1
|
Yazdi JS, Salari M, Ehrampoush MH, Bakouei M. Development of active chitosan film containing bacterial cellulose nanofibers and silver nanoparticles for bread packaging. Food Sci Nutr 2024; 12:8186-8199. [PMID: 39479705 PMCID: PMC11521716 DOI: 10.1002/fsn3.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 11/02/2024] Open
Abstract
The objective was to develop an active chitosan-based coating and to evaluate its effect on the shelf life and microbial safety of bread. Bacterial cellulose nanofibers (BCNF) and various levels (0.5%, 1%, and 2%) of silver nanoparticles (AgNPs) were in the chitosan (CS) film. Characterization of films was determined by analyzing WVP, ultraviolet barrier, and opacity as well as FTIR, XRD, DSC, TGA, and SEM. The water vapor permeability (WVP) of CS was remarkably (p < .05) decreased from 3.75 × 10-10 to 0.85 × 10-10 g/smPa when filled with BCNF and 2% AgNPs. Thermal and structural properties were enhanced in nanoparticle-included films. Applying CS/BCNF/AgNPs coatings for bread samples demonstrated a significant improvement in moisture retention and a decrease in the hardness (from 10.2 to 7.05 N for CS and CS/BCNF/1% AgNPs coated samples, respectively). Moreover, microbial shelf life of bread sample increased from 5 to 38 days after packaging with CS/BCNF/2% AgNPs film. After a storage period of 15 days at 25°C, no fungal growth was detected in bread samples which were coated with nanocomposite suspensions containing 1% and 2% AgNPs. However, at the same condition, yeast and mold counts was 7.91 log CFU/g for control sample. In conclusion, the CS/BCNF/2% AgNPs film might have the potential for use as active packaging of bread.
Collapse
Affiliation(s)
- Jalal Sadeghizadeh Yazdi
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Salari
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mohammad Hasan Ehrampoush
- Department of Environmental Health Engineering, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mehrasa Bakouei
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
2
|
Hongal AM, Shettar AK, Hoskeri JH, Vedamurthy AB. Silver nanoparticles mediated apoptosis and cell cycle arrest in lung cancer A549. 3 Biotech 2024; 14:238. [PMID: 39310035 PMCID: PMC11415561 DOI: 10.1007/s13205-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The present study was aimed to synthesize the silver nanoparticles from Alangium salvifolium Wang. and evaluating its biomedical applications. The leaves of A. salvifolium collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of A. salvifolium plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.
Collapse
Affiliation(s)
- Annapurneshwari M. Hongal
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| | - Arun K. Shettar
- Division of Pre-Clinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, Karnataka 580031 India
| | - Joy H. Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women’s University, Vijayapura, Karnataka India
| | - A. B. Vedamurthy
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
3
|
Santos DPD, Ferreira MDP, Diniz KM, Segatelli MG, Figueiredo ECD, Tarley CRT. A Reliable and Straightforward Combination of vortex-assisted Dispersive Magnetic solid-phase Extraction with Direct Sorbent Sampling for Highly Sensitive Silver Determination in Water Samples Using Flame and Metal Furnace AAS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:42. [PMID: 39306638 DOI: 10.1007/s00128-024-03955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
In the present paper, the assessment of vortex-assisted dispersive magnetic solid-phase extraction using amino-functionalized mesoporous combined with direct magnetic sorbent sampling (DMSS) in flame or furnace atomic absorption spectrometry (FAAS or FF-AAS) was demonstrated for highly sensitive silver determination in water samples. The developed method showed significant enrichment factors compared to conventional pneumatic nebulization by FAAS, 607 for DMSS-FF-AAS and 114 for DMSS-FAAS. The analytical curve showed linearity in the range from 5.0 to 70.0 µg L- 1 and 1.0 to 15.0 µg L- 1 and limits of detection of 0.59 and 0.09 µg L- 1 for DMSS-FAAS and DMSS-FF-AAS, respectively. The intra and inter-day precision evaluated as a percentage of the relative standard deviation (RSD,%) ranged from 1.89 to 4.71% for levels of 25.0 and 65.0 µg L- 1. The method was applied in different kinds of water samples without matrix effects, yielding recovery values from 90 to 110%.
Collapse
Affiliation(s)
- Diego Prudencio Dos Santos
- Department of Chemistry, State University of Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86050-482, Brazil
| | - Milena do Prado Ferreira
- Department of Chemistry, State University of Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86050-482, Brazil
| | | | - Mariana Gava Segatelli
- Department of Chemistry, State University of Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86050-482, Brazil
| | - Eduardo Costa de Figueiredo
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86050-482, Brazil.
- National Institute of Science and Technology in Bioanalysis, Department of Analytical Chemistry, State University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
4
|
Hotowy A, Strojny-Cieślak B, Ostrowska A, Zielińska-Górska M, Kutwin M, Wierzbicki M, Sosnowska M, Jaworski S, Chwalibóg A, Kotela I, Sawosz Chwalibóg E. Silver and Carbon Nanomaterials/Nanocomplexes as Safe and Effective ACE2-S Binding Blockers on Human Skin Cell Lines. Molecules 2024; 29:3581. [PMID: 39124987 PMCID: PMC11313757 DOI: 10.3390/molecules29153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Marlena Zielińska-Górska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - André Chwalibóg
- Section of Production, Nutrition and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Ireneusz Kotela
- Department of Orthopaedics, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland;
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Ewa Sawosz Chwalibóg
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| |
Collapse
|
5
|
Ding X, Lin H, Zhou J, Lin Z, Huang Y, Chen G, Zhang Y, Lv J, Chen J, Liu G, Xu X, Xu D. Silver Nanocomposites with Enhanced Shelf-Life for Fruit and Vegetable Preservation: Mechanisms, Advances, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1244. [PMID: 39120349 PMCID: PMC11314483 DOI: 10.3390/nano14151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Reducing fruit and vegetable waste and maintaining quality has become challenging for everyone. Nanotechnology is a new and intriguing technology that is currently being implemented in fruit and vegetable preservation. Silver nanomaterials provide superior antibacterial qualities, biodegradability, and biocompatibility, which expands their potential applications in fruit and vegetable preservation. Silver nanomaterials include silver nanocomposites and Ag-MOF, of which silver nanocomposites are mainly composed of silver nanoparticles. Notably, not all kinds of silver nanoparticles utilized in the preservation of fruits and vegetables are thoroughly described. Therefore, the synthesis, mechanism of action, and advancements in research on silver nanocomposites for fruit and vegetable preservation were discussed in this study.
