Other methods of fabrication of polymer-based nanocapsules are briefly presented and compared in the context of their biomedical applications.
Collapse
Affiliation(s)
- Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Małgorzata Janik-Hazuka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| | - Joanna Odrobińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| |
Collapse
|
35
|
Tran E, Carpenter AP, Richmond GL. Probing the Molecular Structure of Coadsorbed Polyethylenimine and Charged Surfactants at the Nanoemulsion Droplet Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9081-9089. [PMID: 32668900 DOI: 10.1021/acs.langmuir.0c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoemulsions, nanoscale oil droplets dispersed in an aqueous medium, can be stabilized by polymer-surfactant (PS) mixtures, making them ubiquitous in commercial, industrial, and pharmaceutical applications. It is well-known that the presence of PS layers coadsorbed at the droplet surface plays a significant role in droplet stability and functionality; however, little is understood about the molecular nature of this coadsorption. Such insights are especially important for application in drug delivery where physiological conditions can vary the environmental pH and significantly impact stabilization. Hence, the focus of this study examines the surface properties of ∼300 nm nanoemulsions stabilized by the coadsorption of polyethylenimine (PEI) and charged alkyl surfactants sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). PEI is a common charge-tunable polymer used in nanocarrier templates. This study employs vibrational sum frequency scattering spectroscopy, coupled with ζ-potential and surface pressure measurements performed as a function of varying concentrations and pH. The surface specific spectroscopic results reported herein reveal that PEI adsorption and molecular ordering is influenced by both electrostatic and hydrophobic interactions. While the degree of PEI adsorption is stronger in the presence of anionic SDS than cationic DTAB, for both surfactants, PEI is molecularly disordered in acidic conditions and adopts a persistent net ordering as the solution pH becomes more basic. Both surfactants also display degrees of interfacial conformational ordering that is altered by the presence of the coadsorbed polymer. These results demonstrate the molecular-level diversity in PEI behavior at the droplet interface and provide insight into how such behavior can be controlled to yield nanocarrier technology with specific functions and enhanced efficacy.
Collapse
Affiliation(s)
- Emma Tran
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrew P Carpenter
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
36
|
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 282:102197. [PMID: 32579951 DOI: 10.1016/j.cis.2020.102197] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The fabrication of polyelectrolyte multilayer films (PEMs) using the Layer-by-Layer (LbL) method is one of the most versatile approaches for manufacturing functional surfaces. This is the result of the possibility to control the assembly process of the LbL films almost at will, by changing the nature of the assembled materials (building blocks), the assembly conditions (pH, ionic strength, temperature, etc.) or even by changing some other operational parameters which may impact in the structure and physico-chemical properties of the obtained multi-layered films. Therefore, the understanding of the impact of the above mentioned parameters on the assembly process of LbL materials plays a critical role in the potential use of the LbL method for the fabrication of new functional materials with technological interest. This review tries to provide a broad physico-chemical perspective to the study of the fabrication process of PEMs by the LbL method, which allows one to take advantage of the many possibilities offered for this approach on the fabrication of new functional nanomaterials.
Collapse
|
37
|
Guzmán E, Fernández-Peña L, Ortega F, Rubio RG. Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Fernández-Peña L, Abelenda-Nuñez I, Hernández-Rivas M, Ortega F, Rubio RG, Guzmán E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv Colloid Interface Sci 2020; 282:102203. [PMID: 32629241 DOI: 10.1016/j.cis.2020.102203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
The understanding of the deposition of oppositely charged polyelectrolytes-surfactant mixtures onto solid surfaces presents a high interest in current days due to the recognized impact of the obtained layers on different industrial sectors and the performance of several consumer products (e.g. formulations of shampoos and hair conditioners). This results from the broad range of structures and properties that can present the mixed layers, which in most of the cases mirror the association process occurring between the polyelectrolyte chains and the oppositely charged surfactants in the bulk. Therefore, the understanding of the adsorption processes and characteristics of the adsorbed layers can be only attained from a careful examination of the self-assembly processes occurring in the solution. This review aims to contribute to the understanding of the interaction of polyelectrolyte-surfactant mixtures with solid surfaces, which is probably one of the most underexplored aspects of these type of systems. For this purpose, a comprehensive discussion on the correlations between the aggregates formed in the solutions and the deposition of the obtained complexes upon such association onto solid surfaces will be presented. This makes it necessary to take a closer look to the most important forces driving such processes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Centro de Espectroscopia Infrarroja-Raman-Correlación, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain.
