1
|
Gu ZY, Chen BH, Zhao L, An DA, Wu CW, Xue S, Chen WB, Huang S, Wang YY, Wu LM. Fractal analysis of left ventricular trabeculae in heart failure with preserved ejection fraction patients with multivessel coronary artery disease. Insights Imaging 2024; 15:148. [PMID: 38886266 PMCID: PMC11183012 DOI: 10.1186/s13244-024-01730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES Endocardial trabeculae undergo varicose changes and hyperplasia in response to hemodynamic influences and are a variable phenotype reflecting changes in disease. Fractal analysis has been used to analyze the complexity of endocardial trabeculae in a variety of cardiomyopathies. The aim of this paper was to quantify the myocardial trabecular complexity through fractal analysis and to investigate its predictive value for the diagnosis of heart failure with preserved ejection fraction (HFpEF) in patients with multivessel coronary artery disease (CAD). METHODS The retrospective study population consisted of 97 patients with multivessel CAD, 39 of them were diagnosed with HFpEF, while 46 healthy volunteers were recruited as controls. Fractal dimension (FD) was obtained through fractal analysis of endocardial trabeculae on LV short-axis cine images. Logistic regression analyses were used to confirm the predictors and compare different prediction models. RESULTS Mean basal FD was significantly higher in patients with HFpEF than in patients without HFpEF or in the healthy group (median: 1.289; IQR: 0.078; p < 0.05). Mean basal FD was also a significant independent predictor in univariate and multivariate logistic regression (OR: 1.107 and 1.043, p < 0.05). Furthermore, adding FD to the prediction model improved the calibration and accuracy of the model (c-index: 0.806). CONCLUSION The left ventricular FD obtained with fractal analysis can reflect the complexity of myocardial trabeculae and has an independent predictive value for the diagnosis of HFpEF in patients with multivessel CAD. Including FD into the diagnostic model can help improve the diagnosis. CRITICAL RELEVANCE STATEMENT Differences show in the complexity of endocardial trabeculae in multivessel coronary artery disease patients, and obtaining fractal dimensions (FD) by fractal analysis can help identify heart failure with preserved ejection fraction (HFpEF) patients. KEY POINTS The complexity of myocardial trabeculae differs among patients with multivessel coronary artery disease. Left ventricular fractal dimensions can reflect the complexity of the myocardial trabecular. Fractal dimensions have predictive value for the diagnosis of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Zi-Yi Gu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lei Zhao
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chong-Wen Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | | | - Shan Huang
- Philips Healthcare, Shanghai, 201103, China
| | - Yong-Yi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Voinescu OR, Ionac A, Sosdean R, Ionac I, Ana LS, Kundnani NR, Morariu S, Puiu M, Chirita-Emandi A. Genotype-Phenotype Insights of Inherited Cardiomyopathies-A Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:543. [PMID: 38674189 PMCID: PMC11052121 DOI: 10.3390/medicina60040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Background: Cardiomyopathies (CMs) represent a heterogeneous group of primary myocardial diseases characterized by structural and functional abnormalities. They represent one of the leading causes of cardiac transplantations and cardiac death in young individuals. Clinically they vary from asymptomatic to symptomatic heart failure, with a high risk of sudden cardiac death due to malignant arrhythmias. With the increasing availability of genetic testing, a significant number of affected people are found to have an underlying genetic etiology. However, the awareness of the benefits of incorporating genetic test results into the care of these patients is relatively low. Aim: The focus of this review is to summarize the current basis of genetic CMs, including the most encountered genes associated with the main types of cardiomyopathies: hypertrophic, dilated, restrictive arrhythmogenic, and non-compaction. Materials and Methods: For this narrative review, we performed a search of multiple electronic databases, to select and evaluate relevant manuscripts. Results: Advances in genetic diagnosis led to better diagnosis precision and prognosis prediction, especially with regard to the risk of developing arrhythmias in certain subtypes of cardiomyopathies. Conclusions: Implementing the genomic information to benefit future patient care, better risk stratification and management, promises a better future for genotype-based treatment.
Collapse
Affiliation(s)
- Oana Raluca Voinescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adina Ionac
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Raluca Sosdean
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Ioana Ionac
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca Silvia Ana
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Nilima Rajpal Kundnani
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Morariu
- General Medicine Faculty, “Vasile Goldis” West University, 473223 Arad, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy, “Victor Babeș” Eftimie Murgu Sq., 300041 Timisoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy, “Victor Babeș” Eftimie Murgu Sq., 300041 Timisoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| |
Collapse
|
3
|
Seitler S, De Zoysa Anthony S, Obianyo CCC, Syrris P, Patel V, Sado DM, Maestrini V, Castelletti S, Walsh S, O’Brien B, Moon JC, Captur G. Systolic anterior motion of the anterior mitral valve leaflet begins in subclinical hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2023; 25:86-94. [PMID: 37523765 PMCID: PMC10735306 DOI: 10.1093/ehjci/jead186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
AIMS Anterior mitral valve leaflet (AMVL) elongation is detectable in overt and subclinical hypertrophic cardiomyopathy (HCM). We sought to investigate the dynamic motion of the aorto-mitral apparatus to understand the behaviour of the AMVL and the mechanisms of left ventricular outflow tract obstruction (LVOTO) predisposition in HCM. METHODS AND RESULTS Cardiovascular magnetic resonance imaging using a 1.5 Tesla scanner was performed on 36 HCM sarcomere gene mutation carriers without left ventricular hypertrophy (G+LVH-), 31 HCM patients with preserved ejection fraction carrying a pathogenic sarcomere gene mutation (G+LVH+), and 53 age-, sex-, and body surface area-matched healthy volunteers. Dynamic excursion of the aorto-mitral apparatus was assessed semi-automatically on breath-held three-chamber cine steady-state free precession images. Four pre-defined regions of interest (ROIs) were tracked: ROIPMVL: hinge point of the posterior mitral valve leaflet; ROITRIG: intertrigonal mitral annulus; ROIAMVL: AMVL tip; and ROIAAO: anterior aortic annulus. Compared with controls, normalized two-dimensional displacement-vs.-time plots in G+LVH- revealed subtle but significant systolic anterior motion (SAM) of the AMVL (P < 0.0001) and reduced longitudinal excursion of ROIAAO (P = 0.014) and ROIPMVL (P = 0.048). In overt and subclinical HCM, excursion of the ROITRIG/AMVL/PMVL was positively associated with the burden of left ventricular fibrosis (P < 0.028). As expected, SAM was observed in G+LVH+ together with reduced longitudinal excursion of ROITRIG (P = 0.049) and ROIAAO (P = 0.008). CONCLUSION Dyskinesia of the aorto-mitral apparatus, including SAM of the elongated AMVL, is detectable in subclinical HCM before the development of LVH or left atrial enlargement. These data have the potential to improve our understanding of early phenotype development and LVOTO predisposition in HCM.