Collapse
Affiliation(s)
- Xin Ding
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Huan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanyan Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanguo Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jing Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| |
Collapse
|
6
|
Ali TW, Gul H, Fareed MA, Tabassum S, Mir SR, Afzaal A, Muhammad N, Kaleem M. Biochemical properties of novel Carbon nanodot-stabilized silver nanoparticles enriched calcium hydroxide endodontic sealer. PLoS One 2024; 19:e0303808. [PMID: 38959277 PMCID: PMC11221646 DOI: 10.1371/journal.pone.0303808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024] Open
Abstract
Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.
Collapse
Affiliation(s)
- Tayyaba Waqar Ali
- Department of Dental Materials, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Hashmat Gul
- Department of Dental Materials, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Muhammad Amber Fareed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sana Rubab Mir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqsa Afzaal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Kaleem
- Department of Dental Materials, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| |
Collapse
|
7
|
Zhang Y, Ma H, Li L, Sun C, Yu C, Wang L, Xu D, Song X, Yu R. Dual-Targeted Novel Temozolomide Nanocapsules Encapsulating siPKM2 Inhibit Aerobic Glycolysis to Sensitize Glioblastoma to Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400502. [PMID: 38651254 DOI: 10.1002/adma.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy of glioblastoma (GBM) has not yielded success due to inefficient blood-brain barrier (BBB) penetration and poor glioma tissue accumulation. Aerobic glycolysis, as the main mode of energy supply for GBM, safeguards the rapid growth of GBM while affecting the efficacy of radiotherapy and chemotherapy. Therefore, to effectively inhibit aerobic glycolysis, increase drug delivery efficiency and sensitivity, a novel temozolomide (TMZ) nanocapsule (ApoE-MT/siPKM2 NC) is successfully designed and prepared for the combined delivery of pyruvate kinase M2 siRNA (siPKM2) and TMZ. This drug delivery platform uses siPKM2 as the inner core and methacrylate-TMZ (MT) as the shell component to achieve inhibition of glioma energy metabolism while enhancing the killing effect of TMZ. By modifying apolipoprotein E (ApoE), dual targeting of the BBB and GBM is achieved in a "two birds with one stone" style. The glutathione (GSH) responsive crosslinker containing disulfide bonds ensures "directional blasting" cleavage of the nanocapsules to release MT and siPKM2 in the high GSH environment of glioma cells. In addition, in vivo experiments verify that ApoE-MT/siPKM2 NC has good targeting ability and prolongs the survival of tumor-bearing nude mice. In summary, this drug delivery system provides a new strategy for metabolic therapy sensitization chemotherapy.
Collapse
Affiliation(s)
- Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Hongwei Ma
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Linsen Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chen Sun
- Department of Nephrology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Changshui Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Duo Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xu Song
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
8
|
Liu Y, Zhang X, Yang S, Guo Q, Zhang Y, Wang Z, Xu S, Qiao D, Ma M, Zheng P, Zhu W, Pan Q. Targeting starvation therapy for diabetic bacterial infections with endogenous enzyme-triggered hyaluronan-modified nanozymes in the infection microenvironment. Int J Biol Macromol 2024; 270:132277. [PMID: 38735611 DOI: 10.1016/j.ijbiomac.2024.132277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
The high-glycemic microenvironment of diabetic wounds promotes bacterial proliferation, leading to persistent infections and delayed wound healing. This poses a significant threat to human health, necessitating the development of new nanodrug visualization platforms. In this study, we designed and synthesized cascade nano-systems modified with targeted peptide and hyaluronic acid for diabetic infection therapy. The nano-systems were able to target the site of infection using LL-37, and in the microenvironment of wound infection, the hyaluronic acid shell of the nano-systems was degraded by endogenous hyaluronidase. This precise degradation released a cascade of nano-enzymes on the surface of the bacteria, effectively destroying their cytoskeleton. Additionally, the metals in the nano-enzymes provided a photo-thermal effect, accelerating wound healing. The cascade nano-visualization platform demonstrated excellent bactericidal efficacy in both in vitro antimicrobial assays and in vivo diabetic infection models. In conclusion, this nano-system employs multiple approaches including targeting, enzyme-catalyzed therapy, photothermal therapy, and chemodynamic therapy to kill bacteria and promote healing. The Ag@Pt-Au-LYZ/HA-LL-37 formulation shows great potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Silan Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yuying Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Zishu Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - MeiGui Ma
- School of Foreign Languages, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
9
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
10
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Bai G, Niu C, Liang X, Li L, Wei Z, Chen K, Bohinc K, Guo X. Dextran-based antibacterial hydrogel-derived fluorescent sensors for the visual monitoring of AgNPs. Int J Biol Macromol 2024; 267:131288. [PMID: 38565365 DOI: 10.1016/j.ijbiomac.2024.131288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The unpredictable release behavior of metal nanoparticles/metal ions from metal nanoparticle-loaded hydrogels, without a suitable in situ detection method, is resulting in serious cytotoxicity. To optimize the preparation and design of antibacterial hydrogels for in situ detection of metal nanoparticles, an in-situ detection platform based on the fluorescence signal change caused by the potential surface energy transfer of silver nanoparticles (AgNPs) and carbon dots (CD) through silver mirror reaction and Schiff base reaction was established. The antimicrobial test results show that the composite antimicrobial hydrogel, with lower dosages of AgNPs and CD, exhibited a higher inhibition rate of 99.1 % against E. coli and 99.8 % against S. aureus compared to the single antimicrobial component. This suggests a potential synergistic antimicrobial activity. Furthermore, the fluorescence detection platform was established with a difference of <3 μg between detected values and actual values over a period of 72 h. This demonstrates the excellent in situ detection capability of the hydrogel in antimicrobial-related applications.
Collapse
Affiliation(s)
- Ge Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chunhua Niu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xuexue Liang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Lan Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Zhong Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kai Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Xuhong Guo
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Chemical Engineering and International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
12
|
Nanda A, Pandey P, Rajinikanth PS, Singh N. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation - A review. Int J Biol Macromol 2024; 260:129416. [PMID: 38224810 DOI: 10.1016/j.ijbiomac.2024.129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Zein, a protein-based biopolymer derived from corn, has garnered attention as a promising and eco-friendly choice for packaging food due to its favorable physical attributes. The introduction of electrospinning technology has significantly advanced the production of zein-based nanomaterials. This cutting-edge technique enables the creation of nanofibers with customizable structures, offering high surface area and adjustable mechanical and thermal attributes. Moreover, the electrospinning process allows for integrating various additives, such as antioxidants, antimicrobial agents, and flavoring compounds, into the zein nanofibers, enhancing their functionalities for food preservation. In this comprehensive review, the various electrospinning techniques employed for crafting zein-based nanofibers, and we delve into their enhanced properties. Furthermore, the review illuminates the potential applications of zein nanofibers in active and intelligent packaging materials by incorporating diverse constituents. Altogether, this review highlights the considerable prospects of zein-based nanocomposites in the realm of food packaging, offering sustainable and innovative solutions for food industry.