| | - Irene Abelenda-Nuñez
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - María Hernández-Rivas
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| |
Collapse
|
39
|
Lamch Ł, Ronka S, Warszyński P, Wilk KA. NMR studies of self-organization behavior of hydrophobically functionalized poly(4-styrenosulfonic-co-maleic acid) in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Structure of DPPC Monolayers at the Air/Buffer Interface: A Neutron Reflectometry and Ellipsometry Study. COATINGS 2020. [DOI: 10.3390/coatings10060507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Langmuir monolayers of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine, known as DPPC, at the air/water interface are extensively used as model systems of biomembranes and pulmonary surfactant. The properties of these monolayers have been mainly investigated by surface pressure–area isotherms coupled with different complementary techniques such as Brewster angle microscopy, for example. Several attempts using neutron reflectometry (NR) or ellipsometry have also appeared in the literature. Here, we report structural information obtained by using NR and ellipsometry on DPPC monolayers in the liquid condensed phase. On one side, NR can resolve the thickness of the aliphatic tails and the degree of hydration of the polar headgroups. On the other side, ellipsometry gives information on the refractive index and, therefore, on the physical state of the monolayer. The thickness and surface excess obtained by multiple-angle-of-incidence ellipsometry (MAIE) is compared with the results from NR measurements yielding a good agreement. Besides, a novel approach is reported to calculate the optical anisotropy of the DPPC monolayer that depends on the orientation of the aliphatic chains. The results from both NR and ellipsometry are also discussed in the context of the existing results for DPPC monolayers at the air/water interface. The differences observed are rationalized by the presence of buffer molecules interacting with phospholipids.
Collapse
|
41
|
Batys P, Morga M, Bonarek P, Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J Phys Chem B 2020; 124:2961-2972. [PMID: 32182068 PMCID: PMC7590956 DOI: 10.1021/acs.jpcb.0c01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science and Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
42
|
Szczęch M, Szczepanowicz K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E496. [PMID: 32164194 PMCID: PMC7153481 DOI: 10.3390/nano10030496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 01/10/2023]
Abstract
The aim of our study was to develop a novel method for the preparation of polymeric core-shell nanoparticles loaded with various actives for biomedical applications. Poly(caprolactone) (PCL), poly(lactic acid) (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles were prepared using the spontaneous emulsification solvent evaporation (SESE) method. The model active substance, Coumarin-6, was encapsulated into formed polymeric nanoparticles, then they were modified/functionalized by multilayer shells' formation. Three types of multilayered shells were formed: two types of polyelectrolyte shell composed of biocompatible and biodegradable polyelectrolytes poly-L-lysine hydrobromide (PLL), fluorescently-labeled poly-L-lysine (PLL-ROD), poly-L-glutamic acid sodium salt (PGA) and pegylated-PGA (PGA-g-PEG), and hybrid shell composed of PLL, PGA, and SPIONs (superparamagnetic iron oxide nanoparticles) were used. Multilayer shells were constructed by the saturation technique of the layer-by-layer (LbL) method. Properties of our polymeric core-shell nanoparticle were optimized for bioimaging, passive and magnetic targeting.