Collapse
Affiliation(s)
- Samuel Seitler
- UCL Institute of Experimental Medicine, Royal Free London, Gower Street, London, UK
| | - Surani De Zoysa Anthony
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
| | - Chinwe C C Obianyo
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
- NIHR University College London Hospitals Biomedical Research Center, London, UK
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London, UK
| | - Petros Syrris
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
| | - Vimal Patel
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
| | - Daniel M Sado
- Cardiovascular Magnetic Resonance Unit, King’s College London, UK
| | - Viviana Maestrini
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
| | - Silvia Castelletti
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
| | - Stephen Walsh
- Department of Nephrology, Royal Free London NHS Foundation Trust, Pond Street, London, UK
- UCL Institute of Experimental Medicine, Royal Free London, Gower Street, London, UK
| | - Ben O’Brien
- Department of Perioperative Medicine, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charite Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Outcomes Research Consortium, Department of Outcomes Research, The Cleveland Clinic, 9500 Euclid Ave. P77, Cleveland, OH 44195, USA
| | - James C Moon
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
- NIHR University College London Hospitals Biomedical Research Center, London, UK
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London, UK
| | - Gabriella Captur
- University College London, Institute of Cardiovascular Science, Gower Street, London WC1E 6BT, UK
- MRC Unit of Lifelong Health and Ageing, 1 – 19 Torrington Place, London WC1E 7HB, UK
- Department of Cardiology, Royal Free Hospital NHS Foundation Trust, Pond Street, Hampstead, London NW3 2QG, UK
| |
Collapse
|
4
|
Zhang TY, An DA, Zhou H, Ni Z, Wang Q, Chen B, Lu R, Huang J, Zhou Y, Hu J, Kim DH, Wilson M, Mou S, Wu LM. Fractal analysis: Left ventricular trabecular complexity cardiac MRI adds independent risks for heart failure with preserved ejection fraction in participants with end-stage renal disease. Int J Cardiol 2023; 391:131334. [PMID: 37696365 DOI: 10.1016/j.ijcard.2023.131334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE To measure left ventricular (LV) trabecular complexity by fractal dimension (FD) in patients with end-stage renal disease (ESRD), and assess whether FD was an independent risk factor for heart failure with preserved ejection fraction (HFpEF), or a significant predictor for adverse outcome in this population. METHODS The study retrospectively enrolled 104 participants with ESRD who underwent 3.0 T cardiac magnetic resonance imaging (MRI) from June 2018 to November 2020. LV trabeculation was quantified with fractal analysis of short-axis cine slices to estimate the FD. Logistic regression analyses were used to evaluate FD and cardiac MRI parameters and to find independent risk predictors. Cox proportional hazard regression was used to investigate the association between FD and MACE. RESULTS LV FD was higher in in the HFpEF group than those in the non-HFpEF group, with the greatest difference near the base of the ventricle. Age, minimum left atrial volume index, and LV mean basal FD were independent predictors for HFpEF in patients with ESRD. Combining the mean basal FD with typical predictive factors resulted in a C-index (0.902 vs 0.921), which was not significantly higher. Same improvements were found for net reclassification improvement [0.642; 95% confidence interval (CI), 0.254-1.029] and integrated discrimination index (0.026; 95% CI, 0.008-0.061). Participants with a LV global FD above the cutoff value (1.278) had higher risks of MACE in ESRD patients. CONCLUSIONS LV trabecular complexity measured by FD was an independent risk factor for HFpEF, and a significant predictor for MACE among patients with ESRD.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hang Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Binghua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Renhua Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiaying Huang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yin Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA
| | - Doo Hee Kim
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA
| | - Molly Wilson
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center,Ren Ji Hospital, Uremia Diagnosis and Treatment Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
5
|
Grebur K, Gregor Z, Kiss AR, Horváth M, Mester B, Czimbalmos C, Tóth A, Szabó L, Dohy Z, Vágó H, Merkely B, Szűcs A. Different methods, different results? Threshold-based versus conventional contouring techniques in clinical practice. Int J Cardiol 2023; 381:128-134. [PMID: 36965638 DOI: 10.1016/j.ijcard.2023.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND The quantitative differences of left and right ventricular (LV, RV) parameters of using different cardiac MRI (CMR) post-processing techniques and their clinical impact are less studied. We aimed to assess the differences and their clinical impact between the conventional contouring (CC) and the threshold-based (TB) methods using 70% and 50% thresholds in different hypertrabeculated conditions. METHODS This retrospective study included 30 dilated cardiomyopathy, 30 left ventricular non-compaction (LVNC), 30 arrhythmogenic cardiomyopathy patients, 30 healthy athletes and 30 healthy volunteers. All participants underwent CMR imaging on 1.5 T. Cine sequences were used to derive measures of the cardiac volumes, function, total muscle mass (TMi) and trabeculae and papillary muscle mass (TPMi) using CC and TB segmentation methods. RESULTS Comparing the CC and the 70% and 50% threshold TB methods, the LV and RV volumes were significantly lower, the ejection fraction (EF) and the TMi were significantly higher with the TB methods. Between the two threshold setups, only TPMi was significantly higher with the 70% threshold. Regarding the clinical benefits, the LVNC was the only group in whom all the diagnostic and therapeutic decisions and risk stratification were influenced using the TB method. Diagnostic changes occurred in three-quarters of the population, and all the cardiomyopathy groups were affected regarding the decision-making about pharmaco- and device therapy. CONCLUSIONS Using the TB method, only TPMi was significantly higher with the 70% threshold than the 50% setup, and both of them differed significantly from the CC technique, with relevant clinical impacts in all patient groups.
Collapse
Affiliation(s)
- Kinga Grebur
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Zsófia Gregor
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Anna Réka Kiss
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Márton Horváth
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Balázs Mester
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Csilla Czimbalmos
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Attila Tóth
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Liliána Szabó
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Zsófia Dohy
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary; Department of Sports Medicine, Semmelweis University, Budapest, Városmajor utca, 68., Budapest 1122, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary; Department of Sports Medicine, Semmelweis University, Budapest, Városmajor utca, 68., Budapest 1122, Hungary
| | - Andrea Szűcs
- Heart and Vascular Center, Semmelweis University, Budapest, Városmajor utca 68., Budapest 1122, Hungary.