Collapse
Affiliation(s)
- Alka Nanda
- Department of Food and Nutrition, School of Home Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India; Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, Kuala Lumpur, Malaysia.
| | - Neetu Singh
- Department of Food and Nutrition, School of Home Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
13
|
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers (Basel) 2024; 16:664. [PMID: 38475347 DOI: 10.3390/polym16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
Collapse
Affiliation(s)
- Lenka Piskláková
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristýna Skuhrovcová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Štěpán Vondrovic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
14
|
Zheng X, Guo L, Zhu C, Hu T, Gong X, Wu C, Wang G, Dong H, Hou Y. A robust electrochemical sensor based on AgNWs@MoS 2 for highly sensitive detection of thiabendazole residues in food samples. Food Chem 2024; 433:137304. [PMID: 37683473 DOI: 10.1016/j.foodchem.2023.137304] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Thiabendazole (TBZ), a highly toxic phosphorothioate insecticide commonly used in postharvest fruit management, has the potential to cause detrimental effects on human health as an endocrine disruptor. In this study, an electrochemical sensor was developed to detect TBZ by modifying MoS2 on silver nanowires (Ag NWs@MoS2) and integrating them onto a glassy carbon surface. Cyclic voltammetry revealed that TBZ underwent an irreversible, diffusion-controlled process on Ag NWs@MoS2, leading to a two-fold increase in peak current compared to unmodified MoS2. Square wave voltammetry facilitated TBZ detection, and the sensor exhibited a linear range of 0.05-10 μM with a high coefficient of determination (R2 = 0.9958) and a limit of detection (LOD) of 1.75 nM (signal-to-noise ratio = 3). The sensor's applicability for food safety monitoring was verified through TBZ analysis in pear and apple samples, achieving recoveries of 95.5-103.6% with RSDs in the range of 1.98-3.25%.
Collapse
Affiliation(s)
- Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 436800, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Lei Guo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 436800, China
| | - Chuanhui Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 436800, China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 436800, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Xinghou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 436800, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 436800, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Guangjin Wang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 52800, China.
| | - Hao Dong
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| |
Collapse
|
15
|
Sun X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv Healthc Mater 2024; 13:e2301924. [PMID: 37633309 DOI: 10.1002/adhm.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Indexed: 08/28/2023]
Abstract
With the discovery of the intrinsic enzyme-like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi-enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.
Collapse
Affiliation(s)
- Xueheng Sun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Zhaofei Wang
- Department of Orthopaedic Surgery, Shanghai ZhongYe Hospital, Genertec Universal Medical Group, Shanghai, 200941, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinwu Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
16
|
Stan D, Ruta LL, Bocancia-Mateescu LA, Mirica AC, Stan D, Micutz M, Brincoveanu O, Enciu AM, Codrici E, Popescu ID, Popa ML, Rotaru F, Tanase C. Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles. Pharmaceutics 2023; 15:2696. [PMID: 38140037 PMCID: PMC10747233 DOI: 10.3390/pharmaceutics15122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lavinia Liliana Ruta
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania
| | | | - Andreea-Cristina Mirica
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Dana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Marin Micutz
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania;
- Research Institute, The University of Bucharest, 060102 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Maria Linda Popa
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flaviana Rotaru
- Polytechnic University of Bucharest, Splaiul Independenței 54, 030167 Bucharest, Romania;
- Rohealth—Health and Bioeconomy Cluster, Calea Griviţei 6-8, 010731 Bucharest, Romania
- Frontier Management Consulting, Calea Griviţei6-8, 010731 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Clinical Biochemistry, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
17
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
18
|
Nakhaeitazreji S, Hadi N, Taghizadeh SM, Moradi N, Kakian F, Hashemizadeh Z, Berenjian A, Ebrahiminezhad A. Green Synthesized Iron-Coated Silver Nanoparticles: Economic Bimetallic Nanoparticles Potential Against Methicillin-Resistance Staphylococcus aureus. Mol Biotechnol 2023; 65:1704-1714. [PMID: 36757629 DOI: 10.1007/s12033-022-00650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023]
Abstract
Iron coating was introduced as one of the novel techniques to improve physicochemical and biological properties of silver nanoparticles (AgNPs). In the current experiment, impact of iron coating on the antimicrobial potency of AgNPs was investigated against methicillin-resistance Staphylococcus aureus (MRSA). To obtain more accurate data about the antimicrobial potency of examined nanostructures, the experiment was done on the 10 isolates of MRSA which were isolated from skin lesions. AgNPs and iron-coated AgNPs (Fe@AgNPs) were fabricated based on a green one-pot reaction procedure. Minimal inhibitory concentration (MIC) of Fe@AgNPs was not significantly different with MIC of AgNPs against eight out of 10 examined MRSA isolates. Also, by iron coating a reduction in the minimal inhibitory concentration (MIC) of AgNPs was observed against two MRSA isolates. The average MIC of AgNPs against 10 MRSA isolates was calculated to be 2.16 ± 0.382 mg/mL and this value was reduced to 1.70 ± 0.638 mg/mL for Fe@AgNPs. However, this difference was not considered significant statistically (P-value > 0.05). From productivity point of view, it was found that iron coating would improve the productivity of the synthesis reaction more than fivefold. Productivity of AgNPs was calculated to be 1.02 ± 0.07 g/L, meanwhile this value was 5.25 ± 0.05 g/L for Fe@AgNPs. Iron coating may provide another economic benefit to reduce final price of AgNPs. It is obvious that the price of a particular nanostructure made of silver and iron is significantly lower than that of pure silver. These findings can be considered for the fabrication of economic and potent antimicrobial nanoparticles.
