1
|
Paschalaki K, Pericleous C. Isolation and Characterization of Endothelial-Colony Forming Cells (ECFC): Studying Endothelial Senescence for Translational Studies and for Personalized Medicine. Methods Mol Biol 2025; 2906:255-270. [PMID: 40082361 DOI: 10.1007/978-1-0716-4426-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Endothelium regulates vascular homeostasis maintaining a healthy cardiovascular system but also plays a key role in tumor development, progression, and metastasis. Endothelial senescence can be driven by aging, DNA damage, oxidative stress, oncogenes and chemotherapy, and contributes to vascular dysfunction. Endothelial colony-forming cells (ECFC) are endothelial-committed progenitors with clonogenic potential, de novo angiogenic capacity and endothelial regenerative abilities. Studying ECFC senescence provides a novel approach to investigate the molecular mechanisms of endothelial dysfunction and response to treatment, in a noninvasive and personalized manner.
Collapse
Affiliation(s)
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Lo Cicero L, Lentini P, Sessa C, Castellino N, D’Anca A, Torrisi I, Marcantoni C, Castellino P, Santoro D, Zanoli L. Inflammation and Arterial Stiffness as Drivers of Cardiovascular Risk in Kidney Disease. Cardiorenal Med 2024; 15:29-40. [PMID: 39631378 PMCID: PMC11844711 DOI: 10.1159/000542965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have an increased cardiovascular (CV) risk. The lower the glomerular filtration rate, the higher the CV risk. SUMMARY Current data suggest that several uremic toxins lead to vascular inflammation and oxidative stress that, in turn, lead to endothelial dysfunction, changes in smooth muscle cells' phenotype, and increased degradation of elastin and collagen fibers. These processes lead to both functional and structural arterial stiffening and explain part of the increased risk of acute myocardial infarction and stroke reported in patients with CKD. Considering that, at least in patients with end-stage kidney disease, the reduction of arterial stiffness is associated with a parallel decrease of the CV risk; vascular function is a potential target for therapy to reduce the CV risk. KEY MESSAGES In this review, we explore mechanisms of vascular dysfunction in CKD, paying particular attention to inflammation, reporting current data in other models of mild and severe inflammation, and discussing the vascular effect of several drugs currently used in nephrology.
Collapse
Affiliation(s)
- Lorenzo Lo Cicero
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Lentini
- Nephrology and Dialysis, San Bassiano Hospital, Bassano del Grappa, Italy
| | - Concetto Sessa
- Nephrology and Dialysis, ASP Ragusa, Ragusa, Italy
- Departement of Nephrology, University of Catania, Catania, Italy
| | | | - Ambra D’Anca
- Nephrology and Dialysis, San Marco Hospital, Catania, Italy
| | - Irene Torrisi
- Nephrology and Dialysis, San Marco Hospital, Catania, Italy
| | | | | | - Domenico Santoro
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Nephrology and Dialysis, University of Messina, Messina, Italy
| | - Luca Zanoli
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Departement of Nephrology, University of Catania, Catania, Italy
- Nephrology and Dialysis, San Marco Hospital, Catania, Italy
| |
Collapse
|
3
|
Xu X, Li Q, Chen Q, Wang H, Wu C, Chen X, Chen F, Yue C. Elevated Blood Pressure: A Genetically Determined Risk Factor for Cerebral Artery Dissection. Am J Hypertens 2024; 37:970-977. [PMID: 39110060 DOI: 10.1093/ajh/hpae102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND We aim to investigate the potential causal link between blood pressure (BP) levels and cerebral artery dissection (CAD) risk by employing a 2-sample Mendelian randomization (TSMR) framework. METHODS Utilizing large-scale genome-wide association studies-retrieved data, we employed various Mendelian randomization (MR) techniques, including inverse variance weighted (IVW), MR-Egger regression, weighted median, and weighted mode, to ascertain BP's causal impact on CAD. The MR-Egger intercept was calculated to assess pleiotropy presence, determining heterogeneity by Cochran's Q statistic. RESULTS The findings highlighted a significant association between elevated systolic BP (SBP; IVW: OR = 3.09, 95% CI: 1.11-8.61, P = 0.031) and increased diastolic BP (DBP; IVW: OR = 2.17, 95% CI: 1.14-6.21, P = 0.023) with CAD risk. Sensitivity analyses reinforced the robustness and reliability of these results. CONCLUSIONS The results from this TSMR study suggest a causal link between high SBP and DBP and the increased likelihood of CAD, which provides genetic evidence for a reduced risk of CAD under BP control.
