1
|
Dey N, Bhattacharjee S. Comparative transcriptomic data confirm the findings of dehydration stress-induced redox biology of indigenous aromatic rice cultivars. 3 Biotech 2023; 13:392. [PMID: 37953831 PMCID: PMC10635969 DOI: 10.1007/s13205-023-03829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The present work compares the transcriptome data sets of post-imbibitional dehydration stress-raised seedlings of two contrasting indigenous aromatic rice cultivars (Oryza sativa L., Cultivars Jamainadu and Badshabhog) for unfolding genetic regulation of dehydration stress. The result of RNA-seq analysis in Illumina platform in general revealed significant cultivar-specific expression of genes under dehydration stress that substantiate the data of redox metabolic fingerprints (assessed in terms of differential efficacy of ascorbate-glutathione pathway, ROS-antioxidant interaction dynamics and sensitive biomarkers of oxidative stress). Both the cultivars showed a diverse global transcriptomic response under water-deficit condition. Transcripts selected for heatmap generation with proper annotation revealed genes that are significantly expressed and mainly involved in redox functions, signaling, membrane trafficking, replication, protein synthesis, etc. Gene ontology (GO) analysis proposed that dehydration stress in the drought-tolerant cultivar Badshabhog was attributable to the enhanced expression of genes associated with carbon dioxide-concentrating mechanism, peroxysomal biogenesis, protein modification, protein synthesis, mitochondrial electron transport chain functioning, intercellular protein transport, histone demethylation associated with developmental process, regulation of apoptosis, etc. The redox genes that got significantly over-expressed in the IARC Badshabhog vis-à-vis Jamainadu include l-ascorbate oxidase/peroxidase, monothiol glutaredoxin-S1, thioredoxin-like protein AAED1 (chloroplastic), thioredoxin-like protein CXXS1, NADH-dehydrogenase (ubiquinone)-1-beta subcomplex subunit 3-B, NADH-dehydrogenase subunit 6 and K, lipoxygenase 6 isoform-XI, etc. Overall, the results of the RNA-seq analysis led to the identification of cultivar-specific genes, with the cultivar Badshabhog exhibiting significantly greater molecular reprogramming for redox regulation and signaling necessary for combating dehydration stress. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03829-z.
Collapse
Affiliation(s)
- Nivedita Dey
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
2
|
Yoo Y, Yoo YH, Lee DY, Jung KH, Lee SW, Park JC. Caffeine Produced in Rice Plants Provides Tolerance to Water-Deficit Stress. Antioxidants (Basel) 2023; 12:1984. [PMID: 38001837 PMCID: PMC10669911 DOI: 10.3390/antiox12111984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Exogenous or endogenous caffeine application confers resistance to diverse biotic stresses in plants. In this study, we demonstrate that endogenous caffeine in caffeine-producing rice (CPR) increases tolerance even to abiotic stresses such as water deficit. Caffeine produced by CPR plants influences the cytosolic Ca2+ ion concentration gradient. We focused on examining the expression of Ca2+-dependent protein kinase genes, a subset of the numerous proteins engaged in abiotic stress signaling. Under normal conditions, CPR plants exhibited increased expressions of seven OsCPKs (OsCPK10, OsCPK12, OsCPK21, OsCPK25, OsCPK26, OsCPK30, and OsCPK31) and biochemical modifications, including antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase) activity and non-enzymatic antioxidant (ascorbic acid) content. CPR plants exhibited more pronounced gene expression changes and biochemical alterations in response to water-deficit stress. CPR plants revealed increased expressions of 16 OsCPKs (OsCPK1, OsCPK2, OsCPK3, OsCPK4, OsCPK5, OsCPK6, OsCPK9, OsCPK10, OsCPK11, OsCPK12, OsCPK14, OsCPK16, OsCPK18, OsCPK22, OsCPK24, and OsCPK25) and 8 genes (OsbZIP72, OsLEA25, OsNHX1, OsRab16d, OsDREB2B, OsNAC45, OsP5CS, and OsRSUS1) encoding factors related to abiotic stress tolerance. The activity of antioxidant enzymes increased, and non-enzymatic antioxidants accumulated. In addition, a decrease in reactive oxygen species, an accumulation of malondialdehyde, and physiological alterations such as the inhibition of chlorophyll degradation and the protection of photosynthetic machinery were observed. Our results suggest that caffeine is a natural chemical that increases the potential ability of rice to cope with water-deficit stress and provides robust resistance by activating a rapid and comprehensive resistance mechanism in the case of water-deficit stress. The discovery, furthermore, presents a new approach for enhancing crop tolerance to abiotic stress, including water deficit, via the utilization of a specific natural agent.