Collapse
Affiliation(s)
- Sedigheh Nakhaeitazreji
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Nahid Moradi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Kakian
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
- Department of Agricultural and Biological Engineering, 221 Agricultural Engineering Building, Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
19
|
Araya-Hermosilla R, Martínez J, Loyola CZ, Ramírez S, Salazar S, Henry CS, Lavín R, Silva N. Fast and easy synthesis of silver, copper, and bimetallic nanoparticles on cellulose paper assisted by ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 99:106545. [PMID: 37572428 PMCID: PMC10448225 DOI: 10.1016/j.ultsonch.2023.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
This work focuses on a systematic method to produce Ag, Cu, and Ag/Cu metallic nanoparticles (MNPs) in situ assisted with ultrasound on cellulose paper. By tuning the concentration of AgNO3 and CuSO4 salt precursors and ultrasound time, combined with a fixed concentration of ascorbic acid (AA) as a reducing agent, it was possible to control the size, morphology, and polydispersity of the resulting MNPs on cellulose papers. Notably, high yield and low polydispersity of MNPs and bimetallic nanoparticles are achieved by increasing the sonication time on paper samples pre-treated with salt precursors before reduction with AA. Moreover, mechanical analysis on paper samples presenting well-dispersed and distributed MNPs showed slightly decreasing values of Young's modulus compared to neat papers. The strain at break is substantially improved in papers containing solely Ag or Cu MNPs. The latter suggests that the elastic/plastic transition and deformation of papers are tuned by cellulose and MNPs interfacial interaction, as indicated by mechanical analysis. The proposed method provides insights into each factor affecting the sonochemistry in situ synthesis of MNPs on cellulose papers. In addition, it offers a straightforward alternative to scale up the production of MNPs on paper, ensuring an eco-friendly method.
Collapse
Affiliation(s)
- Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile.
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo. Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| | - César Zúñiga Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile.
| | - Sara Ramírez
- Centro de estudios e investigación en salud y sociedad (CEISS), Facultad de Ciencias Médicas, Universidad Bernardo O'Higging, General Gana 1702 Santiago, Chile.
| | - Sebastián Salazar
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Roberto Lavín
- Instituto de Ciencias Básicas, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Ejército 441, Santiago 8370191, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170124, Chile.
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| |
Collapse
|
20
|
Garavand F, Nooshkam M, Khodaei D, Yousefi S, Cacciotti I, Ghasemlou M. Recent advances in qualitative and quantitative characterization of nanocellulose-reinforced nanocomposites: A review. Adv Colloid Interface Sci 2023; 318:102961. [PMID: 37515865 DOI: 10.1016/j.cis.2023.102961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/31/2023]
Abstract
Nanocellulose has received immense consideration owing to its valuable inherent traits and impressive physicochemical properties such as biocompatibility, thermal stability, non-toxicity, and tunable surface chemistry. These features have inspired researchers to deploy nanocellulose as nanoscale reinforcement materials for bio-based polymers. A simple yet efficient characterization method is often required to gain insights into the effectiveness of various types of nanocellulose. Despite a decade of continuous research and booming growth in scientific publications, nanocellulose research lacks a measuring tool that can characterize its features with acceptable speed and reliability. Implementing reliable characterization techniques is critical to monitor the specifications of nanocellulose alone or in the final product. Many techniques have been developed aiming to measure the nano-reinforcement mechanisms of nanocellulose in polymer composites. This review gives a full account of the scientific underpinnings of techniques that can characterize the shape and arrangement of nanocellulose. This review aims to deliver consolidated details on the properties and characteristics of nanocellulose in biopolymer composite materials to improve various structural, mechanical, barrier and thermal properties. We also present a comprehensive description of the safety features of nanocellulose before and after being loaded within biopolymeric matrices.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Diako Khodaei
- School of Food Science and Environmental Health, Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy.
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
21
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym 2023; 309:120666. [PMID: 36906369 DOI: 10.1016/j.carbpol.2023.120666] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The perishability nature of harvested fruits and vegetables, along with the effect of environmental factors, storage conditions, and transportation, reduce the products' quality and shelf-life. Considerable efforts have been allocated to alternate conventional coatings based on new edible biopolymers for packaging. Chitosan is an attractive alternative to synthetic plastic polymers due to its biodegradability, antimicrobial activity, and film-forming properties. However, its conservative properties can be improved by adding active compounds, limiting microbial agents' growth and biochemical and physical damages, and enhancing the stored products' quality, shelf-life, and consumer acceptability. Most of the research on chitosan-based coatings focuses on antimicrobial or antioxidant properties. Along with the advancement of polymer science and nanotechnology, novel chitosan blends with multiple functionalities are required and should be fabricated using numerous strategies, especially for application during storage. This review discusses recent developments in using chitosan as a matrix to fabricate bioactive edible coatings and their positive impacts on increasing the quality and shelf-life of fruits and vegetables.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
22
|
Hosseini SF, Mousavi Z, McClements DJ. Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chem 2023; 424:136404. [PMID: 37257280 DOI: 10.1016/j.foodchem.2023.136404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Recently, the design and fabrication of bio-inspired superhydrophobic materials using natural lipid additives such as beeswax (BW) have aroused great attention in food packaging as they can minimize the transfer rate of water molecules and have effective moisture barriers. This review discusses the recent progress in the design and fabrication of BW-containing edible films/coatings (e.g., emulsion and blend films, bilayer materials, bionanocomposites, and antimicrobial materials) and their potential applications on the postharvest life and quality attributes of various fruits. Incorporation of BW into polysaccharides- and proteins-based emulsion films effectively improved their hydrophobicity, water vapor, and UV/visible light barrier properties, as well as the film tensile properties. The addition of nanoparticles to BW-based polymeric matrices often results in improved physico-mechanical properties. BW coatings have been also applied to prolong the shelf-life of various climacteric fruits, however, optimization of the wax concentration can be further investigated to develop targeted food storage systems.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Zahra Mousavi
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
23
|
Oe T, Dechojarassri D, Kakinoki S, Kawasaki H, Furuike T, Tamura H. Microwave-Assisted Incorporation of AgNP into Chitosan-Alginate Hydrogels for Antimicrobial Applications. J Funct Biomater 2023; 14:jfb14040199. [PMID: 37103289 PMCID: PMC10141964 DOI: 10.3390/jfb14040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic acid, the microwave-assisted method produced uniform and stable SA-AgNPs with an optimal reaction time of 8 min. Transmission electron microscopy (TEM) confirmed the formation of SA-AgNPs with an average particle size of 9 ± 2 nm. Moreover, UV-vis spectroscopy confirmed the optimal conditions for SA-AgNP synthesis (0.5% SA, 50 mM AgNO3, and pH 9 at 80 °C). Fourier transform infrared (FTIR) spectroscopy confirmed that the -COO- group of SA electrostatically interacted with either the Ag+ or -NH3+ of CS. Adding glucono-δ-lactone (GDL) to the mixture of SA-AgNPs/CS resulted in a low pH (below the pKa of CS). An SA-AgNPs/CS gel was formed successfully and retained its shape. This hydrogel exhibited 25 ± 2 mm and 21 ± 1 mm inhibition zones against E. coli and B. subtilis and showed low cytotoxicity. Additionally, the SA-AgNP/CS gel showed higher mechanical strength than SA/CS gels, possibly due to the higher crosslink density. In this work, a novel antibacterial hydrogel system was synthesized via 8 min of microwave heating.