Collapse
Affiliation(s)
- Xinchun Xu
- Department of Ultrasound, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Qiong Li
- Department of Obstetrics and Gynecology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Qiuping Chen
- Department of Ultrasound, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Haibo Wang
- Department of Ultrasound, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Chuchu Wu
- Department of Ultrasound, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiaohu Chen
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Chen
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, China
| | - Chaoyan Yue
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [PMID: 39024063 DOI: 10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The process of skin ageing is a natural biological phenomenon characterised by the emergence of wrinkles, age spots, sagging skin, and dryness over time. The increasing significance of skin in physical attractiveness has heightened skincare concerns. Anti-ageing cosmetics play a pivotal role in nurturing the skin, enhancing its quality, and promoting overall health. Today, cosmetics have evolved beyond mere aesthetics and are now integral to individual wellness. The contemporary quest for perpetual youth has intensified, prompting a deeper exploration into the skin ageing process. This comprehensive exploration delves into various elements involved in skin ageing, encompassing cells such as stem and endothelial cells, blood vessels, soft tissues, and signalling pathways. The molecular basis of skin ageing, including biochemical factors like reactive oxygen species, damaged DNA, free radicals, ions, and proteins (mRNA), is scrutinised alongside relevant animal models. The article critically analyzes the outcomes of utilising herbal components, emphasising their advantageous anti-ageing properties. The factors contributing to skin ageing, mechanistic perspectives, management approaches involving herbal cosmeceutical, and associated complications (especially cardiovascular diseases, Parkinson's, Alzheimer's, etc.) are succinctly addressed. In addition, the manuscript further summarises the recent patented innovations and toxicity of the herbal cosmeceuticals for anti-ageing and ageing associated disorders. Despite progress, further research is imperative to unlock the full potential of herbal components as anti-ageing agents.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
5
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [DOI: https:/doi.org/10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 04/05/2025]
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
6
|
Balint B, Bernstorff IGL, Schwab T, Schäfers HJ. Smooth muscle cell phenotypic switching occurs independent of aortic dilation in bicuspid aortic valve-associated ascending aortas. PLoS One 2024; 19:e0306515. [PMID: 38954721 PMCID: PMC11218944 DOI: 10.1371/journal.pone.0306515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Bicuspid aortic valves (BAV) are frequently associated with ascending aortic aneurysms. The etiology is incompletely understood, but genetic factors, in addition to flow perturbations, are likely involved. Since loss of contractility and elaboration of extracellular matrix in the vessel wall are features of BAV-associated aortopathy, phenotypic modulation of smooth muscle cells (SMCs) may play a role. METHODS Ascending aortic tissue was collected intra-operatively from 25 individuals with normal (i.e., tricuspid) aortic valves (TAV) and from 25 individuals with BAVs. For both TAV and BAV, 10 patients had non-dilated (ND) and 15 patients had dilated (D) aortas. SMCs were isolated and cultured from a subset of patients from each group. Aortic tissue and SMCs were fluorescently immunolabeled for SMC phenotypic markers (i.e., alpha-smooth muscle actin (ASMA, contractile), vimentin (synthetic) and p16INK4a and p21Cip1 (senescence). SMCs were also analyzed for replicative senescence in culture. RESULTS In normal-sized and dilated BAV aortas, SMCs switched from the contractile state to either synthetic or senescent phenotypes, as observed by loss of ASMA (ND: P = 0.001, D: P = 0.002) and associated increases in vimentin (ND: P = 0.03, D: P = 0.004) or p16/p21 (ND: P = 0.03, D: P<0.0001) compared to TAV. Dilatation of the aorta exacerbated SMC phenotypic switching in both BAV and TAV aortas (all P<0.05). In SMCs cultured from normal and dilated aortas, those isolated from BAV reached replicative senescence faster than those from TAV aortas (all P = 0.02). Furthermore, there was a stark inverse correlation between ASMA and cell passage number in BAV SMCs (ND: P = 0.0006, D: P = 0.01), but not in TAV SMCs (ND: P = 0.93, D: P = 0.20). CONCLUSIONS The findings of this study provide direct evidence from cell culture studies implying that SMCs switch from the contractile state to either synthetic or senescent phenotypes in the non-dilated BAV aorta. In cultured SMCs from both non-dilated and dilated aortas, we found that this process may precede dilatation and accompany aneurysm development in BAV. Our findings suggest that therapeutically targeting SMC phenotypic modulation in BAV patients may be a viable option to prevent or delay ascending aortic aneurysm formation.