Collapse
Affiliation(s)
- Youngchul Yoo
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea;
| | - Yo-Han Yoo
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea;
| | - Dong Yoon Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Sang-Won Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Urmi TA, Islam MM, Zumur KN, Abedin MA, Haque MM, Siddiqui MH, Murata Y, Hoque MA. Combined Effect of Salicylic Acid and Proline Mitigates Drought Stress in Rice ( Oryza sativa L.) through the Modulation of Physiological Attributes and Antioxidant Enzymes. Antioxidants (Basel) 2023; 12:1438. [PMID: 37507977 PMCID: PMC10375981 DOI: 10.3390/antiox12071438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Salicylic acid (SA) and proline exhibit protective effects against a wide range of stresses. However, the combined impact of SA and proline on rice under drought stress is still unknown. Therefore, we investigated the protective roles of SA and/or proline in conferring drought tolerance in rice. There were eight treatments comprising the control (T1; 95-100% FC), 1.5 mM SA (T2), 2 mM proline (T3), 0.75 mM SA + 1 mM proline (T4), 45-50% FC (T5, drought stress), T5 + 1.5 mM SA (T6), T5 + 2 mM proline (T7), and T5 + 0.75 mM SA + 1 mM proline (T8), and two rice varieties: BRRI dhan66 and BRRI dhan75. Drought stress significantly decreased the plant growth, biomass, yield attributes, photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), photosynthetic pigments (chlorophyll and carotenoids content), relative water content (RWC), membrane stability index (MSI), soluble sugar and starch content, and uptake of N, P and K+ in roots and shoots. Drought-induced oxidative stress in the form of increased hydrogen peroxide (H2O2) production and lipid peroxidation (MDA) was observed. The combined application of SA (0.75 mM) + proline (1 mM) was found to be more effective than the single application of either for drought stress mitigation in rice. A combined dose of SA + proline alleviated oxidative stress through boosting antioxidant enzymatic activity in contrast to their separate application. The application of SA + proline also enhanced proline, soluble sugar and starch content, which resulted in the amelioration of osmotic stress. Consequently, the combined application of SA and proline significantly increased the gas exchange characteristics, photosynthetic pigments, RWC, MSI, nutrient uptake, plant growth, biomass and yield of rice. Therefore, the combined application of SA and proline alleviated the detrimental impacts of drought stress more pronouncedly than their separate application did by increasing osmoprotectants, improving nutrient transport, up-regulating antioxidant enzyme activity and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Tahmina Akter Urmi
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Kamrun Naher Zumur
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Anwarul Abedin
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M Moynul Haque
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Md Anamul Hoque
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
4
|
Ni Ong S, Chin Tan B, Hanada K, How Teo C. Unearth of small open reading frames (sORFs) in drought stress transcriptome of Oryza sativa subsp. indica. Gene 2023:147579. [PMID: 37336274 DOI: 10.1016/j.gene.2023.147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Drought is a major abiotic stress that influences rice production. Although the transcriptomic data of rice against drought is widely available, the regulation of small open reading frames (sORFs) in response to drought stress in rice is yet to be investigated. Different levels of drought stress have different regulatory mechanisms in plants. In this study, drought stress was imposed on four-leaf stage rice, divided into two treatments, 40% and 30% soil moisture content (SMC). The RNAs of the samples were extracted, followed by the RNA sequencing analysis on their sORF expression changes under 40%_SMC and 30%_SMC, and lastly, the expression was validated through NanoString. A total of 122 and 143 sORFs were differentially expressed (DE) in 40%_SMC and 30%_SMC, respectively. In 40%_SMC, 69 sORFs out of 696 (9%) DEGs were found to be upregulated. On the other hand, 69 sORFs out of 449 DEGs (11%) were significantly downregulated. The trend seemed to be higher in 30%_SMC, where 112 (12%) sORFs were found to be upregulated from 928 significantly upregulated DEGs. However, only 8% (31 sORFs out of 385 DEGs) sORFs were downregulated in 30%_SMC. Among the identified sORFs, 110 sORFs with high similarity to rice proteome in the PsORF database were detected in 40%_SMC, while 126 were detected in 30%_SMC. The Gene Ontology (GO) enrichment analysis of DE sORFs revealed their involvement in defense-related biological processes, such as defense response, response to biotic stimulus, and cellular homeostasis, whereas enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that DE sORFs were associated with tryptophan and phenylalanine metabolisms. Several DE sORFs were identified, including the top five sORFs (OsisORF_3394, OsisORF_0050, OsisORF_3007, OsisORF_6407, and OsisORF_7805), which have yet to be characterised. Since these sORFs were responsive to drought stress, they might hold significant potential as targets for future climate-resilient rice development.
Collapse
Affiliation(s)
- Sheue Ni Ong
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka‑shi, Fukuoka 820‑8502, Japan
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
da Mata CR, de Castro AP, Lanna AC, Bortolini JC, de Moraes MG. Physiological and yield responses of contrasting upland rice genotypes towards induced drought. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:305-317. [PMID: 36875723 PMCID: PMC9981851 DOI: 10.1007/s12298-023-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Drought alters rice morphophysiology and reduces grain yield. This study hypothesized that the combined analysis of morphophysiological and agronomic traits enables a systemic approach to responses to water deficit, allowing the selection of resistance markers to upland rice. The objectives were to evaluate the effects of water deficit applied at the reproductive stage in plant water status, leaf gas exchanges, leaf non-structural carbohydrate contents, and agronomic traits in upland rice genotypes; and to verify if the analyzed variables may be applied to group the genotypes according to their tolerance level. Water deficit was induced by irrigation suppression in eight genotypes at R2-R3. Physiological and biochemical traits were evaluated at the end of the water deficit period, thenceforth irrigation was restored until grain maturation for the analysis of the agronomic traits. Water deficit reduced: Ψw (63.64%, average); gs (28-90%); transpiration rate (40.63-65.45%); RWC from Serra Dourada to Esmeralda (43.36-61.48%); net CO2 assimilation from Serra Dourada to Primavera (70.04-99.91%); iWUE from Esmeralda to Primavera (83.98-99.85%); iCE in Esmeralda (99.92%); 100-grain weight in CIRAD and Soberana (13.65-20.63%); and grain yield from Primavera to IAC 164 (34.60-78.85%). Water deficit increased Ci from Cambará to Early mutant (79.64-215.23%), and did not affect the tiller number, shoot dry biomass, fructose, and sucrose contents. The alterations in the variables distinguished groups according to the water regime. RWC, Ψw, leaf gas exchanges, and iCE were valuable traits to distinguish the water regime treatments, but not to group the genotypes according to the drought tolerance level. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01287-8.