Collapse
Affiliation(s)
- Takuma Oe
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Duangkamol Dechojarassri
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Sachiro Kakinoki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
24
|
Production of Silver Nano-Inks and Surface Coatings for Anti-Microbial Food Packaging and Its Ecological Impact. Int J Mol Sci 2023; 24:ijms24065341. [PMID: 36982412 PMCID: PMC10048909 DOI: 10.3390/ijms24065341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Food spoilage is an ongoing global issue that contributes to rising carbon dioxide emissions and increased demand for food processing. This work developed anti-bacterial coatings utilising inkjet printing of silver nano-inks onto food-grade polymer packaging, with the potential to enhance food safety and reduce food spoilage. Silver nano-inks were synthesised via laser ablation synthesis in solution (LaSiS) and ultrasound pyrolysis (USP). The silver nanoparticles (AgNPs) produced using LaSiS and USP were characterised using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectrophotometry and dynamic light scattering (DLS) analysis. The laser ablation technique, operated under recirculation mode, produced nanoparticles with a small size distribution with an average diameter ranging from 7–30 nm. Silver nano-ink was synthesised by blending isopropanol with nanoparticles dispersed in deionised water. The silver nano-inks were printed on plasma-cleaned cyclo-olefin polymer. Irrespective of the production methods, all silver nanoparticles exhibited strong antibacterial activity against E. coli with a zone of inhibition exceeding 6 mm. Furthermore, silver nano-inks printed cyclo-olefin polymer reduced the bacterial cell population from 1235 (±45) × 106 cell/mL to 960 (±110) × 106 cell/mL. The bactericidal performance of silver-coated polymer was comparable to that of the penicillin-coated polymer, wherein a reduction in bacterial population from 1235 (±45) × 106 cell/mL to 830 (±70) × 106 cell/mL was observed. Finally, the ecotoxicity of the silver nano-ink printed cyclo-olefin polymer was tested with daphniids, a species of water flea, to simulate the release of coated packaging into a freshwater environment.
Collapse
|
25
|
Ye L, He X, Obeng E, Wang D, Zheng D, Shen T, Shen J, Hu R, Deng H. The CuO and AgO co-modified ZnO nanocomposites for promoting wound healing in Staphylococcus aureus infection. Mater Today Bio 2023; 18:100552. [PMID: 36819756 PMCID: PMC9936377 DOI: 10.1016/j.mtbio.2023.100552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Bacterial has become a common pathogen of humans owing to their drug-resistant effects and evasion of the host immune system, with their ability to form biofilm and induce severe infections, a condition which has become a primary public health concern globally. Herein, we report on CuO@AgO/ZnO NPs antibacterial activity enhanced by near-infrared (NIR) light which was effective in the elimination of Staphylococcus aureus and the Pseudomonas aeruginosa. The CuO@AgO/ZnO NPs under NIR significantly eradicated S. aureus and its biofilm and P. aeruginosa in vitro, and subsequently exhibited such phenomenon in vivo, eliminating bacteria and healing wound. This demonstrated the combined intrinsic antibacterial potency of the Cu and Ag components of the CuO@AgO/ZnO NPs was enhanced tremendously to achieve such outcomes in vitro and in vivo. Considering the above advantages and facile preparation methods, the CuO@AgO/ZnO NPs synthesized in this work may prove as an important antibacterial agent in bacterial-related infection therapeutics and for biomedical-related purposes.
Collapse
Affiliation(s)
- Lisong Ye
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Danyan Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Dongyang Zheng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianxi Shen
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China,Corresponding author. School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Corresponding author.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Corresponding author.
| |
Collapse
|
26
|
Bio-nanocomposites as food packaging materials; the main production techniques and analytical parameters. Adv Colloid Interface Sci 2022; 310:102806. [DOI: 10.1016/j.cis.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
27
|
Almutairi HH, Parveen N, Ansari SA. Hydrothermal Synthesis of Multifunctional Bimetallic Ag-CuO Nanohybrids and Their Antimicrobial, Antibiofilm and Antiproliferative Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4167. [PMID: 36500789 PMCID: PMC9737815 DOI: 10.3390/nano12234167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapidly growing global problem of infectious pathogens acquiring resistance to conventional antibiotics is an instigating reason for researchers to continue the search for functional as well as broad-spectrum antimicrobials. Hence, we aimed in this study to synthesis silver-copper oxide (Ag-CuO) nanohybrids as a function of Ag concentration (0.05, 0.1, 0.3 and 0.5 g) via the one-step hydrothermal method. The bimetallic Ag-CuO nanohybrids Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 were characterized for their physico-chemical properties. The SEM results showed pleomorphic Ag-CuO crystals; however, the majority of the particles were found in spherical shape. TEM results showed that the Ag-CuO nanohybrids in formulations Ag-C-1 and Ag-C-3 were in the size range of 20-35 nm. Strong signals of Ag, Cu and O in the EDX spectra revealed that the as-synthesized nanostructures are bimetallic Ag-CuO nanohybrids. The obtained Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 nanohybrids have shown their MICs and MBCs against E. coli and C. albicans in the range of 4-12 mg/mL and 2-24 mg/mL, respectively. Furthermore, dose-dependent toxicity and apoptosis process stimulation in the cultured human colon cancer HCT-116 cells have proven the Ag-CuO nanohybrids as promising antiproliferative agents against mammalian cancer.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, Al Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia
| |
Collapse
|
28
|
Tong X, Liao W, Fu Y, Qian M, Dai H, Mei L, Zhai Y, Chen T, Yang L, Yang Q. Ag‐doped CoP Hollow Nanoboxes as Efficient Water Splitting Electrocatalysts and Antibacterial Materials. ChemistrySelect 2022. [DOI: 10.1002/slct.202202343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianfeng Tong
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Wenhao Liao
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Yingyan Fu
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Min Qian
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Haojiang Dai
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Lu Mei
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Yali Zhai
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Tianyun Chen
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Liu Yang
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Qinghua Yang
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
| |
Collapse
|
29
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
30
|
Garavand F, Khodaei D, Mahmud N, Islam J, Khan I, Jafarzadeh S, Tahergorabi R, Cacciotti I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:3639-3659. [PMID: 36222362 DOI: 10.1080/10408398.2022.2133080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biopolymers are important due to their exceptional functional and barrier properties and also their non-toxicity and eco-friendly nature for various food, biomedical, and pharmaceutical applications. However, biopolymers usually need reinforcement strategies to address their poor mechanical, thermal, and physical properties as well as processability aspects. Several natural nanoparticles have been proposed as reinforcing agents for biopolymeric food packaging materials. Among them, zein nanoparticles (ZNPs) have attracted a lot of interest, being an environmentally friendly material. The purpose of the present review paper is to provide a comprehensive overview of the ZNPs-loaded nanocomposites for food packaging applications, starting from the synthesis, characteristics and properties of ZNPs, to the physicochemical properties of the ZNPs-loaded nanocomposites, in terms of morphology, permeability, solubility, optical features, hydrophobic/hydrophilic behavior, structural characteristics, thermal features, and mechanical attributes. Finally, at the end of this review, some considerations about the safety issues and gastrointestinal fate of ZNPs, as well as the use of ZNPs-based nanocomposites as food packaging, are reported, taking into account that, despite the enormous benefits, nanotechnology also presents some risks associated to the use of nanometric materials.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Co. Cork, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Atlantic Technological University, Galway, Ireland
| | - Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Injeela Khan
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy
| |
Collapse
|
31
|
Khan SA, Jain M, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT, Shetti NP, Aminabhavi TM. Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115675. [PMID: 35834856 DOI: 10.1016/j.jenvman.2022.115675] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increasing demand of pure and accessible water and improper disposal of waste into the existing water resources are the major challenges for sustainable development. Nanoscale technology is an effective approach that is increasingly being applied to water remediation. Compared to conventional water treatment processes, silver nanotechnology has been demonstrated to have advantages due to its anti-microbial and oligodynamic (biocidal) properties. This review is focused on environmentally friendly green syntheses of silver nanoparticles (AgNPs) and their applications for the disinfection and microbial control of wastewater. A bibliometric keyword analysis is conducted to unveil important keywords and topics in the utilisation of AgNPs for water treatment applications. The effectiveness of AgNPs, as both free nanoparticles (NPs) or as supported NPs (nanocomposites), to deal with noxious pollutants like complex dyes, heavy metals as well as emerging pollutants of concern is also discussed. This knowledge dataset will be helpful for researchers to identify and utilise the distinctive features of AgNPs and will hopefully stimulate the development of novel solutions to improve wastewater treatment. This review will also help researchers to prepare effective water management strategies using nano silver-based systems manufactured using green chemistry.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| |
Collapse
|
32
|
Controllable Deposition of Ag Nanoparticles on Various Substrates via Interfacial Polyphenol Reduction Strategy for Antibacterial Application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Effect of Bacterial Cellulose Plasma Treatment on the Biological Activity of Ag Nanoparticles Deposited Using Magnetron Deposition. Polymers (Basel) 2022; 14:polym14183907. [PMID: 36146052 PMCID: PMC9505774 DOI: 10.3390/polym14183907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023] Open
Abstract
New functional medical materials with antibacterial activity based on biocompatible bacterial cellulose (BC) and Ag nanoparticles (Ag NPs) were obtained. Bacterial cellulose films were prepared by stationary liquid-phase cultivation of the Gluconacetobacter hansenii strain GH-1/2008 in Hestrin-Schramm medium with glucose as a carbon source. To functionalize the surface and immobilize Ag NPs deposited by magnetron sputtering, BC films were treated with low-pressure oxygen-nitrogen plasma. The composition and structure of the nanomaterials were studied using transmission (TEM) and scanning (SEM) electron microscopy and X-ray photoelectron spectroscopy (XPS). Using electron microscopy, it was shown that on the surface of the fibrils that make up the network of bacterial cellulose, Ag particles are stabilized in the form of aggregates 5-35 nm in size. The XPS C 1s spectra show that after the deposition of Ag NPs, the relative intensities of the C-OH and O-C-O bonds are significantly reduced. This may indicate the destruction of BC oxypyran rings and the oxidation of alcohol groups. In the Ag 3d5/2 spectrum, two states at 368.4 and 369.7 eV with relative intensities of 0.86 and 0.14 are distinguished, which are assigned to Ag0 state and Ag acetate, respectively. Nanocomposites based on plasma-treated BC and Ag nanoparticles deposited by magnetron sputtering (BCP-Ag) exhibited antimicrobial activity against Aspergillus niger, S. aureus and Bacillus subtilis.
Collapse
|
34
|
Ma L, Qiu S, Chen K, Tang J, Liu J, Su W, Liu X, Zeng X. Synergistic Antibacterial Effect from Silver Nanoparticles and Anticancer Activity Against Human Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbially synthesized silver nanoparticles (AgNPs) with high stability and bioactivity have recently shown considerable promise in biomedical research and application. In this study, AgNPs prepared by Penicillium aculeatum Su1 exhibited effective antibacterial action by inhibiting
bacterial growth and destroying cellular structure. Meanwhile, their assessed increased in fold area (IFA) through the Kirby-Bauer disc diffusion method proved that, the AgNPs showed synergistic antibacterial effect on different bacteria when combined with antibiotics, especially for drug-resistant
P. aeruginosa (4.58∼6.36-fold) and B. subtilis (4.2-fold). Moreover, the CCK-8 assay and flow cytometric analysis were used to evaluate the cytotoxic effects of AgNPs on normal cells (HBE) and lung cancer cells (HTB-182), which confirmed that they presented higher biocompatibility
towards HBE cells when compared with silver ions, but high cytotoxicity in a dosedependent manner with an IC50 values of 35.00 μg/mL towards HTB-182 cells by raising intracellular reactive oxygen species (ROS) levels, hindering cell proliferation, and ultimately leading
to cell cycle arrest and cell apoptosis. These results demonstrate that, the biosynthesized AgNPs could be a potential candidate for future therapies of infection caused by drug-resistant bacteria, as well as lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Liang Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Siyu Qiu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Kang Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Liu
- School of Geosciences and Info-Physics, Central South University, Changsha, 410083, Hunan, PR China
| | - Wei Su
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xiaoxi Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| |
Collapse
|
35
|
Zhang Y, Yang Z, Ni J, Ma Y, Xiong H, Jian W. Toxicity and modulation of silver nanoparticles synthesized using abalone viscera hydrolysates on bacterial community in aquatic environment. Front Microbiol 2022; 13:968650. [PMID: 36110292 PMCID: PMC9468672 DOI: 10.3389/fmicb.2022.968650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharide decorated silver nanoparticles (AgNPs) are a new type of antibacterial agent in aquaculture, but their effects on the bacterial community structure in aquaculture water are still unknown. In this study, the primary hydrolysate from abalone (Haliotis discus hannai) viscera (AVH) was used to biosynthesize AVH-AgNPs by in situ reduction, and the crystallinity nature, size, morphology, and chemical composition were analyzed by high-resolution characterization techniques such as Ultraviolet–visible spectroscopy (UV–vis), X-rays diffraction (XRD), Transmission Electron Microscope (TEM), Dynamic light scattering (DLS), Zeta potential, inductively coupled plasma-optical emission spectrometry (ICP-OES) and Turbiscan stability index (TSI) values. Furthermore, the acute toxicity of AVH-AgNPs to zebrafish (Danio rerio) and their effects on bacterial community structure in fish culture water at low concentrations were studied. The results showed that the spherical AVH-AgNPs with an average diameter of 54.57 ± 12.96 nm had good stability, low toxicity, and good in vitro antibacterial activity. Within the experimental concentration range, all AVH-AgNPs treatments had decreased the bacterial diversity in zebrafish culture water to varying degrees. The bacteria with significantly decreased abundances were pathogenic or potential pathogenic, such as Aeromonas veronii, Flavobacterium columnare, and genera Flectobacillus and Bosea. The abundance of Haliscomenobacter sp. JS224, which might cause sludge swelling, also decreased significantly. On the other hand, the relative abundance of some bacterial taxa could remove xenobiotics (e.g., Runella defluvii and Phenylobacterium), control water eutrophication (Sediminibacterium), and reduce toxic algae proliferation (Candidatus Intestinusbacter nucleariae and Candidatus Finniella), increased significantly. Thus, the application of AVH-AgNPs in aquaculture water at low concentrations is relatively safe and has positive significance for improving the aquaculture environment. Also, AVH-AgNPs have good prospects in aquaculture.