Collapse
Affiliation(s)
- Brittany Balint
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Saar, Germany
| | | | - Tanja Schwab
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Saar, Germany
| |
Collapse
|
7
|
Sun J, Wang M, Jia F, Song J, Ren J, Hu B. FTO Stabilizes MIS12 to Inhibit Vascular Smooth Muscle Cell Senescence in Atherosclerotic Plaque. J Inflamm Res 2024; 17:1857-1871. [PMID: 38523689 PMCID: PMC10961024 DOI: 10.2147/jir.s447379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Atherosclerosis is the main cause of atherosclerotic cardiovascular disease (CVD). Here, we aimed to uncover the role and mechanisms of fat mass and obesity-associated genes (FTO) in the regulation of vascular smooth muscle cell (VSMC) senescence in atherosclerotic plaques. Methods ApoE-/- mice fed a high-fat diet (HFD) were used to establish an atherosclerotic animal model. Immunohistochemistry, and the staining of hematoxylin-eosin, Oil Red O, Sirius red, and Masson were performed to confirm the role of FTO in atherosclerosis in vivo. Subsequently, FTO expression in primary VSMCs is either upregulated or downregulated. Oxidized low-density lipoprotein (ox-LDL) was used to treat VSMCs, followed by EdU staining, flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining, immunofluorescence, telomere detection, RT-qPCR, and Western blotting to determine the molecular mechanisms by which FTO inhibits VSMC senescence. Results Decreased FTO expression was observed in progressive atherosclerotic plaques of ApoE-/- mice fed with HFD. FTO upregulation inhibits atherosclerotic lesions in mice. FTO inhibits VSMC aging in atherosclerotic plaques by helping VSMC withstand ox-LDL-induced cell cycle arrest and senescence. This process is achieved by stabilizing the MIS12 protein in VSMC through a proteasome-mediated pathway. Conclusion FTO inhibits VSMC senescence and subsequently slows the progression of atherosclerotic plaques by stabilizing the MIS12 protein.
Collapse
Affiliation(s)
- Jingzhao Sun
- Department of Emergency, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
| | - Mengqi Wang
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Fengming Jia
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jiantao Song
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jinlin Ren
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
8
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
9
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
10
|
Gu J, Chen J, Yin Q, Dong M, Zhang Y, Chen M, Chen X, Min J, He X, Tan Y, Zheng L, Jiang H, Wang B, Li X, Chen H. lncRNA JPX-Enriched Chromatin Microenvironment Mediates Vascular Smooth Muscle Cell Senescence and Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:156-176. [PMID: 37942612 DOI: 10.1161/atvbaha.122.319250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.
Collapse
Affiliation(s)
- Jiaming Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Jiajing Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China (J.C.)
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Mengdie Dong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital Affiliated With Nanjing Medical University, China (B.W., H.C.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (H.C.), Nanjing Medical University, China
- Department of Cardiology, Huai'an First People's Hospital Affiliated With Nanjing Medical University, China (B.W., H.C.)