Collapse
Affiliation(s)
- Cristiane Ribeiro da Mata
- Programa de Pós-Graduação em Agronomia, Universidade Federal de Goiás, Av. Esperança s/n, Campus Samambaia, Goiânia, GO 74690-000 Brazil
| | - Adriano Pereira de Castro
- Embrapa Arroz e Feijão, Rodovia GO-462, Km 12, Zona Rural, Caixa Postal 179, Santo Antônio de Goiás, GO 75375-000 Brazil
| | - Anna Cristina Lanna
- Embrapa Arroz e Feijão, Rodovia GO-462, Km 12, Zona Rural, Caixa Postal 179, Santo Antônio de Goiás, GO 75375-000 Brazil
| | - Jascieli Carla Bortolini
- Embrapa Arroz e Feijão, Rodovia GO-462, Km 12, Zona Rural, Caixa Postal 179, Santo Antônio de Goiás, GO 75375-000 Brazil
| | - Moemy Gomes de Moraes
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança s/n, Campus Samambaia, Goiânia, Goiás 74690-000 Brazil
| |
Collapse
|
6
|
Melatonin Enhances Drought Tolerance in Rice Seedlings by Modulating Antioxidant Systems, Osmoregulation, and Corresponding Gene Expression. Int J Mol Sci 2022; 23:ijms232012075. [PMID: 36292930 PMCID: PMC9603070 DOI: 10.3390/ijms232012075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Rice is the third largest food crop in the world, especially in Asia. Its production in various regions is affected to different degrees by drought stress. Melatonin (MT), a novel growth regulator, plays an essential role in enhancing stress resistance in crops. Nevertheless, the underlying mechanism by which melatonin helps mitigate drought damage in rice remains unclear. Therefore, in the present study, rice seedlings pretreated with melatonin (200 μM) were stressed with drought (water potential of −0.5 MPa). These rice seedlings were subsequently examined for their phenotypes and physiological and molecular properties, including metabolite contents, enzyme activities, and the corresponding gene expression levels. The findings demonstrated that drought stress induced an increase in malondialdehyde (MDA) levels, lipoxygenase (LOX) activity, and reactive oxygen species (ROS, e.g., O2− and H2O2) in rice seedlings. However, the melatonin application significantly reduced LOX activity and the MDA and ROS contents (O2− production rate and H2O2 content), with a decrease of 29.35%, 47.23%, and (45.54% and 49.33%), respectively. It activated the expression of ALM1, OsPOX1, OsCATC, and OsAPX2, which increased the activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), respectively. Meanwhile, the melatonin pretreatment enhanced the proline, fructose, and sucrose content by inducing OsP5CS, OsSUS7, and OsSPS1 gene expression levels. Moreover, the melatonin pretreatment considerably up-regulated the expression levels of the melatonin synthesis genes TDC2 and ASMT1 under drought stress by 7-fold and 5-fold, approximately. These improvements were reflected by an increase in the relative water content (RWC) and the root-shoot ratio in the drought-stressed rice seedlings that received a melatonin application. Consequently, melatonin considerably reduced the adverse effects of drought stress on rice seedlings and improved rice’s ability to tolerate drought by primarily boosting endogenous antioxidant enzymes and osmoregulation abilities.
Collapse
|
7
|
Freeg HA, Attia KA, Casson S, Fiaz S, Ramadan EA, Banna AE, Zoulias N, Aboshosha A, Alamery S. Physio-biochemical responses and expressional profiling analysis of drought tolerant genes in new promising rice genotype. PLoS One 2022; 17:e0266087. [PMID: 35349595 PMCID: PMC8963560 DOI: 10.1371/journal.pone.0266087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
Rice cultivation in Egypt is limited by the scarcity of water resources. The main strategy of rice breeders to overcome this problem is to develop new high-yielding varieties that are tolerant to drought stress. In this study, an drought-tolerant (IR60080-46A) variety was crossed with commercial Egyptian varieties using the back-cross method and marker-assisted selection (MAS) approach. The advanced lines of these crosses were selected under drought stress conditions. The best-performing candidate line, RBL-112, and its parental genotypes, were evaluated under drought stress and control conditions. The RBL-112 line showed superior its root system, which in turn produced higher grain yield under drought-stress conditions than its parental and check genotypes. Furthermore, physiological and biochemical studies showed that the RBL-112 line maintained higher relative water content (RWC), maximum quantum efficiency of photosystem II (Fv/Fm) values, proline content, superoxide dismutase (SOD) activity, and lower malondialdehyde (MDA) content compared to its parents and the check. The functional expression profiles of 22 drought tolerance-related genes were studied, out of which the genes OsAHL1, OsLEA3, OsCATA, OsP5CS, OsSNAC1, Os1g64660, OsRab21, OsAPX2, OsDREB2A, OsSKIPa, and OsLG3 were strongly induced in the newly developed RBL-112 line under drought-stress conditions. It could be concluded that the new line has a higher capacity to modulate physiological activities and expression levels of several drought-induced genes to withstand drought stress with high yielding ability. This finding suggests that the RBL-112 line presents a promising new addition to enable sustainable rice cultivation under water-limited conditions, and confirms the efficiency of the approach implemented in the current study.