| |
Collapse
|
6
|
Petersen SE, Jensen B, Aung N, Friedrich MG, McMahon CJ, Mohiddin SA, Pignatelli RH, Ricci F, Anderson RH, Bluemke DA. Excessive Trabeculation of the Left Ventricle: JACC: Cardiovascular Imaging Expert Panel Paper. JACC Cardiovasc Imaging 2023; 16:408-425. [PMID: 36764891 PMCID: PMC9988693 DOI: 10.1016/j.jcmg.2022.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023]
Abstract
Excessive trabeculation, often referred to as "noncompacted" myocardium, has been described at all ages, from the fetus to the adult. Current evidence for myocardial development, however, does not support the formation of compact myocardium from noncompacted myocardium, nor the arrest of this process to result in so-called noncompaction. Excessive trabeculation is frequently observed by imaging studies in healthy individuals, as well as in association with pregnancy, athletic activity, and with cardiac diseases of inherited, acquired, developmental, or congenital origins. Adults with incidentally noted excessive trabeculation frequently require no further follow-up based on trabecular pattern alone. Patients with cardiomyopathy and excessive trabeculation are managed by cardiovascular symptoms rather than the trabecular pattern. To date, the prognostic role of excessive trabeculation in adults has not been shown to be independent of other myocardial disease. In neonates and children with excessive trabeculation and normal or abnormal function, clinical caution seems warranted because of the reported association with genetic and neuromuscular disorders. This report summarizes the evidence concerning the etiology, pathophysiology, and clinical relevance of excessive trabeculation. Gaps in current knowledge of the clinical relevance of excessive trabeculation are indicated, with priorities suggested for future research and improved diagnosis in adults and children.
Collapse
Affiliation(s)
- Steffen E Petersen
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom.
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nay Aung
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom
| | - Matthias G Friedrich
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Saidi A Mohiddin
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom
| | - Ricardo H Pignatelli
- Department of Pediatric Cardiology, Texas Children's Hospital, Houston, Texas, USA
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging, and Clinical Sciences, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - David A Bluemke
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Jensen B, Petersen SE, Coolen BF. Myocardial perfusion in excessively trabeculated hearts: Insights from imaging and histological studies. J Cardiol 2022; 81:499-507. [PMID: 36481300 DOI: 10.1016/j.jjcc.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
In gestation, the coronary circulation develops initially in the compact layer and it expands only in fetal development to the trabeculations. Conflicting data have been published as to whether the trabecular layer is hypoperfused relative to the compact wall after birth. If so, this could explain the poor pump function in patients with left ventricular excessive trabeculation, or so-called noncompaction. Here, we review direct and indirect assessments of myocardial perfusion in normal and excessively trabeculated hearts by in vivo imaging by magnetic resonance imaging (MRI), positron emission tomography (PET)/single photon emission computed tomography (SPECT), and echocardiography in addition to histology, injections of labelled microspheres in animals, and electrocardiography. In MRI, PET/SPECT, and echocardiography, flow of blood or myocardial uptake of blood-borne tracer molecules are measured. The imaged trabecular layer comprises trabeculations and blood-filled intertrabecular spaces whereas the compact layer comprises tissue only, and spatio-temporal resolution likely affects measurements of myocardial perfusion differently in the two layers. Overall, studies measuring myocardial uptake of tracers (PET/SPECT) suggest trabecular hypoperfusion. Studies measuring the quantity of blood (echocardiography and MRI) suggest trabecular hyperperfusion. These conflicting results are reconciled if the low uptake from intertrabecular spaces in PET/SPECT and the high signal from intertrabecular spaces in MRI and echocardiography are considered opposite biases. Histology on human hearts reveal a similar capillary density of trabecular and compact myocardium. Injections of labelled microspheres in animals reveal a similar perfusion of trabecular and compact myocardium. In conclusion, trabecular and compact muscle are likely equally perfused in normal hearts and most cases of excessive trabeculation.
Collapse
|
8
|
Hirono K, Ichida F. Left ventricular noncompaction: a disorder with genotypic and phenotypic heterogeneity-a narrative review. Cardiovasc Diagn Ther 2022; 12:495-515. [PMID: 36033229 PMCID: PMC9412206 DOI: 10.21037/cdt-22-198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023]
Abstract
Background and Objective Left ventricular noncompaction (LVNC) is a cardiomyopathy characterized by excessive trabecular formation and deep recesses in the ventricular wall, with a bilaminar structure consisting of an endocardial noncompaction layer and an epicardial compacted layer. Although genetic variants have been reported in patients with LVNC, understanding of LVNC and its pathogenesis has not yet been fully elucidated. We addressed the latest findings on genes reported to be associated with LVNC morphogenesis and possible pathologies to understand the diverse spectrum between genotype and phenotype in LVNC. Also, the latest findings and issues related to the diagnosis of LVNC were summarized. Methods This article is written as a commentary narrative review and will provide an update on the current literature and available data on common forms of LVNC published in the past 30 years in English through to May 2022 using PubMed. Key Content and Findings Familial forms of LVNC are frequent, and autosomal dominant mode of inheritance has been predominantly observed. Several of the candidate causative genes are also mutated in other cardiomyopathies, suggesting a possible shared molecular and/or cellular etiology. The most common gene functions were sarcomere function whereas genes in mice LVNC models were involved in heart development. Echocardiography and cardiac magnetic resonance imaging (CMR) are useful for diagnosis although there are no unified criteria due to overdiagnosis of imaging, poor consistency between techniques, and lack of association between trabecular severity and adverse clinical outcomes. Conclusions This review reflects the current lack of clarity regarding the pathogenesis and significance of LVNC and showed the complexity of imaging diagnostic criteria, interpretation of the role of LVNC as a cause, and uncertainty regarding the specific genetic basis of LVNC.
Collapse
Affiliation(s)
- Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Fukiko Ichida
- Department of Pediatrics, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
9
|
Wijchers S, von der Thüsen JH, Robertus JL, Caliskan K. A case with two faces: noncompaction or phospholamban cardiomyopathy?: Noncompaction or phospholamban cardiomyopathy? Cardiovasc Pathol 2021; 57:107395. [PMID: 34752915 DOI: 10.1016/j.carpath.2021.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Noncompaction cardiomyopathy is a well-known clinical entity, whereas phospholamban gene mutation is a relatively recently known mutation with phenotypes as arrhythmogenic cardiomyopathy and dilated cardiomyopathy. We report the case of a 15-year-old girl that presents with rapid progressive heart failure based on a noncompaction cardiomyopathy as confirmed through cardiovascular imaging. As a result of her progressive heart failure 22 months later she received a heart transplant. Genetic testing showed a phospholamban gene mutation. We present cardiovascular images together with macroscopic and microscopic anatomy. This case shows the importance of considering phospholamban gene mutation in a case of severe noncompaction cardiomyopathy.