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, China (H.C.)
| |
Collapse
|
11
|
Balint B, Bernstorff IGL, Schwab T, Schäfers HJ. Aortic regurgitation provokes phenotypic modulation of smooth muscle cells in the normal ascending aorta. J Thorac Cardiovasc Surg 2023; 166:1604-1616.e1. [PMID: 37500054 DOI: 10.1016/j.jtcvs.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Aortic complications are more likely to occur in patients with ascending aortic aneurysms and concomitant aortic regurgitation (AR). AR may have a negative influence on the aortic wall structure even in patients with tricuspid aortic valves and absence of aortic dilatation. It is unknown whether smooth muscle cell (SMC) changes are a feature of AR-associated aortic remodeling. METHODS Nondilated aortic samples were harvested intraoperatively from individuals with normal aortic valves (n = 10) or those with either predominant aortic stenosis (AS) (n = 20) or AR (n = 35). Tissue from each patient was processed for immunohistochemistry or used for the extraction of medial SMCs. Tissue and cells were stained for markers of SMC contraction (alpha-smooth muscle actin), synthesis (vimentin) and senescence (p16INK4A and p21Cip1 [p16/p21]). Replicative capacity was analyzed in cultured SMCs from AS- and AR-associated aortas. A subanalysis compared SMCs from individuals with either tricuspid aortic valves or bicuspid aortic valves to evaluate the effect of aortic valve morphology. RESULTS In aortic tissue samples, AR was associated with decreased alpha-smooth muscle actin and increased vimentin, p16 and p21 compared with normal aortic valves and AS. In cell culture, SMCs from AR-aortas had decreased alpha-smooth muscle actin and increased vimentin compared with SMCs from AS-aortas. AR-associated SMCs had increased p16 and p21 expression, and they reached senescence earlier than SMCs from AS-aortas. In AR, SMC changes were more pronounced with the presence of a bicuspid aortic valve. CONCLUSIONS AR itself negatively influences SMC phenotype in the ascending aortic wall. This AR-specific effect is independent of aortic diameter and aortic valve morphology, although it is more pronounced with bicuspid aortic valves. These findings provide insight into the mechanisms of AR-related aortic remodeling, and they provide a model for studying SMC-specific therapies in culture.
Collapse
Affiliation(s)
- Brittany Balint
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany.
| | | | - Tanja Schwab
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
12
|
Yang T, Yuan X, Gao W, Lu MJ, Hu MJ, Sun HS. Causal effect of hypertension and blood pressure on aortic diseases: evidence from Mendelian randomization. Hypertens Res 2023; 46:2203-2212. [PMID: 37443259 DOI: 10.1038/s41440-023-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 07/15/2023]
Abstract
Hypertension or elevated blood pressure was documented to be an important risk factor for aortic diseases in observational studies, yet the causality remains to be determined. By applying a two-sample Mendelian randomization (MR) approach, we aim to determine whether hypertension or elevated blood pressure (systolic blood pressure [SBP] or diastolic blood pressure [DBP]) is linked causally to aortic aneurysm or aortic dissection. Genetic instruments and summary statistics for hypertension and aortic diseases were obtained from large genome-wide association studies. The traditional inverse variance weighted (IVW) method was used to obtain the causal estimates. Sensitivity analyses including MR-Egger, weighted median and multivariable MR were also performed. Our results suggested that genetic liability to hypertension was associated with aortic dissection (odds ratio [OR]: 1.81; 95% confidence interval [CI]: 1.27-2.58; P = 1.13 × 10-3) and aortic aneurysm (OR: 1.43; 95% CI: 1.22-1.66; P = 7.79 × 10-6). Per standard deviation increase in genetically-determined DBP was significantly associated with increased aortic dissection (OR: 1.14; 95% CI: 1.09-1.19; P = 1.58 × 10-9) and aortic aneurysm (OR: 1.07; 95% CI: 1.05-1.09; P = 8.37 × 10-14). There was a null association between SBP and aortic dissection (OR: 1.01; 95% CI: 0.99-1.94; P = 0.38) or aortic aneurysm (OR: 1.00; 95% CI: 0.99-1.01; P = 0.92). Sensitivity analyses documented similar results. Therefore, hypertension and elevated DBP are causally associated with higher risks of aortic aneurysm and aortic dissection. Preventive interventions for aortic diseases may consider individuals with hypertension, especially those with higher DBP. Meanwhile, further research is required to determine the mechanisms underlying the significantly greater correlation between DBP and aortic diseases than SBP.