Collapse
Affiliation(s)
- Haytham A. Freeg
- Department of Molecular Biology and Biotechnology, College of Science, Sheffield University, Sheffield, TN, United Kingdom
- Rice Biotechnology Lab., Rice Research & Training Center (RRTC), Field Crops Research Institute, ARC, Sakhah, Egypt
- Department of Genetics, College of Agriculture, Kafr-El-Sheikh University, Kafr El Sheikh, Egypt
| | - Kotb A. Attia
- Rice Biotechnology Lab., Rice Research & Training Center (RRTC), Field Crops Research Institute, ARC, Sakhah, Egypt
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail: (KAA); (SF)
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, College of Science, Sheffield University, Sheffield, TN, United Kingdom
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
- * E-mail: (KAA); (SF)
| | - Ebrahim A. Ramadan
- Rice Biotechnology Lab., Rice Research & Training Center (RRTC), Field Crops Research Institute, ARC, Sakhah, Egypt
| | - Antar El- Banna
- Department of Genetics, College of Agriculture, Kafr-El-Sheikh University, Kafr El Sheikh, Egypt
| | - Nicholas Zoulias
- Department of Molecular Biology and Biotechnology, College of Science, Sheffield University, Sheffield, TN, United Kingdom
| | - Ali Aboshosha
- Department of Genetics, College of Agriculture, Kafr-El-Sheikh University, Kafr El Sheikh, Egypt
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification. STRESSES 2022. [DOI: 10.3390/stresses2020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) and japonica (cv. Koshihikari) groups. Eighteen-day-old seedlings of these genotypes were exposed to either in alone salinity (150 mM NaCl) and drought (15% PEG 6000) or in the combination of salinity and drought (150 mM NaCl + 15% PEG 6000) stress in vitro for 72 h. Compared with the control, the water status, biomass and photosynthetic pigments were decreased, where a significant increase was seen in the mortality rate, hydrogen peroxide content, electrolyte leakage, lipoxygenase activity, level of malondialdehyde and methylglyoxal, indicating increased lipid peroxidation in rice genotypes in stress conditions. The non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) pool in rice genotypes were disrupted under all stress treatments, resulting imbalance in the redox equilibrium. In contrast, compared to other rice genotypes, BRRI dhan48 revealed a lower Na+/K+ ratio, greater proline (Pro) levels, higher activity of AsA, dehydroascorbate (DHA) and GSH, lower glutathione disulfide (GSSG) and a higher ratio of AsA/DHA and GSH/GSSG, whereas enzymatic components increased monodehydroascorbate reductase, dehydroascorbate reductase, glutathione peroxidase and glyoxalase enzymes. The results showed that a stronger tolerate ability for BRRI dhan48 against stress has been connected to a lower Na+/K+ ratio, an increase in Pro content and an improved performance of the glyoxalase system and antioxidant protection for scavenging of reactive oxygen species. These data can give insight into probable responses to single or combination salinity and drought stress in rice genotypes.
Collapse
|
9
|
Zhou Z, Su P, Wu X, Zhang H, Shi R, Yang J. Leaf and canopy photosynthesis of four desert plants: considering different photosynthetic organs. PHOTOSYNTHESIS RESEARCH 2022; 151:265-277. [PMID: 34780003 DOI: 10.1007/s11120-021-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Desert plants evolve different photosynthetic organs to adapt to the extreme environment. We studied the leaf and canopy gas exchange, chlorophyll content, fluorescence parameters, and anatomical structure of different photosynthetic organs (leaf and assimilating stem) on four desert plants (Nitraria sphaerocarpa, Caragana korshinskii, Haloxylon ammodendron, and Calligonum mongolicum). The results showed a higher net photosynthetic rate (PN) in the assimilating stems of H. ammodendron and C. mongolicum, which also had a higher light saturation point and a lower light compensation point than leaves (N. sphaerocarpa and C. korshinskii), suggesting more efficient solar energy utilization in the former. Within each species, canopy apparent photosynthetic rate (CAP) was significantly lower than PN, and the daily average CAP of the assimilating stems was significantly higher than leaves. These findings indicated that the photosynthetic response of desert plants was specific to photosynthetic organs. We concluded that the assimilating stem was a superior adaption for desert plants to survive the arid environments.
Collapse
Affiliation(s)
- Zijuan Zhou
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Peixi Su
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haina Zhang
- School of Water Resources and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Rui Shi
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianping Yang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
10
|
Mas-ud MA, Matin MN, Fatamatuzzohora M, Ahamed MS, Chowdhury MR, Paul SK, Karmakar S, Kang SG, Hossain MS. Screening for drought tolerance and diversity analysis of Bangladeshi rice germplasms using morphophysiology and molecular markers. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00923-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Satrio RD, Fendiyanto MH, Supena EDJ, Suharsono S, Miftahudin M. Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2635-2650. [PMID: 34924715 PMCID: PMC8639969 DOI: 10.1007/s12298-021-01095-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Drought tolerance in rice is controlled by several genes and is inherited quantitatively. Low genetic map density and the use of phenotypic traits that do not reflect the corresponding tolerance level have been obstacles in genetic analyses performed to identify genes that control drought-tolerant traits in rice. The current study aimed to construct a genetic map from high-density single-nucleotide polymorphism (SNP) markers generated from genome sequences of recombinant inbred lines (RILs), derived from IR64 × Hawara Bunar. Moreover, it sought to analyze the quantitative trait loci (QTL) and identify the drought tolerance candidate genes. A linkage map along 1980 cM on the 12 rice chromosomes was constructed employing 55,205 SNP markers resulting from the RIL genome sequences. A total of 175 morpho-physiological traits pertaining to drought stress were determined. A total of 41 QTLs were detected in 13 regions on rice chromosomes 1, 3, 6, 8, 9, and 12. Moreover, three hotspot QTL regions were found on chromosomes 6 and 8, along with two major QTL on chromosome 9. Differential gene expression for the loci within the QTL physical map intervals revealed many potential candidate genes. The markers tightly linked to the QTL and their candidate genes can potentially be used for pyramiding in marker-assisted breeding in order to achieve genetic improvement concerning the tolerance of rice to drought stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01095-y.