Collapse
Affiliation(s)
- Sip Wijchers
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Kadir Caliskan
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Gregor Z, Kiss AR, Szabó LE, Tóth A, Grebur K, Horváth M, Dohy Z, Merkely B, Vágó H, Szűcs A. Sex- and age- specific normal values of left ventricular functional and myocardial mass parameters using threshold-based trabeculae quantification. PLoS One 2021; 16:e0258362. [PMID: 34637474 PMCID: PMC8509873 DOI: 10.1371/journal.pone.0258362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Background The threshold-based (TB) trabeculated and papillary muscle mass (TPM) quantification method for cardiac MRI (CMR) calculates different values than conventional contouring techniques. We aimed to identify the sex- and age-related normal reference ranges for left ventricular (LV) myocardial mass values, volumetric and functional parameters and the correspondence of these parameters using the TB method. Methods Healthy European adults (n = 200, age: 39.4 ± 12 years, males: 100) were examined with CMR and evaluated with a TB postprocessing method. They were stratified by sex and age (Group A: 18–29, Group B: 30–39, Group C: 40–49, Group D: >50 years). The calculated parameters were indexed to body surface area (i). Results The normal reference ranges for the studied parameters were assessed in each age group. Significant biometric differences in LV parameters and mass-to-volume ratios were found between males and females, and the left ventricular compacted myocardial mass (LVCMi) and TPMi differences remained significant after stratification by age. Unlike other LV volumetric and functional parameters and mass-to-volume ratios, the TPMi, the LVCMi and the TPMi-to-LVCMi ratio did not differ among age groups in males or females. This finding was strengthened by the lack of correlation between TPMi and age. Conclusions Age- and sex-related normal reference ranges for LV volumetric and functional parameters and LVCMi and TPMi values were established using a TB postprocessing method. TPMi, LVCMi and their ratio did not change over time. The TPMi-to-LVCMi and the mass-to-volume ratios might have clinical utility in the differential diagnosis of conditions with LV hypertrabeculation.
Collapse
Affiliation(s)
- Zsófia Gregor
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - Anna Réka Kiss
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | | | - Attila Tóth
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - Kinga Grebur
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - Márton Horváth
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - Zsófia Dohy
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Szűcs
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
11
|
Jensen B, Coolen BF, Smit TH. Hymenophore configuration of the oak mazegill ( Daedalea quercina). Mycologia 2020; 112:895-907. [PMID: 32716720 DOI: 10.1080/00275514.2020.1785197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The complex hymenophore configuration of the oak mazegill (Daedalea quercina, Polyporales) is rarely quantified, although quantifications are important analytical tools to assess form and growth. We quantified the hymenophore configuration of the oak mazegill by manual counting of tubes and tubular branches and ends. Complementary measurements were made with the software AngioTool. We found that the number of tubular branches and ends varied substantially between specimens, with a positive correlation with hymenophore area (5-51 cm2). We then measured complexity as tubular branches and ends per area, and complexity was not correlated with the size of the basidiocarps. Basidiocarps from two locations were compared (Hald ege, N = 11; Hvidding krat, N = 7), and the prevalence of branches and that of ends were greater in the Hvidding krat hymenophores (P < 0.001 and P = 0.029, respectively). Additionally, lacunarity, a measure of complexity ("gappiness"), gave a higher score for the Hald ege hymenophores (P = 0.002). Lacunarity analysis of multiple species of Polyporales showed that the oak mazegill hymenophore is comparatively complex. Concerning factors that affect hymenophore complexity of the oak mazegill, we observed that greater hymenophore complexity was associated with abrupt boundaries between growth zones on the pileus surface. Several years of monitoring documented that basidiocarps can remodel to gravitational changes and heal from damage. In conclusion, intra- and interspecies differences of hymenophore configuration can be quantified. In oak mazegill, hymenophore complexity is not dependent on size per se, although abrupt borders between growth zones are associated with increased complexity. Some of the variation between basidiocarps may reflect aspects of the ecology of the individual fungus.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam , Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam , Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam , Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bergeron A, Brezai A, Shukr R, Villeneuve L, Allen BG, Qureshi WMS, Hentges KE, Calderone A. Filamentous nestin and nonmuscle myosin IIB are associated with a migratory phenotype in neonatal rat cardiomyocytes. J Cell Physiol 2020; 236:1281-1294. [PMID: 32654195 DOI: 10.1002/jcp.29934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte migration represents a requisite event of cardiogenesis and the regenerative response of the injured adult zebrafish and neonatal rodent heart. The present study tested the hypothesis that the appearance of the intermediate filament protein nestin in neonatal rat ventricular cardiomyocytes (NNVMs) was associated in part with the acquisition of a migratory phenotype. The cotreatment of NNVMs with phorbol 12,13-dibutyrate (PDBu) and the p38α/β mitogen-activated protein kinase inhibitor SB203580 led to the de novo synthesis of nestin. The intermediate filament protein was subsequently reorganized into a filamentous pattern and redistributed to the leading edge of elongated membrane protrusions translating to significant lengthening of NNVMs. PDBu/SB203580 treatment concomitantly promoted the reorganization of nonmuscle myosin IIB (NMIIB) located predominantly at the periphery of the plasma membrane of NNVMs to a filamentous phenotype extending to the leading edge of elongated membrane protrusions. Coimmunoprecipitation assay revealed a physical interaction between NMIIB and nestin after PDBu/SB203580 treatment of NNVMs. In wild-type and heterozygous NMIIB embryonic hearts at E11.5-E14.5 days, nestin immunoreactivity was identified in a subpopulation of cardiomyocytes elongating perpendicular to the compact myocardium, at the leading edge of nascent trabeculae and during thickening of the compact myocardium. In mutant embryonic hearts lacking NMIIB protein expression, trabeculae formation was reduced, the compact myocardium significantly thinner and nestin immunoreactivity undetectable in cardiomyocytes at E14.5 days. These data suggest that NMIIB and nestin may act in a coordinated fashion to facilitate the acquisition of a migratory phenotype in neonatal and embryonic cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre Bergeron
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Andra Brezai
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Rami Shukr
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Wasay M S Qureshi
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kathryn E Hentges
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Angelino Calderone
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
van Waning JI, Moesker J, Heijsman D, Boersma E, Majoor-Krakauer D. Systematic Review of Genotype-Phenotype Correlations in Noncompaction Cardiomyopathy. J Am Heart Assoc 2019; 8:e012993. [PMID: 31771441 PMCID: PMC6912966 DOI: 10.1161/jaha.119.012993] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background A genetic cause can be identified in 30% of noncompaction cardiomyopathy patients (NCCM) with clinical features ranging from asymptomatic cardiomyopathy to heart failure with major adverse cardiac events (MACE). Methods and Results To investigate genotype‐phenotype correlations, the genotypes and clinical features of genetic NCCM patients were collected from the literature. We compared age at diagnosis, cardiac features and risk for MACE according to mode of inheritance and molecular effects for defects in the most common sarcomere genes and NCCM subtypes. Geno‐ and phenotypes of 561 NCCM patients from 172 studies showed increased risk in children for congenital heart defects (P<0.001) and MACE (P<0.001). In adult NCCM patients the main causes were single missense mutations in sarcomere genes. Children more frequently had an X‐linked or mitochondrial inherited defect (P=0.001) or chromosomal anomalies (P<0.001). MYH7 was involved in 48% of the sarcomere gene mutations. MYH7 and ACTC1 mutations had lower risk for MACE than MYBPC3 and TTN (P=0.001). The NCCM/dilated cardiomyopathy cardiac phenotype was the most frequent subtype (56%; P=0.022) and was associated with an increased risk for MACE and high risk for left ventricular systolic dysfunction (<0.001). In multivariate binary logistic regression analysis MYBPC3,TTN, arrhythmia ‐, non‐sarcomere non‐arrhythmia cardiomyopathy—and X‐linked genes were genetic predictors for MACE. Conclusions Sarcomere gene mutations were the most common cause in adult patients with lower risk of MACE. Children had multi‐systemic disorders with severe outcome, suggesting that the diagnostic and clinical approaches should be adjusted to age at presentation. The observed genotype‐phenotype correlations endorsed that DNA diagnostics for NCCM is important for clinical management and counseling of patients.