Collapse
Affiliation(s)
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland;
| |
Collapse
|
43
|
Haggag YA, Ibrahim RR, Hafiz AA. Design, Formulation and in vivo Evaluation of Novel Honokiol-Loaded PEGylated PLGA Nanocapsules for Treatment of Breast Cancer. Int J Nanomedicine 2020; 15:1625-1642. [PMID: 32210557 PMCID: PMC7069567 DOI: 10.2147/ijn.s241428] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background Honokiol (HK) is a common herbal medicine extracted from magnolia plants. Low aqueous solubility and limited bioavailability of HK have hindered its clinical application, especially for cancer treatment. Nano-drug delivery system has the potential to enhance HK delivery and therefore, enhance its anti-cancer activity. Purpose The study’s aim is to design novel PEGylated-PLGA polymeric nanocapsules (NCs) for HK delivery to breast tumor-bearing mice after systemic administration. Methods Formulation of different HK-loaded NCs and their physio-chemical characterization were optimized through the use of different formulation variables. The antitumor activity of the HK-loaded NCs was investigated both in vitro using MCF-7 and EAC breast cancer cell lines and in vivo using solid Ehrlich carcinoma (SEC) breast cancer model. Results The optimum HK-loaded NCs were prepared from 15% PEG-PLGA diblock copolymer and exhibited the lowest nano size of 125 nm, smooth spherical morphology, highest drug loading of 94% and highest cellular uptake into breast cancer cells. HK-loaded PEGylated NCs can effectively inhibit the in vitro cell growth of breast cancer cells by 80.2% and 58.1% compared to 35% and 31% with free HK in the case of MCF-7 and EAC, respectively. HK-loaded NCs inhibited SEC tumor growth by 2.3 fold significantly higher than free HK, in vivo. Conclusion The designed drug delivery system encapsulating HK exhibited a pronounced decrease in tumor growth biomarkers meanwhile proved its safety in animals. Therefore, 15% PEGylated HK-loaded NCs may act as a promising new approach for breast cancer treatment.
Collapse
Affiliation(s)
- Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rowida R Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amin A Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| |
Collapse
|
44
|
Guzmán E, Fernández-Peña L, S. Luengo G, Rubio AM, Rey A, Léonforte F. Self-Consistent Mean Field Calculations of Polyelectrolyte-Surfactant Mixtures in Solution and upon Adsorption onto Negatively Charged Surfaces. Polymers (Basel) 2020; 12:E624. [PMID: 32182867 PMCID: PMC7182847 DOI: 10.3390/polym12030624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/18/2023] Open
Abstract
Self-Consistent Mean-Field Calculations (SCF) have provided a semi-quantitative description of the physico-chemical behavior of six different polyelectrolyte-surfactant mixtures. The SCF calculations performed showed that both the formation of polymer-surfactant in bulk and the adsorption of the formed complexes onto negatively-charged surfaces are strongly affected by the specific nature of the considered systems, with the polymer-surfactant interactions playing a central role in the self-assembly of the complexes that, in turn, affects their adsorption onto interfaces and surfaces. This work evidences that SCF calculations are a valuable tool for deepening on the understanding of the complex physico-chemical behavior of polyelectrolyte-surfactant mixtures. However, it is worth noting that the framework obtained on the basis of an SCF approach considered an equilibrium situation which may, in some cases, be far from the real situation appearing in polyelectrolyte-surfactant systems.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | | | - Ana María Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | - Antonio Rey
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | - Fabien Léonforte
- L’Oréal Research and Innovation, 93600 Aulnay-Sous Bois, France;
| |
Collapse
|
45
|
Piergies N, Oćwieja M, Paluszkiewicz C, Kwiatek WM. Spectroscopic insights into the effect of pH, temperature, and stabilizer on erlotinib adsorption behavior onto Ag nanosurface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117737. [PMID: 31757706 DOI: 10.1016/j.saa.2019.117737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, surface - enhanced Raman spectroscopy (SERS) was applied at the first time for estimation of how pH, temperature, and nanoparticle (NP) stabilizer affect an adsorption behavior of erlotinib (drug approved in a non-small cell lung cancer therapy) onto citrate-stabilized silver nanoparticles (AgNPs). Novel approach to improve cancer therapy assumes application of NPs as an efficient drug delivery system. This strategy requires designing stable drug/nanocarrier conjugates that can effectively interact in the target site. It is also important to perform deeply characterization of a drug orientation on the potential carrier surface and estimation how stable the appeared interaction is. Performed analysis, indicates that pH, temperature, presence of NP stabilizers, and time of incubation have an influence on the occurring adsorption geometry of the drug. However, the observed erlotinib/AgNP interaction remains stable regardless of the applied conditions. These considerations were supported by insightful physicochemical characteristics of the AgNPs and the erlotinib/AgNP conjugates by conducting transmission electron microscopy (TEM) imaging, determination of colloid stability conducted with the use of dynamic light scattering technique (DLS) and measurements of electrophoretic mobility. Such complex approach allows a better understanding of the stability of the erlotinib/AgNP conjugates and provides information how the investigated interaction is affected by the induced perturbations.