Collapse
Affiliation(s)
- Rizky Dwi Satrio
- Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
- Department of Biology, Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University (Unhan RI), Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor, 16810 Indonesia
| | - Miftahul Huda Fendiyanto
- Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
- Department of Biology, Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University (Unhan RI), Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor, 16810 Indonesia
| | - Ence Darmo Jaya Supena
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
- Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University (Unhan RI), Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor, 16810 Indonesia
| | - Sony Suharsono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
| | - Miftahudin Miftahudin
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
| |
Collapse
|
12
|
Drought stress-induced changes in redox metabolism of barley (Hordeum vulgare L.). Biol Futur 2021; 72:347-358. [PMID: 34554555 DOI: 10.1007/s42977-021-00084-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
In the present investigation, influence of water stress on redox metabolism was evaluated in the flag leaf and grains of four barley (Hordeum vulgare L.) genotypes viz DWRB 101, 432 ICARDA, Jyoti and 430 ICARDA at 10th, 20th and 30th days after anthesis (DAA). Relative water content, electrolyte leakage, antioxidative enzymes and their related metabolites were studied during drought stress. Relative water content was well maintained in both the tissues of DWRB 101 and 432 ICARDA. The upregulation of catalase at 20th DAA while ascorbate peroxidase, glutathione reductase and dehydro reductase at 30th DAA in the flag leaf and grains of DWRB 101 and 432 ICARDA may be responsible for lesser increase in H2O2 content as compared to other genotypes. Moreover, the downregulation of superoxide dismutase was comparatively higher in Jyoti and 430 ICARDA. The redox homeostasis was well established during the stress in DWRB 101 and 432 ICARDA by maintaining comparatively higher ratios of ascorbate/dehydroascorbate and reduced/oxidized glutathione. Therefore, scrutiny of data indicated that DWRB 101 and 432 ICARDA may perform better under drought stress in comparison with Jyoti and 430 ICARDA.
Collapse
|
13
|
Automated stomata detection in oil palm with convolutional neural network. Sci Rep 2021; 11:15210. [PMID: 34312480 PMCID: PMC8313554 DOI: 10.1038/s41598-021-94705-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/09/2021] [Indexed: 01/25/2023] Open
Abstract
Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, its measurement is extremely tedious. To accelerate this process, we developed an automated system. Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2–3 years old) and mature (> 10 years old) were collected to build an oil palm specific stomata detection model. Micrographs were split into tiles, then used to train a stomata object detection convolutional neural network model through transfer learning. The detection model was then tested on leaf samples acquired from three independent oil palm populations of young seedlings (A), juveniles (B) and productive adults (C). The detection accuracy, measured in precision and recall, was 98.00% and 99.50% for set A, 99.70% and 97.65% for set B, and 99.55% and 99.62% for set C, respectively. The detection model was cross-applied to another set of adult palms using stomata images taken with a different microscope and under different conditions (D), resulting in precision and recall accuracy of 99.72% and 96.88%, respectively. This indicates that the model built generalized well, in addition has high transferability. With the completion of this detection model, stomatal density measurement can be accelerated. This in turn will accelerate the breeding selection for drought tolerance.
Collapse
|
14
|
Ramachandran M, Arulbalachandran D, Dilipan E, Ramya S. Comparative analysis of abscisic acid recovery on two varieties of rice (Oryza sativa L.) under drought condition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Mihaljević I, Viljevac Vuletić M, Šimić D, Tomaš V, Horvat D, Josipović M, Zdunić Z, Dugalić K, Vuković D. Comparative Study of Drought Stress Effects on Traditional and Modern Apple Cultivars. PLANTS (BASEL, SWITZERLAND) 2021; 10:561. [PMID: 33809688 PMCID: PMC8002316 DOI: 10.3390/plants10030561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/21/2023]
Abstract
Genotype-dependent responses of apples to drought stress were evaluated between commercial and traditional apple cultivars. The results indicate different mechanisms of tolerance to investigated drought stress conditions. Chlorophyll fluorescence induction (OJIP) parameters, chlorophyll and carotenoid content, malondialdehyde (MDA), hydrogen peroxide (H2O2), proline, phenols and leaf water content (WC) were measured. The traditional cultivar "Crvenka" confirmed the best tolerance to a drought stress condition, presenting higher photosynthetic efficiency, higher leaf water content, higher levels of chlorophyll content and lower lipid peroxidation with greater membrane stability. The commercial cultivar "Golden Delicious Reinders" showed decreased water content in leaves, increased lipid peroxidation levels and photoinhibition. Considering all results, the commercial cultivar "Golden Delicious Reinders" was adversely affected by drought, while traditional cultivars exhibited better tolerance to drought stress.