Collapse
Affiliation(s)
- Jaap I van Waning
- Department of Clinical Genetics Erasmus Medical Center Rotterdam The Netherlands
| | - Joost Moesker
- Department of Clinical Genetics Erasmus Medical Center Rotterdam The Netherlands
| | - Daphne Heijsman
- Department of Clinical Genetics Erasmus Medical Center Rotterdam The Netherlands
| | - Eric Boersma
- Department of Cardiology Erasmus Medical Center Rotterdam The Netherlands
| | | |
Collapse
|
14
|
Kawamura T, Yasuda M, Okune M, Kakehi K, Kagioka Y, Nakamura T, Miyazaki S, Iwanaga Y. Increased Left Ventricular Trabeculation Is Associated With Increased B-Type Natriuretic Peptide Levels and Impaired Outcomes in Nonischemic Cardiomyopathy. Can J Cardiol 2019; 36:518-526. [PMID: 32007348 DOI: 10.1016/j.cjca.2019.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The clinical significance of left ventricular (LV) trabeculation remains unknown in cardiomyopathies. B-Type natriuretic peptide (BNP) strongly reflects LV end-diastolic wall stress and is a useful prognostic marker of cardiovascular diseases. The enhanced identification of LV trabeculae (T) with the use of cardiac magnetic resonance and the evaluation of its relationship with BNP may elucidate the biologic significance and clinical impact of trabeculation in patients with nonischemic cardiomyopathy (NICM). METHODS The LV volume and mass of 515 patients with NICM and 36 control subjects were analyzed with the use of a steady-state free precession sequence, and individual T mass was planimetred. Major adverse cardiac events (MACE) were assessed. RESULTS T mass index correlated with LV end-diastolic volume index (EDVI), LV mass index, and papillary muscle mass index (all P < 0.001). Also, T mass index was positively correlated with BNP level (R = 0.381; P < 0.001) and was an independent determinant of BNP after adjusting for age, sex, body mass index (BMI), etiology, LV ejection fraction, and LV EDVI (P < 0.001). Kaplan-Meier analysis during a median follow-up of 17.3 months showed that higher T mass index and increased BNP level correlated with MACE. On multivariate analysis, T mass index (P = 0.031) and BNP (P < 0.001) remained associated with poor outcomes when combined with age, sex, BMI, and etiology. CONCLUSIONS Increased LV trabeculation was associated with LV dysfunction/remodelling and impaired outcomes in NICM of various etiologies. This may support the biologic significance of LV trabeculation and could be attributed to its association with BNP through LV wall stress.
Collapse
Affiliation(s)
- Takayuki Kawamura
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masakazu Yasuda
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mana Okune
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazuyoshi Kakehi
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshinori Kagioka
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Takashi Nakamura
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Shunichi Miyazaki
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshitaka Iwanaga
- Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan.
| |
Collapse
|
15
|
Hanemaaijer J, Gregorovicova M, Nielsen JM, Moorman AFM, Wang T, Planken RN, Christoffels VM, Sedmera D, Jensen B. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development 2019; 146:dev.177121. [PMID: 31285354 DOI: 10.1242/dev.177121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
Abstract
Among lizards, only monitor lizards (Varanidae) have a functionally divided cardiac ventricle. The division results from the combined function of three partial septa, which may be homologous to the ventricular septum of mammals and archosaurs. We show in developing monitors that two septa, the 'muscular ridge' and 'bulbuslamelle', express the evolutionarily conserved transcription factors Tbx5, Irx1 and Irx2, orthologues of which mark the mammalian ventricular septum. Compaction of embryonic trabeculae contributes to the formation of these septa. The septa are positioned, however, to the right of the atrioventricular junction and they do not participate in the separation of incoming atrial blood streams. That separation is accomplished by the 'vertical septum', which expresses Tbx3 and Tbx5 and orchestrates the formation of the electrical conduction axis embedded in the ventricular septum. These expression patterns are more pronounced in monitors than in other lizards, and are associated with a deep electrical activation near the vertical septum, in contrast to the primitive base-to-apex activation of other lizards. We conclude that evolutionarily conserved transcriptional programmes may underlie the formation of the ventricular septa of monitors.
Collapse
Affiliation(s)
- Jermo Hanemaaijer
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Martina Gregorovicova
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.,Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Jan M Nielsen
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, 8200, Aarhus, Denmark
| | - Antoon F M Moorman
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic .,Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Bjarke Jensen
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Dueñas A, Expósito A, Aranega A, Franco D. The Role of Non-Coding RNA in Congenital Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E15. [PMID: 30939839 PMCID: PMC6616598 DOI: 10.3390/jcdd6020015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular development is a complex developmental process starting with the formation of an early straight heart tube, followed by a rightward looping and the configuration of atrial and ventricular chambers. The subsequent step allows the separation of these cardiac chambers leading to the formation of a four-chambered organ. Impairment in any of these developmental processes invariably leads to cardiac defects. Importantly, our understanding of the developmental defects causing cardiac congenital heart diseases has largely increased over the last decades. The advent of the molecular era allowed to bridge morphogenetic with genetic defects and therefore our current understanding of the transcriptional regulation of cardiac morphogenesis has enormously increased. Moreover, the impact of environmental agents to genetic cascades has been demonstrated as well as of novel genomic mechanisms modulating gene regulation such as post-transcriptional regulatory mechanisms. Among post-transcriptional regulatory mechanisms, non-coding RNAs, including therein microRNAs and lncRNAs, are emerging to play pivotal roles. In this review, we summarize current knowledge on the functional role of non-coding RNAs in distinct congenital heart diseases, with particular emphasis on microRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Angel Dueñas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| | - Almudena Expósito
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| |
Collapse
|
17
|
Vaikhanskaya TG, Sivitskaya LN, Kurushko TV, Nizhnikava OG, Levdanskiy OD, Danilenko NG. Left ventricular noncompaction: a distinct cardiomyopathy or a composite anatomical syndrome? KARDIOLOGIIA 2018; 58:33-45. [PMID: 30625088 DOI: 10.18087/cardio.2558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022]
Abstract
Left ventricular non-compaction (LVNC) is characterized by hypertrabecularity (thickened non-compact layer) with deep intertrabecular recesses that are continuous with the ventricle cavity, and a thin compact layer. The phenotypes of LVNС are extremely variable: the left or right ventricular variant, biventricular form, LVNC with symptoms of heart failure or arrhythmia, asymptomatic forms or variants with thromboembolic events. In 30-50 % of patients with LVNC genetic mutations of genes encoding sarcomeric or cytoskeletal proteins are revealed by a genetic study. The article presents a literature review on the problems of diagnosis, visualization, pathogenesis, variability of clinical manifestations of LVNC and its genetic heterogeneity. Clinical cases demonstrating LVNC as a concomitant anatomical syndrome due to monogenic Danone disease, as well as the family cardiomyopathy with the digenic inheritance of two phenotypes (LVNC with DCM) and the unique case of peripartum evolution of the acquired LVNC syndrome, all these cases are reflect the current uncertainty regarding to the pathogenesis and significance of LVNC. The main question is whether LVNC is a distinct cardiomyopathy or a morphologic trait and a composite anatomical syndrome of congenital heart disease or other cardiomyopathies (DCM, HCM, ARVC) remains controversial. Achievement of professional consensus guidelines about unification of diagnostic criteria and risk-stratification of LVNC, improvement of visualization tools and expansion of genetic testing will help to significantly expand our knowledge and understanding of the pathogenesis, clinical significance and prognosis of LVNC for optimization of the treatment strategy.