Collapse
Affiliation(s)
- Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland.
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemisty, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| |
Collapse
|
46
|
Jacumazo J, de Carvalho MM, Parchen GP, Campos IM, Ballesteros Garcia MJ, Brugnari T, Maciel GM, Marques FA, de Freitas RA. Development, characterization and antimicrobial activity of sodium dodecyl sulfate-polysaccharides capsules containing eugenol. Carbohydr Polym 2020; 230:115562. [PMID: 31887918 DOI: 10.1016/j.carbpol.2019.115562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
|
47
|
Schabes BK, Richmond GL. Helping Strands: Polyelectrolyte Assists in Surfactant Assembly below Critical Micelle Concentration. J Phys Chem B 2020; 124:234-239. [PMID: 31804084 DOI: 10.1021/acs.jpcb.9b08692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strongly adsorbing polymer/surfactant (P/S) combinations have been proposed for long-term applications such as emulsion stabilization. However, P/S systems are known to exhibit nonequilibrium behavior despite steady-state surface characteristics. This work examines the coadsorption of dodecyltrimethylammonium bromide and sodium poly(styrene sulfonate) (PSS) using oil/water tensiometry, UV absorption, and vibrational sum frequency spectroscopy. To determine which features do not represent true equilibrium, the molecular details of PSS adsorption are compared for fresh and aged samples. At surfactant concentrations concurrent with bulk precipitation, significant differences between fresh and aged samples indicate that the strong initial coadsorption within this system is a nonequilibrium feature. We conclude that the long equilibration timescales arise from the slow assembly of non-adsorbing polyelectrolyte/micelle complexes below the critical micelle concentration. This study resolves a recent debate regarding system equilibria of surface-active P/S combinations at a water surface.
Collapse
Affiliation(s)
- Brandon K Schabes
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
48
|
Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02372-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Jiang R, Liu C, Tan LT, Lin C. Formation of carboxymethylchitosan/gemini surfactant adsorption layers at the air/water interface: Effects of association in the bulk. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1462195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rong Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Chang Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Li Ting Tan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Cuiying Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
50
|
Szczęch M, Karabasz A, Łopuszyńska N, Bzowska M, Węglarz WP, Warszyński P, Szczepanowicz K. Gadolinium labeled polyelectrolyte nanocarriers for theranostic application. Colloids Surf B Biointerfaces 2019; 183:110396. [PMID: 31394424 DOI: 10.1016/j.colsurfb.2019.110396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Here, we designed a novel Gadolinium (Gd) labeled drug-loaded polyelectrolyte nanocarriers for theranostics. The nanocarriers were formed via layer-by-layer technique with biodegradable polyelectrolytes: PLL (Poly-L-lysine), PLL-Gd (Gadolinium-labeled Poly-L-lysine) and PGA (Poly-L-glutamic acid). Anticancer drug (Paclitaxel) was encapsulated in the formed nanocarriers. The average size of synthesized nanocarriers was around 150 nm. The empty gadolinium labeled nanocarriers did not show any deleterious effects on tested cells (CT26-CEA, B16F10, 4T1 and PBMC), whereas encapsulated paclitaxel retained its cytotoxic/cytostatic activity. Using T2 and T1 NMR relaxation measurements with 9.4 T preclinical MRI scanner, we demonstrated that gadolinium labeled nanocarriers can be detected due to a locally altered contrast in the MR image. Thus, they may become a promising platform for future theranostic applications.
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Alicja Karabasz
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Monika Bzowska
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Władysław P Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|