Collapse
Affiliation(s)
- Yue Zhang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Zhuan Yang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Jing Ni
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Ying Ma
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
- *Correspondence: Ying Ma,
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Hejian Xiong,
| | - Wenjie Jian
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Wenjie Jian,
| |
Collapse
|
36
|
Functional nanomaterials and their potentials in antibacterial treatment of dental caries. Colloids Surf B Biointerfaces 2022; 218:112761. [DOI: 10.1016/j.colsurfb.2022.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
37
|
Wu JH, Hu TG, Wang H, Zong MH, Wu H, Wen P. Electrospinning of PLA Nanofibers: Recent Advances and Its Potential Application for Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8207-8221. [PMID: 35775601 DOI: 10.1021/acs.jafc.2c02611] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(lactic acid), also abbreviated as PLA, is a promising biopolymer for food packaging owing to its environmental-friendly characteristic and desirable physical properties. Electrospinning technology makes the production of PLA-based nanomaterials available with expected structures and enhanced barrier, mechanical, and thermal properties; especially, the facile process produces a high encapsulation efficiency and controlled release of bioactive agents for the purpose of extending the shelf life and promoting the quality of foodstuffs. In this study, different types of electrospinning techniques used for the preparation of PLA-based nanofibers are summarized, and the enhanced properties of which are also described. Moreover, its application in active and intelligent packaging materials by introducing different components into nanofibers is highlighted. In all, the review establishes the promising prospects of PLA-based nanocomposites for food packaging application.
Collapse
Affiliation(s)
- Jia-Hui Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Teng-Gen Hu
- Sericultural&Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510640, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
Mo F, Zhou Q, He Y. Nano-Ag: Environmental applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154644. [PMID: 35307428 DOI: 10.1016/j.scitotenv.2022.154644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are promising bactericidal agents and plasmonic NPs for environmental applications, owing to their various favorable properties. For example, AgNPs enables reactive oxygen species (ROS) generation, surface plasmon resonance (SPR), and specific reaction selectivities. In fact, AgNPs-based materials and their antimicrobial, optical, and electrical effects are at the forefront of nanotechnology, having applications in environmental disinfection, elimination of environmental pollutants, environmental detection, and energy conversions. This review aims to comprehensively summarize the advanced applications and fundamental mechanisms to provide the guidelines for future work in the field of AgNPs implanted functional materials. The state-of-art terms including (photo)(electro)catalytic reactions, heterojunction formation, the generation and attacking of ROS, genetic damage, hot electron generation and transfer, localized surface plasmon resonance (LSPR), plasmon resonance energy transfer (PERT), near field electromagnetic enhancement, structure-function relationship, and reaction selectivities have been covered in this review. It is expected that this review may provide insights into the rational development in the next generation of AgNPs-based nanomaterials with excellent performances.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuqing He
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
39
|
Razmjoo F, Sadeghi E, Alizadeh Sani M, Noroozi R, Azizi‐lalabadi M. Fabrication and application of functional active packaging material based on carbohydrate biopolymers formulated with
Lemon verbena
/
Ferulago angulata
extracts for preservation of raw chicken meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fatemeh Razmjoo
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Razieh Noroozi
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Azizi‐lalabadi
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
40
|
Wang K, Ma Y, Sun B, Yang Y, Zhang Y, Zhu L. Transport of silver nanoparticles coated with polyvinylpyrrolidone of various molecular sizes in porous media: Interplay of polymeric coatings and chemically heterogeneous surfaces. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128247. [PMID: 35065312 DOI: 10.1016/j.jhazmat.2022.128247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are usually capped with stabilizing agents to protect their activities and improve stability. Polyvinylpyrrolidone (PVP) is one of the most used capping agents of AgNPs, and may affect the transport of AgNPs in porous media. The transport and retention of AgNPs capped with PVPs of different molecular weights (PVP10-AgNP, PVP40-AgNP and PVP360-AgNP) in uncoated, and humic acid (HA)-, kaolinite (KL)- and ferrihydrite (FH)-coated sand porous media were investigated. Among the three AgNPs, PVP360-AgNP exhibited the highest mobility and eluted from all types of porous media. This is because PVPs of higher molecular weight provided stronger steric effect and electrostatic repulsive forces among PVP-AgNPs, inducing stronger blocking and shadow effects. The transport of the PVP-AgNPs increased in the HA-Sand columns, while decreased in the KL- and FH-Sand columns, especially for PVP10-AgNP and PVP40-AgNP. The simulation results using one-site kinetic model indicated that HA-Sand reduced the maximum retention capacity (Smax), while KL- and FH-Sand increased the Smax as well as the first-order attachment rate coefficients (katt), particularly at high ionic strength. The results shed light on the interplay of the capping agents of AgNPs and the surface heterogeneity on the transport of AgNPs in porous media.