Collapse
Affiliation(s)
- T G Vaikhanskaya
- State Institution Republican Science and Practice Center «Cardiology».
| | | | | | | | | | | |
Collapse
|
18
|
Dolader P, Gran F, Giralt G, Ferrer Q, Rosés-Noguer F, Albert DC. Evolución ondulante de la miocardiopatía no compactada. Rev Esp Cardiol (Engl Ed) 2018. [DOI: 10.1016/j.recesp.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Dolader P, Gran F, Giralt G, Ferrer Q, Rosés-Noguer F, Albert DC. Undulating Clinical Course of Noncompaction Cardiomyopathy. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2018; 71:1077-1079. [PMID: 29221698 DOI: 10.1016/j.rec.2017.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Paola Dolader
- Unidad de Cardiología Pediátrica, Hospital Universitario de la Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Ferran Gran
- Unidad de Cardiología Pediátrica, Hospital Universitario de la Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Gemma Giralt
- Unidad de Cardiología Pediátrica, Hospital Universitario de la Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Queralt Ferrer
- Unidad de Cardiología Pediátrica, Hospital Universitario de la Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Ferran Rosés-Noguer
- Unidad de Cardiología Pediátrica, Hospital Universitario de la Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Dimpna C Albert
- Unidad de Cardiología Pediátrica, Hospital Universitario de la Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Abela M, D’Silva A. Left Ventricular Trabeculations in Athletes: Epiphenomenon or Phenotype of Disease? CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:100. [PMID: 30367273 PMCID: PMC6209014 DOI: 10.1007/s11936-018-0698-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Excessive trabeculation attracting a diagnosis of left ventricular noncompaction cardiomyopathy (LVNC) has been reported in ostensibly healthy athletes. This review aims to explain why this occurs and whether this represents a spectrum of athletic physiological remodelling or unmasking of occult cardiomyopathy. RECENT FINDINGS Genetic studies have yet to identify a dominant mutation associated with the LVNC phenotype and reported gene mutations overlap with many distinct cardiomyopathies and ion channel disorders, implying that the phenotype is shared across different genetic conditions. Large contemporary cohort studies indicate that current LVNC imaging criteria are oversensitive and not predictive of adverse clinical outcomes. The majority of excessive LV trabeculation, as assessed by current quantification methods, is not due to cardiomyopathy but forms part of the normal continuum in health with potential contributions from cardiac remodelling processes. The study of rare, severe LVNC phenotypes may yield insights into an underlying molecular pathogenesis but in the absence of a universally accepted definition, contamination with aetiologically distinct conditions expressing a similar phenotype will remain an issue. Automated, objective quantification of trabeculation will help to define the normal distribution using big data without the constraint of wide interobserver variation.
Collapse
Affiliation(s)
- Mark Abela
- Cardiology Clinical Academic Group, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
- MSc Sports Cardiology, Cardiology Clinical Academic Group, St George’s, University of London, London, UK
| | - Andrew D’Silva
- Cardiology Clinical Academic Group, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| |
Collapse
|
21
|
Jensen B, H Smit T. Examples of Weak, If Not Absent, Form-Function Relations in the Vertebrate Heart. J Cardiovasc Dev Dis 2018; 5:E46. [PMID: 30205545 PMCID: PMC6162483 DOI: 10.3390/jcdd5030046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
That form and function are related is a maxim of anatomy and physiology. Yet, form-function relations can be difficult to prove. Human subjects with excessive trabeculated myocardium in the left ventricle, for example, are diagnosed with non-compaction cardiomyopathy, but the extent of trabeculations may be without relation to ejection fraction. Rather than rejecting a relation between form and function, we may ask whether the salient function is assessed. Is there a relation to electrical propagation, mean arterial blood pressure, or propensity to form blood clots? In addition, how should the extent of trabeculated muscle be assessed? While reviewing literature on trabeculated muscle, we applied Tinbergen's four types of causation-how does it work, why does it work, how is it made, and why did it evolve-to better parse what is meant by form and function. The paper is structured around cases that highlight advantages and pitfalls of applying Tinbergen's questions. It further uses the evolution of lunglessness in amphibians to argue that lung reduction impacts on chamber septation and it considers the evolution of an arterial outflow in fishes to argue that reductions in energy consumption may drive structural changes with little consequences to function. Concerning trabeculations, we argue they relate to pumping function in the embryo in the few weeks before the onset of coronary circulation. In human fetal and postnatal stages, a spectrum of trabeculated-to-compact myocardium makes no difference to cardiac function and in this period, form and function may appear unrelated.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Paun B, Bijnens B, Cook AC, Mohun TJ, Butakoff C. Quantification of the detailed cardiac left ventricular trabecular morphogenesis in the mouse embryo. Med Image Anal 2018; 49:89-104. [PMID: 30114550 DOI: 10.1016/j.media.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
During embryogenesis, a mammalian heart develops from a simple tubular shape into a complex 4-chamber organ, going through four distinct phases: early primitive tubular heart, emergence of trabeculations, trabecular remodeling and development of the compact myocardium. In this paper we propose a framework for standardized and subject-independent 3D regional myocardial complexity analysis, applied to analysis of the development of the mouse left ventricle. We propose a standardized subdivision of the myocardium into 3D overlapping regions (in our case 361) and a novel visualization of myocardial complexity, whereupon we: 1) extend the fractal dimension, commonly applied to image slices, to 3D and 2) use volume occupied by the trabeculations in each region together with their surface area, in order to quantify myocardial complexity. The latter provides an intuitive characterization of the complexity, given that compact myocardium will tend to occupy a larger volume with little surface area while high surface area with low volume will correspond to highly trabeculated areas. Using 50 mouse embryo images at 5 different gestational ages (10 subjects per gestational age), we demonstrate how the proposed representation and complexity measures describe the development of LV myocardial complexity. The mouse embryo data was acquired using high resolution episcopic microscopy. The complexity analysis per region was carried out using: 3D fractal dimension, myocardial volume, myocardial surface area and ratio between the two. The analysis of gestational ages was performed on embryos of 14.5, 15.5, 16.5, 17.5 and 18.5 embryonic days, and demonstrated that the regional complexity of the trabeculations increases longitudinally from the base to the apex, with a maximum around the middle. The overall complexity decreases with gestational age, being most complex at 14.5. Circumferentially, at ages 14.5, 15.5 and 16.5, the trabeculations show similar complexity everywhere except for the anteroseptal and inferolateral area of the wall, where it is smaller. At 17.5 days, the regions of high complexity become more localized towards the inferoseptal and anterolateral parts of the wall. At 18.5 days, the high complexity area exhibits further localization at the inferoseptal and anterior part of the wall.