Collapse
Affiliation(s)
- Tao Yang
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xin Yuan
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Gao
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Min-Jie Lu
- Department of Magnetic Resonance Imaging, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China.
| | - Meng-Jin Hu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Han-Song Sun
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
13
|
Shrestha N, Chaturvedi P, Zhu X, Dee MJ, George V, Janney C, Egan JO, Liu B, Foster M, Marsala L, Wong P, Cubitt CC, Foltz JA, Tran J, Schappe T, Hsiao K, Leclerc GM, You L, Echeverri C, Spanoudis C, Carvalho A, Kanakaraj L, Gilkes C, Encalada N, Kong L, Wang M, Fang B, Wang Z, Jiao J, Muniz GJ, Jeng EK, Valdivieso N, Li L, Deth R, Berrien‐Elliott MM, Fehniger TA, Rhode PR, Wong HC. Immunotherapeutic approach to reduce senescent cells and alleviate senescence-associated secretory phenotype in mice. Aging Cell 2023; 22:e13806. [PMID: 36967480 PMCID: PMC10186597 DOI: 10.1111/acel.13806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-β and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet β cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bai Liu
- HCW Biologics Inc.MiramarFloridaUSA
| | - Mark Foster
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Lynne Marsala
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Pamela Wong
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Celia C. Cubitt
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Jennifer A. Foltz
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Jennifer Tran
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Timothy Schappe
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Karin Hsiao
- Department of Pharmaceutical SciencesNova Southeastern UniversityFort LauderdaleFloridaUSA
| | | | | | | | | | | | | | | | | | - Lin Kong
- HCW Biologics Inc.MiramarFloridaUSA
| | | | | | | | | | | | | | | | | | - Richard Deth
- Department of Pharmaceutical SciencesNova Southeastern UniversityFort LauderdaleFloridaUSA
| | | | - Todd A. Fehniger
- Division of OncologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | | |
Collapse
|
14
|
Larsen AI, Sæland C, Vegsundvåg J, Skadberg MS, Nilsen J, Butt N, Ushakova A, Valborgland T, Munk PS, Isaksen K. Aerobic high-intensity interval exercise training in patients with angina and no obstructive coronary artery disease: feasibility and physiological effects. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead030. [PMID: 37113515 PMCID: PMC10127938 DOI: 10.1093/ehjopen/oead030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Aims Patients with chest pain and normal coronary angiogram [angina with normal coronary arteries (ANOCA)] constitute a therapeutic problem with considerable functional limitation and reduced quality of life. The aims of the current pilot study were to (i) explore if a structured aerobic high-intensity interval training (HIT) program for 12 weeks was feasible in patients with ANOCA, and (ii) to assess mechanisms related to symptoms in this population. Methods and results Sixteen patients with ANOCA underwent a 3-month aerobic HIT program with one-to-one monitored exercise sessions on treadmill in a 4 min × 4 manner, three times a week. Four patients served as controls. Coronary flow velocity reserve (CFVR) transthoracic Doppler, flow-mediated vasodilation (FMD) and VO2max was measured at baseline and after 12 weeks. The average attendance to training sessions was 82.3% ± 10.1 (56-94). CFVR in the training group increased from 2.50 ± 0.48 to 3.04 ± 0.71 (P < 0.001) whereas FMD increased from 4.19 ± 2.42% to 8.28 ± 2.85% (P < 0.001). Improvement in CFVR correlated with the relative improvement in FMD (R = 0.45, P = 0.047). This was associated with an increase in VO2max from 28.75 ± 6.51 mL/kg/min to 31.93 ± 6.46 mL/kg/min (P < 0.001). Conclusion A 3-month program of monitored HIT was feasible, with high adherence resulting in improved functional capacity in patients with ANOCA. CFVR improved and this improvement was associated with improved FMD. ClinicalTrialsgov Identifier NCT02905630.