Collapse
Affiliation(s)
- Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yi Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
41
|
Garavand F, Jafarzadeh S, Cacciotti I, Vahedikia N, Sarlak Z, Tarhan Ö, Yousefi S, Rouhi M, Castro-Muñoz R, Jafari SM. Different strategies to reinforce the milk protein-based packaging composites. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
43
|
|
44
|
Starch-Polyvinyl Alcohol-Based Films Reinforced with Chitosan Nanoparticles: Physical, Mechanical, Structural, Thermal and Antimicrobial Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main purpose of the current study was to propose innovative composite films based on a corn starch/polyvinyl alcohol (PVA) blend (starch:PVA 40:60) and loaded with 3 different levels of chitosan nanoparticles (CNPs) (1, 3, and 5% w/v) to strengthen its physical, mechanical, structural, thermal and antimicrobial attributes. The synthesized CNPs were spherical with a particle size of ca. 100 nm as demonstrated by scanning electron microscopy (SEM) micrographs and dynamic light scattering tests. The results showed that the CNPs incorporation within the starch-PVA 40:60 films promoted a uniform surface without any considerable pores. These films were characterized by a homogeneous CNP distribution within the polymer matrix, causing a significant decrease in water vapor permeability (WVP) (e.g., from 0.41 for the control film to 0.28 g·mm/kPa·h·m2 for the composite film loaded with 5% CNPs). The film solubility, transparency, glass transition and melting temperatures, and elongation at break were also reduced by increasing the CNP content from 1% to 5%, while total color and tensile strength parameters increased. The antibacterial effects of CNPs were more effective against Gram-positive bacteria (Staphylococcus aureus) than Gram-negative bacteria (Escherichia coli and Salmonella typhimurium). It can be concluded that the addition of CNPs to the starch-PVA matrix could improve its functional and technological attributes for food packaging applications.
Collapse
|
45
|
Chausov DN, Smirnova VV, Burmistrov DE, Sarimov RM, Kurilov AD, Astashev ME, Uvarov OV, Dubinin MV, Kozlov VA, Vedunova MV, Rebezov MB, Semenova AA, Lisitsyn AB, Gudkov SV. Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles. MATERIALS 2022; 15:ma15020527. [PMID: 35057245 PMCID: PMC8780406 DOI: 10.3390/ma15020527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 01/16/2023]
Abstract
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | | | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
46
|
Yan M, Shi J, Tang S, Zhou G, Zeng J, Zhang Y, Zhang H, Yu Y, Guo J. The construction of a seaweed-based antibacterial membrane loaded with nano-silver based on the formation of a dynamic united dual network structure. NEW J CHEM 2022. [DOI: 10.1039/d1nj04122c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A nano-silver based antibacterial membrane was obtained through a united dual network structure.
Collapse
Affiliation(s)
- Ming Yan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Junfeng Shi
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Song Tang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guohang Zhou
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiexiang Zeng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yixin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hong Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Yu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
47
|
Zhang P, Li J, Yang M, Huang L, Bu F, Xie Z, Li G, Wang X. Inserting Menthoxytriazine into Poly(ethylene terephthalate) for Inhibiting Microbial Adhesion. ACS Biomater Sci Eng 2021; 8:570-578. [PMID: 34968021 DOI: 10.1021/acsbiomaterials.1c01448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antimicrobial modification of poly(ethylene terephthalate) (PET) is effective in preventing the adhesion and growth of microorganisms on its surface. However, few methods are available to modify PET directly at its backbone to impart the antimicrobial effect. Herein, menthoxytriazine-modified PET (PMETM) based on the stereochemical antimicrobial strategy was reported. This novel PET was prepared by inserting menthoxytriazine into the PET backbone. The antibacterial adhesion test and the antifungal landing test were employed to confirm the antiadhesion ability of PMETM. PMETM could effectively inhibit the adhesion of bacteria, with inhibition ratios of 99.9 and 99.7% against Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), respectively. In addition, PMETM exhibited excellent resistance to Aspergillus niger (fungal) contamination for more than 30 days. Cytotoxicity assays indicated that PMETM was a noncytotoxic material. These results suggested that the insertion of menthoxytriazine in the PET backbone was a promising strategy to confer antimicrobial properties to PET.
Collapse
Affiliation(s)
- Pengfei Zhang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiyu Li
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mei Yang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lifei Huang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fanqiang Bu
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zixu Xie
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
48
|
Perera KY, Jaiswal S, Jaiswal AK. A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging. Food Chem 2021; 376:131912. [PMID: 34971895 DOI: 10.1016/j.foodchem.2021.131912] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/21/2023]
Abstract
With an increasing demand for a novel, eco-friendly, high-performance packaging material "bio-nanocomposites" has attracted great attention in recent years. The review article aims at to evaluating recent innovation in bio-nanocomposites for food packaging applications. The current trends and research over the last three years of the various bio-nanocomposites including inorganic, organic nanomaterials, and nanohybrids, which are suitable as food packaging materials due to their advanced properties such as high mechanical, thermal, barrier, antimicrobial, and antioxidant are described in detail. In addition, the legislation, migration studies, and SWOT analysis on bio-nanocomposite film have been discussed. It has been observed that the multifunctional properties of the bio-nanocomposite materials, has the potential to improve the quality and safety of the food together with no /or fewer negative impact on the environment. However, more studies need to be performed on bio-nanocomposite materials to determine the migration levels and formulate relevant legislation.
Collapse
Affiliation(s)
- Kalpani Y Perera
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
49
|
Evaluation of Physical, Mechanical and Antibacterial Properties of Pinto Bean Starch-Polyvinyl Alcohol Biodegradable Films Reinforced with Cinnamon Essential Oil. Polymers (Basel) 2021; 13:polym13162778. [PMID: 34451316 PMCID: PMC8399529 DOI: 10.3390/polym13162778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
In the present study, various blended films from polyvinyl alcohol (PVA) and pinto bean starch (PBS) were prepared and the selected film was used to fabricate an antimicrobial packaging film. Different essential oils (EOs) were also exposed to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests to find the most efficient EO against a range of microorganisms. From the primary studies, the PVA:PBS (80:20) and cinnamon essential oil (CEO) were chosen. Afterward, the blend composite film reinforced by 1, 2, and 3% CEO and several, physical, mechanical, structural, and antimicrobial attributes were scrutinized. The results showed a significant modification of the barrier and mechanical properties of the selected blended films as a result of CEO addition. Scanning electron micrographs confirmed the incorporation and distribution of CEO within the film matrix. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra indicated the interaction of CEO and the PVA-PBS composite. The antibacterial of the tested bacteria showed a significant increase by increasing the CEO concentration within the control film. CEO-loaded films were more effective in controlling Gram-positive bacteria compared to Gram-negative bacteria. It can be concluded that PVA-PBS-CEO films are promising candidates to produce biodegradable functional films for food and biomedical applications.
Collapse
|