Collapse
Affiliation(s)
- Bruno Paun
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, c. Roc Boronat 138, Barcelona 08018, Spain.
| | - Bart Bijnens
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, c. Roc Boronat 138, Barcelona 08018, Spain; ICREA, Passeig Lluís Companys, 23, Barcelona 08018, Spain; KU Leuven, Oude Markt 13, Leuven 3000, Belgium
| | - Andrew C Cook
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, UK
| | | | - Constantine Butakoff
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, c. Roc Boronat 138, Barcelona 08018, Spain
| |
Collapse
|
23
|
Paun B, Bijnens B, Butakoff C. Relationship between the left ventricular size and the amount of trabeculations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2939. [PMID: 29124903 DOI: 10.1002/cnm.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Contemporary imaging modalities offer noninvasive quantification of myocardial deformation; however, they make gross assumptions about internal structure of the cardiac walls. Our aim is to study the possible impact of the trabeculations on the stroke volume, strain, and capacity of differently sized ventricles. The cardiac left ventricle is represented by an ellipsoid and the trabeculations by a tissue occupying a fixed volume. The ventricular contraction is modeled by scaling the ellipsoid whereupon the measurements of longitudinal strain, end-diastolic, end-systolic, and stroke volumes are derived and compared. When the trabeculated and nontrabeculated ventricles, having the same geometry and deformation pattern, contain the same amount of blood and contract with the same strain, we observed an increased stroke volume in our model of the trabeculated ventricle. When these ventricles contain and eject the same amount of blood, we observed a reduced strain in the trabeculated case. We identified that a trade-off between the strain and the amount of trabeculations could be reached with a 0.35- to 0.41-cm dense trabeculated layer, without blood filled recesses (for a ventricle with end-diastolic volume of about 150 mL). A trabeculated ventricle can work at lower strains compared to a nontrabeculated ventricle to produce the same stroke volume, which could be a possible explanation why athletes and pregnant women develop reversible signs of left ventricular noncompaction, since the trabeculations could help generating extra cardiac output. This knowledge might help to assess heart failure patients with dilated cardiomyopathies who often show signs of noncompaction.
Collapse
Affiliation(s)
- Bruno Paun
- PhySense, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bart Bijnens
- PhySense, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
- KU Leuven, Leuven, Belgium
| | | |
Collapse
|
24
|
Coexistence of congenital left ventricular aneurysm and prominent left ventricular trabeculation in a patient with LDB3 mutation: a case report. J Med Case Rep 2017; 11:229. [PMID: 28821295 PMCID: PMC5563034 DOI: 10.1186/s13256-017-1405-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background The coexistence of congenital left ventricular aneurysm and abnormal cardiac trabeculation with gene mutation has not been reported previously. Here, we report a case of coexisting congenital left ventricular aneurysm and prominent left ventricular trabeculation in a patient with LIM domain binding 3 gene mutation. Case presentation A 30-year-old Asian man showed paroxysmal sinus tachycardia and Q waves in an electrocardiogram health check. There were no specific findings in physical examinations and serological tests. A coronary-computed tomography angiography check showed normal coronary artery and no coronary stenosis. Both left ventricle contrast echocardiography and cardiac magnetic resonance showed rare patterns of a combination of an apical aneurysm-like out-pouching structure with a wide connection to the left ventricle and prominent left ventricular trabecular meshwork. High-throughput sequencing examinations showed a novel mutation in the LDB3 gene (c.C793>T; p.Arg265Cys). Conclusions Our finding indicates that the phenotypic expression of two heart conditions, congenital left ventricular aneurysm and prominent left ventricular trabeculation, although rare, can occur simultaneously with LDB3 gene mutation. Congenital left ventricular aneurysm and prominent left ventricular trabeculation may share the same genetic background.