Collapse
Affiliation(s)
- Ines Mihaljević
- Agricultural Institute Osijek, Južno predgrađe 17, HR-31000 Osijek, Croatia; (M.V.V.); (D.Š.); (V.T.); (D.H.); (M.J.); (Z.Z.); (K.D.); (D.V.)
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Singh BK, Ramkumar MK, Dalal M, Singh A, Solanke AU, Singh NK, Sevanthi AM. Allele mining for a drought responsive gene DRO1 determining root growth angle in donors of drought tolerance in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:523-534. [PMID: 33854281 PMCID: PMC7981370 DOI: 10.1007/s12298-021-00950-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Deeper Rooting 1 (DRO1) gene identified from a major QTL on chromosome 9 increases the root growth angle (RGA) and thus facilitates survival under drought and hence is an excellent candidate for rice improvement. Twenty-four major Indian upland and lowland genotypes including the 'yield under drought' (DTY) QTL donors were subjected to allele mining of DRO1 (3058 bp) using four pairs of overlapping primers. A total of 216 and 52 SNPs were identified across all genotypes in the gene and coding region (756 bp) respectively with transversions 3.6 fold more common than transitions in the gene and 2.5 times in the CDS. In 251 amino acid long protein, substitutions were found in 19 positions, wherein change in position 92 was the most frequent. Based on allele mining, the 24 genotypes can be classified into 16 primary structure variants ranging from complete functional allele (Satti, IR36 and DTY 3.1 donor, IR81896-B-B-195) to truncated non-functional alleles in PMK2, IR64, IR20 and Swarna. All the DTY donors, other than IR81896-B-B-195, and most of the upland drought tolerant cultivars (Nagina 22, Vandana and Dhagaddeshi) had accumulated 6-19 SNPs and 4-8 amino acid substitutions resulting in substantial differences in their protein structure. The expression analysis revealed that all the genotypes showed upregulation under drought stress though the degree of upregulation varied among genotypes. The information on structural variations in DRO1 gene will be very useful for the breeders, especially in the light of recent breeding programmes on improving drought tolerance using several DTY donors and upland accessions. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-021-00950-2).
Collapse
Affiliation(s)
- Bablee Kumari Singh
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - M. K. Ramkumar
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Monika Dalal
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Archana Singh
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa campus, New Delhi, India
| | - Amolkumar U. Solanke
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Nagendra K. Singh
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| |
Collapse
|
17
|
Knockdown of a Novel Gene OsTBP2.2 Increases Sensitivity to Drought Stress in Rice. Genes (Basel) 2020; 11:genes11060629. [PMID: 32521717 PMCID: PMC7349065 DOI: 10.3390/genes11060629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Drought stress is a major environmental stress, which adversely affects the biological and molecular processes of plants, thereby impairing their growth and development. In the present study, we found that the expression level of OsTBP2.2 which encodes for a nucleus-localized protein member belonging to transcription factor IID (TFIID) family, was significantly induced by polyethylene glycol (PEG) treatment. Therefore, knockdown mutants of OsTBP2.2 gene were generated to investigate the role of OsTBP2.2 in rice response to drought stress. Under the condition of drought stress, the photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance were significantly reduced in ostbp2.2 lines compared with wild type, Dongjin (WT-DJ). Furthermore, the RNA-seq results showed that several main pathways involved in "MAPK (mitogen-activated protein kinase) signaling pathway", "phenylpropanoid biosynthesis", "defense response" and "ADP (adenosine diphosphate) binding" were altered significantly in ostbp2.2. We also found that OsPIP2;6, OsPAO and OsRCCR1 genes were down-regulated in ostbp2.2 compared with WT-DJ, which may be one of the reasons that inhibit photosynthesis. Our findings suggest that OsTBP2.2 may play a key role in rice growth and the regulation of photosynthesis under drought stress and it may possess high potential usefulness in molecular breeding of drought-tolerant rice.
Collapse
|
18
|
Khadka K, Earl HJ, Raizada MN, Navabi A. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:715. [PMID: 32582249 PMCID: PMC7286286 DOI: 10.3389/fpls.2020.00715] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
In the past, there have been drought events in different parts of the world, which have negatively influenced the productivity and production of various crops including wheat (Triticum aestivum L.), one of the world's three important cereal crops. Breeding new high yielding drought-tolerant wheat varieties is a research priority specifically in regions where climate change is predicted to result in more drought conditions. Commonly in breeding for drought tolerance, grain yield is the basis for selection, but it is a complex, late-stage trait, affected by many factors aside from drought. A strategy that evaluates genotypes for physiological responses to drought at earlier growth stages may be more targeted to drought and time efficient. Such an approach may be enabled by recent advances in high-throughput phenotyping platforms (HTPPs). In addition, the success of new genomic and molecular approaches rely on the quality of phenotypic data which is utilized to dissect the genetics of complex traits such as drought tolerance. Therefore, the first objective of this review is to describe the growth-stage based physio-morphological traits that could be targeted by breeders to develop drought-tolerant wheat genotypes. The second objective is to describe recent advances in high throughput phenotyping of drought tolerance related physio-morphological traits primarily under field conditions. We discuss how these strategies can be integrated into a comprehensive breeding program to mitigate the impacts of climate change. The review concludes that there is a need for comprehensive high throughput phenotyping of physio-morphological traits that is growth stage-based to improve the efficiency of breeding drought-tolerant wheat.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
19
|
Field Screening of Rice Germplasm ( Oryza sativa L. ssp. japonica) Based on Days to Flowering for Drought Escape. PLANTS 2020; 9:plants9050609. [PMID: 32403343 PMCID: PMC7284638 DOI: 10.3390/plants9050609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022]
Abstract
Terminal drought stress is one of the restrictive factors in rice production and is expected to upsurge under the current situation of climate change. The study evaluated the performance of 2030 rice genotypes under continuous drought stress conditions based on days to flowering (DF). The genotypes under augmented randomized complete block design were sown in May/June of 2017 and 2018 in the field with movable rainout that resulted in huge genetic diversity among the accessions. Descriptive statistics confirmed clear variation among accessions on growth duration, plant height to leaf, plant height to panicle, and germination percentage. Correlation, chemometric, and agglomerative hierarchical cluster analyses were performed that categorized the germplasm into 10 groups. Genotypes in clusters VIII and IX (drought-resistant) revealed better agronomic performance in terms of reduced days to flowering, but conversely taller plant height and higher maturity (%) under severe stress. Genotypes in clusters IV, V, and X were discovered to be drought-susceptible. The screened genotypes like Longjing 12, Longdun 102, Yanjing 22, Liaojing 27, Xiaohongbandao, Songjing 17, and Zaoshuqingsen can be utilized in rice breeding improvement programs for drought tolerance in terms of severe continuous drought, as well as terminal drought stress.