Collapse
|
25
|
Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy? J Am Coll Cardiol 2017; 68:949-66. [PMID: 27561770 DOI: 10.1016/j.jacc.2016.05.096] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
Left ventricular noncompaction (LVNC) describes a ventricular wall anatomy characterized by prominent left ventricular (LV) trabeculae, a thin compacted layer, and deep intertrabecular recesses. Individual variability is extreme, and trabeculae represent a sort of individual "cardioprinting." By itself, the diagnosis of LVNC does not coincide with that of a "cardiomyopathy" because it can be observed in healthy subjects with normal LV size and function, and it can be acquired and is reversible. Rarely, LVNC is intrinsically part of a cardiomyopathy; the paradigmatic examples are infantile tafazzinopathies. When associated with LV dilation and dysfunction, hypertrophy, or congenital heart disease, the genetic cause may overlap. The prevalence of LVNC in healthy athletes, its possible reversibility, and increasing diagnosis in healthy subjects suggests cautious use of the term LVNC cardiomyopathy, which describes the morphology but not the functional profile of the cardiomyopathy.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Valentina Favalli
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
26
|
Key Questions Relating to Left Ventricular Noncompaction Cardiomyopathy: Is the Emperor Still Wearing Any Clothes? Can J Cardiol 2017; 33:747-757. [DOI: 10.1016/j.cjca.2017.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 11/23/2022] Open
|
27
|
Kawel-Boehm N, McClelland RL, Zemrak F, Captur G, Hundley WG, Liu CY, Moon JC, Petersen SE, Ambale-Venkatesh B, Lima JAC, Bluemke DA. Hypertrabeculated Left Ventricular Myocardium in Relationship to Myocardial Function and Fibrosis: The Multi-Ethnic Study of Atherosclerosis. Radiology 2017; 284:667-675. [PMID: 28418811 DOI: 10.1148/radiol.2017161995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine if excess greater left ventricle (LV) trabeculation is associated with decreased average regional myocardial function, diffuse fibrosis, or both. Materials and Methods This was a HIPAA-compliant institutional board approved multicenter study, and all participants provided written informed consent. Participants in the Multi-Ethnic Study of Atherosclerosis (MESA) underwent a comprehensive cardiac magnetic resonance (MR) examination. LV trabeculation was measured with the maximal apical fractal dimension (FD), which is a marker of endocardial complexity. Demographic covariates, cardiovascular risk factors, and cardiac MR measurements were compared across quartiles of FD. Associations between FD and peak regional systolic circumferential strain (Ecc) and T1 time, a surrogate for diffuse myocardial fibrosis, were assessed with multivariable linear regression models. Results A total of 1123 subjects (593 [52.8%] female; mean age, 67.1 years ± 8.7 [standard deviation]) underwent FD and Ecc measurement, and 992 (521 [52.5%] female; mean age, 67.1 years ± 8.7) underwent FD and T1 measurement. Mean FD was 1.2 ± 0.07 in both groups, and mean Ecc was -18.3 ± 2.27 in the subjects who underwent FD and Ecc measurement. Global volumes and ejection fraction showed no differences between FD quartiles. However, with increasing FD quartile, Ecc was greater (indicating worse average regional function) (P < .001). After adjustment, greater trabeculation was associated with 21% worse myocardial strain (relative to the mean) per unit change in FD (regression coefficient = 4.0%; P < .001). There was no association between the degree of trabeculation and diffuse fibrosis measured with T1 mapping. Conclusion Average regional LV function was worse in individuals with greater LV trabeculation, supporting the concept of hypertrabeculation being an epiphenomenon of disease. © RSNA, 2017.
Collapse
Affiliation(s)
- Nadine Kawel-Boehm
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Robyn L McClelland
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Filip Zemrak
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Gabriella Captur
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - W Gregory Hundley
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Chia-Ying Liu
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - James C Moon
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Steffen E Petersen
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Bharath Ambale-Venkatesh
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - João A C Lima
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - David A Bluemke
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| |
Collapse
|
28
|
Captur G, Radenkovic D, Li C, Liu Y, Aung N, Zemrak F, Tobon-Gomez C, Gao X, Elliott PM, Petersen SE, Bluemke DA, Friedrich MG, Moon JC. Community delivery of semiautomated fractal analysis tool in cardiac mr for trabecular phenotyping. J Magn Reson Imaging 2017; 46:1082-1088. [PMID: 28152235 DOI: 10.1002/jmri.25644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/06/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Gabriella Captur
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
- UCL Biological Mass Spectrometry Laboratory; Institute of Child Health and Great Ormond Street Hospital; London UK
- NIHR University College London Hospitals Biomedical Research Center; London UK
| | - Dina Radenkovic
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
| | - Chunming Li
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
- School of Electronic Engineering; University of Electronic Science and Technology of China (UESTC); Chengdu P.R. China
| | - Yu Liu
- College of Electronic Science and Engineering; Jilin University; Changchun P.R. China
| | - Nay Aung
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
- Cardiovascular Biomedical Research Unit, Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Filip Zemrak
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
- Cardiovascular Biomedical Research Unit, Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | | | - Xuexin Gao
- Circle Cardiovascular Imaging Inc; Panarctic Plaza; Calgary Canada
| | - Perry M. Elliott
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
- UCL Institute of Cardiovascular Science; University College London; London UK
| | - Steffen E. Petersen
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
- Cardiovascular Biomedical Research Unit, Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - David A. Bluemke
- Radiology and Imaging Sciences; Clinical Center; Bethesda Maryland USA
- Cardiovascular Imaging Department; Johns Hopkins Hospital; Baltimore Maryland USA
| | - Matthias G. Friedrich
- Philippa & Marvin Carsley CMR Center at the Montreal Heart Institute; Montreal QC Canada
- Department of Medicine; Heidelberg University; Heidelberg Germany
- Departments of Cardiac Sciences and Radiology; University of Calgary; Calgary AB Canada
- Department of Radiology; Université de Montréal; Montreal QC Canada
- Departments of Medicine and Radiology; McGill University Health Center; Montreal QC Canada
| | - James C. Moon
- Barts Heart Center, Cardiovascular Magnetic Resonance Imaging Unit; St Bartholomew's Hospital; West Smithfield London UK
- UCL Biological Mass Spectrometry Laboratory; Institute of Child Health and Great Ormond Street Hospital; London UK
- NIHR University College London Hospitals Biomedical Research Center; London UK
- UCL Institute of Cardiovascular Science; University College London; London UK
| |
Collapse
|
29
|
Jensen B, Agger P, de Boer BA, Oostra RJ, Pedersen M, van der Wal AC, Nils Planken R, Moorman AFM. The hypertrabeculated (noncompacted) left ventricle is different from the ventricle of embryos and ectothermic vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1696-706. [PMID: 26516055 DOI: 10.1016/j.bbamcr.2015.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022]
Abstract
Ventricular hypertrabeculation (noncompaction) is a poorly characterized condition associated with heart failure. The condition is widely assumed to be the retention of the trabeculated ventricular design of the embryo and ectothermic (cold-blooded) vertebrates. This assumption appears simplistic and counterfactual. Here, we measured a set of anatomical parameters in hypertrabeculation in man and in the ventricles of embryos and animals. We compared humans with left ventricular hypertrabeculation (N=21) with humans with structurally normal left ventricles (N=54). We measured ejection fraction and ventricular trabeculation using cardiovascular MRI. Ventricular trabeculation was further measured in series of embryonic human and 9 animal species, and in hearts of 15 adult animal species using MRI, CT, or histology. In human, hypertrabeculated left ventricles were significantly different from structurally normal left ventricles by all structural measures and ejection fraction. They were far less trabeculated than human embryonic hearts (15-40% trabeculated volume versus 55-80%). Early in development all vertebrate embryos acquired a ventricle with approximately 80% trabeculations, but only ectotherms retained the 80% trabeculation throughout development. Endothermic (warm-blooded) animals including human slowly matured in fetal and postnatal stages towards ventricles with little trabeculations, generally less than 30%. Further, the trabeculations of all embryos and adult ectotherms were very thin, less than 50 μm wide, whereas the trabeculations in adult endotherms and in the setting of hypertrabeculation were wider by orders of magnitude. It is concluded in contrast to a prevailing assumption, the hypertrabeculated left ventricle is not like the ventricle of the embryo or of adult ectotherms. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Peter Agger
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Bouke A de Boer
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Michael Pedersen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Denmark
| | - Allard C van der Wal
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - R Nils Planken
- Department of Radiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Antoon F M Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|