Collapse
|
20
|
Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep 2020; 10:4818. [PMID: 32179779 PMCID: PMC7076003 DOI: 10.1038/s41598-020-61140-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial inoculation in drought challenged rice triggered multipronged steps at enzymatic, non-enzymatic and gene expression level. These multifarious modulations in plants were related to stress tolerance mechanisms. Drought suppressed growth of rice plants but inoculation with Trichoderma, Pseudomonas and their combination minimized the impact of watering regime. Induced PAL gene expression and enzyme activity due to microbial inoculation led to increased accumulation of polyphenolics in plants. Enhanced antioxidant concentration of polyphenolics from microbe inoculated and drought challenged plants showed substantially high values of DPPH, ABTS, Fe-ion reducing power and Fe-ion chelation activity, which established the role of polyphenolic extract as free radical scavengers. Activation of superoxide dismutase that catalyzes superoxide (O2-) and leads to the accumulation of H2O2 was linked with the hypersensitive cell death response in leaves. Microbial inoculation in plants enhanced activity of peroxidase, ascorbate peroxidase, glutathione peroxidase and glutathione reductase enzymes. This has further contributed in reducing ROS burden in plants. Genes of key metabolic pathways including phenylpropanoid (PAL), superoxide dismutation (SODs), H2O2 peroxidation (APX, PO) and oxidative defense response (CAT) were over-expressed due to microbial inoculation. Enhanced expression of OSPiP linked to less-water permeability, drought-adaptation gene DHN and dehydration related stress inducible DREB gene in rice inoculated with microbial inoculants after drought challenge was also reported. The impact of Pseudomonas on gene expression was consistently remained the most prominent. These findings suggested that microbial inoculation directly caused over-expression of genes linked with defense processes in plants challenged with drought stress. Enhanced enzymatic and non-enzymatic antioxidant reactions that helped in minimizing antioxidative load, were the repercussions of enhanced gene expression in microbe inoculated plants. These mechanisms contributed strongly towards stress mitigation. The study demonstrated that microbial inoculants were successful in improving intrinsic biochemical and molecular capabilities of rice plants under stress. Results encouraged us to advocate that the practice of growing plants with microbial inoculants may find strategic place in raising crops under abiotic stressed environments.
Collapse
Affiliation(s)
- Dhananjaya P Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101, India.
| | - Vivek Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Renu Shukla
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101, India
| | - Ratna Prabha
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101, India
| | - Birinchi K Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 21005, India
| | - Jai Singh Patel
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 21005, India
| |
Collapse
|
21
|
Carvalho M, Castro I, Moutinho-Pereira J, Correia C, Egea-Cortines M, Matos M, Rosa E, Carnide V, Lino-Neto T. Evaluating stress responses in cowpea under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153001. [PMID: 31415937 DOI: 10.1016/j.jplph.2019.153001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 05/10/2023]
Abstract
Drought impact on plants is an increasing concern under the climate change scenario. Cowpea (Vigna unguiculata L. Walp.) is considered as one of the most tolerant legume crops to drought, being the search for the best well-adapted genotypes crucial to face the future challenges. Different approaches have been used for differentiating plant responses to drought stress. Plants of four cowpea genotypes were submitted to three watering regimens (a severe and moderate drought stress, and well-watered control) during 15 days, and several physiological, biochemical and molecular parameters were evaluated. Stressed plants revealed commonly-described drought stress characteristics, but not all assayed parameters were useful for discriminating plants with different drought severities or genotypes. The analyses which have contributed most to genotype discrimination were those related with stomatal function, and biochemical markers such as proline and anthocyanin contents. Antioxidant enzymes activities and related genes expression did not differed among genotypes or upon drought stress treatments, suggesting that scavenging enzymes are not involved in the differential ability of cowpea plants to survive under drought stress. This information will be useful to evaluate and use genetic resources, as well as design strategies for breeding cowpea resistance to drought stress.
Collapse
Affiliation(s)
- Márcia Carvalho
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Isaura Castro
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - José Moutinho-Pereira
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Carlos Correia
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Marcos Egea-Cortines
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| | - Manuela Matos
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Sciences Faculty, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Eduardo Rosa
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Valdemar Carnide
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Teresa Lino-Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
22
|
Galeano E, Vasconcelos TS, Novais de Oliveira P, Carrer H. Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). PLoS One 2019; 14:e0221571. [PMID: 31498810 PMCID: PMC6733471 DOI: 10.1371/journal.pone.0221571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/11/2019] [Indexed: 11/19/2022] Open
Abstract
Drought stress is an increasingly common and worrying phenomenon because it causes a loss of production in both agriculture and forestry. Teak is a tropical tree which needs alternating rainy and dry seasons to produce high-quality wood. However, a robust understanding about the physiological characteristics and genes related to drought stress in this species is lacking. Consequently, after applying moderate and severe drought stress to teak seedlings, an infrared gas analyzer (IRGA) was used to measure different parameters in the leaves. Additionally, using the root transcriptome allowed finding and analyzing the expression of several drought-related genes. As a result, in both water deficit treatments a reduction in photosynthesis, transpiration, stomatal conductance and leaf relative water content was found. As well, an increase in free proline levels and intrinsic water use efficiency was found when compared to the control treatment. Furthermore, 977 transcripts from the root contigs showed functional annotation related to drought stress, and of these, TgTPS1, TgDREB1, TgAREB1 and TgPIP1 were selected. The expression analysis of those genes along with TgHSP1, TgHSP2, TgHSP3 and TgBI (other stress-related genes) showed that with moderate treatment, TgTPS1, TgDREB1, TgAREB1, TgPIP1, TgHSP3 and TgBI genes had higher expression than the control treatment, but with severe treatment only TgTPS1 and TgDREB1 showed higher expression than the control treatment. At the end, a schematic model for the physiological and molecular strategies under drought stress in teak from this study is provided. In conclusion, these physiological and biochemical adjustments in leaves and genetic changes in roots under severe and prolonged water shortage situations can be a limiting factor for teak plantlets' growth. Further studies of those genes under different biotic and abiotic stress treatments are needed.
Collapse
Affiliation(s)
- Esteban Galeano
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Tarcísio Sales Vasconcelos
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Perla Novais de Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| |
Collapse
|
23
|
Yang X, Wang B, Chen L, Li P, Cao C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 2019; 9:3742. [PMID: 30842474 PMCID: PMC6403352 DOI: 10.1038/s41598-019-40161-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Seasonal drought is a major threat to rice production. However, the sensitivity of rice to drought stress (DS) at different growth periods remains unclear. The objective of this study was to reveal the different impacts of DS at the flowering stage on rice physiological traits, grain yield, and quality. Field experiments were conducted with two rice cultivars, Yangliangyou 6 (YLY6) and Hanyou 113 (HY113) under two water treatments (traditional flooding (CK) and DS at flowering stage) in 2013 and 2014. Compared with CK, grain yield (GY) under DS was significantly reduced by 23.2% for YLY6 and 24.0% for HY113 while instantaneous water use efficiency (IWUE) was significantly increased by 39% for YLY6 and 37% for HY113, respectively. All physiological traits were significantly decreased under DS and physiological activities did not revert to normal levels at grain filling stage. There was no significant effect on the appearance and nutritional quality except for the significant increase in chalky kernel and chalkiness under DS. Our data suggest that drought stress at flowering stage has a strong influence on rice physiological traits and yield. Stronger recovery capability contributes to maintaining relatively high grain production, which could be a great target for the breeder in developing drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Xiaolong Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Benfu Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liang Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, Hubei, 434025, China.
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
24
|
Kumar A, Nayak AK, Das BS, Panigrahi N, Dasgupta P, Mohanty S, Kumar U, Panneerselvam P, Pathak H. Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2032-2050. [PMID: 30290346 DOI: 10.1016/j.scitotenv.2018.09.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 05/26/2023]
Abstract
Rice is the foremost staple food in the world, safeguarding the global food and nutritional security. Rise in atmospheric carbon dioxide (CO2) and water deficits are threatening global rice productivity and sustainability. Under real field conditions these climatic factors often interact with each other resulting in impacts that are remarkably different compared to individual factor exposure. Rice soils exposed to drought and elevated CO2 (eCO2) alters the biomass, diversity and activity of soil microorganisms affecting greenhouse gas (GHG) emission dynamics. In this review we have discussed the impacts of eCO2 and water deficit on agronomic, biochemical and physiological responses of rice and GHGs emissions from rice soils. Drought usually results in oxidative stress due to stomatal closure, dry weight reduction, formation of reactive oxygen species, decrease in relative water content and increase in electrolyte leakage at almost all growth and developmental phases of rice. Elevated atmospheric CO2 concentration reduces the negative effects of drought by improving plant water relations, reducing stomatal opening, decreasing transpiration, increasing canopy photosynthesis, shortening crop growth period and increasing the antioxidant metabolite activities in rice. Increased scientific understanding of the effects of drought and eCO2 on rice agronomy, physiology and GHG emission dynamics of rice soil is essential for devising adaptation options. Integration of novel agronomic practices viz., crop establishment methods and alternate cropping systems with improved water and nutrient management are important steps to help rice farmers cope with drought and eCO2. The review summarizes future research needs for ensuring sustained global food security under future warmer, drier and high CO2 conditions.
Collapse
Affiliation(s)
- Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India.
| | - A K Nayak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - B S Das
- Indian Institute of Technology Kharagpur, West Bengal, India
| | - N Panigrahi
- Indian Institute of Technology Kharagpur, West Bengal, India
| | - P Dasgupta
- ICAR - Indian Institute of Water Management, Bhubaneswar, Odisha, India
| | - Sangita Mohanty
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Upendra Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - P Panneerselvam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - H Pathak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|