Collapse
Affiliation(s)
| | | | - Johnny Vegsundvåg
- Department of Medicine, Ålesund Hospital, Åsehaugen 5, 6017 Ålesund, Norway
| | - Mette Storebø Skadberg
- Department of Cardiology, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Jorunn Nilsen
- Department of Research, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Noreen Butt
- Department of Cardiology, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Anastasia Ushakova
- Department of Research, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Torstein Valborgland
- Department of Cardiology, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Peter Scott Munk
- Kristiansand Hjertepraksis, Vestre Strandgate 42, 4612 Kristiansand, Norway
| | | |
Collapse
|
15
|
Yang L, Wang Y, He X, Liu X, Sui H, Wang X, Wang M. Develop ment and validation of a prognostic dynamic nomogram for in-hospital mortality in patients with Stanford type B aortic dissection. Front Cardiovasc Med 2023; 9:1099055. [PMID: 36698955 PMCID: PMC9868166 DOI: 10.3389/fcvm.2022.1099055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Background This study aimed to identify the risk factors for in-hospital mortality in patients with Stanford type B aortic dissection (TBAD) and develop and validate a prognostic dynamic nomogram for in-hospital mortality in these patients. Methods This retrospective study involved patients with TBAD treated from April 2002 to December 2020 at the General Hospital of Northern Theater Command. The patients with TBAD were divided into survival and non-survival groups. The data were analyzed by univariate and multivariate logistic regression analyses. To identify independent risk factors for in-hospital mortality, multivariate logistic regression analysis, least absolute shrinkage, and selection operator regression were used. A prediction model was constructed using a nomogram based on these factors and validated using the original data set. To assess its discriminative ability, the area under the receiver operating characteristic curve (AUC) was calculated, and the calibration ability was tested using a calibration curve and the Hosmer-Lemeshow test. Clinical utility was evaluated using decision curve analysis (DCA) and clinical impact curves (CIC). Results Of the 978 included patients, 52 (5.3%) died in hospital. The following variables helped predict in-hospital mortality: pleural effusion, systolic blood pressure ≥160 mmHg, heart rate >100 bpm, anemia, ischemic cerebrovascular disease, abnormal cTnT level, and estimated glomerular filtration rate <60 ml/min. The prediction model demonstrated good discrimination [AUC = 0.894; 95% confidence interval (CI), 0.850-0.938]. The predicted probabilities of in-hospital death corresponded well to the actual prevalence rate [calibration curve: via 1,000 bootstrap resamples, a bootstrap-corrected Harrell's concordance index of 0.905 (95% CI, 0.865-0.945), and the Hosmer-Lemeshow test (χ2 = 8.3334, P = 0.4016)]. DCA indicated that when the risk threshold was set between 0.04 and 0.88, the predictive model could achieve larger clinical net benefits than "no intervention" or "intervention for all" options. Moreover, CIC showed good predictive ability and clinical utility for the model. Conclusion We developed and validated prediction nomograms, including a simple bed nomogram and online dynamic nomogram, that could be used to identify patients with TBAD at higher risk of in-hospital mortality, thereby better enabling clinicians to provide individualized patient management and timely and effective interventions.
Collapse
Affiliation(s)
- Lin Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China,Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yasong Wang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xiaofeng He
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xuanze Liu
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Honggang Sui
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xiaozeng Wang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China,*Correspondence: Xiaozeng Wang,
| | - Mengmeng Wang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China,Mengmeng Wang,
| |
Collapse
|
16
|
Balint B, Bernstorff IGL, Schwab T, Schäfers HJ. Age-dependent phenotypic modulation of smooth muscle cells in the normal ascending aorta. Front Cardiovasc Med 2023; 10:1114355. [PMID: 36895832 PMCID: PMC9989028 DOI: 10.3389/fcvm.2023.1114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives Ascending aortic aneurysms are associated with pre-existing conditions, including connective tissue disorders (i.e., Marfan syndrome) and bicuspid aortic valves. The underlying mechanisms remain uncertain. Even less is known regarding ascending aortic aneurysms in individuals with normal (i.e., tricuspid) aortic valves (TAV), and without known aneurysm-associated disorders. Regardless of etiology, the risk of aortic complications increases with biological age. Phenotypic modulation of smooth muscle cells (SMCs) is a feature of ascending aortic aneurysms, whereby contractile SMCs are replaced with synthetic SMCs that are capable of degrading the aortic wall. We asked whether age itself causes dysfunctional SMC phenotype modulation, independent of aortic dilatation or pre-existing aneurysm-associated diseases. Methods Non-dilated ascending aortic samples were obtained intra-operatively from 40 patients undergoing aortic valve surgery (range: 20-82 years old, mean: 59.1 ± 15.2). Patients with known genetic diseases or aortic valve malformations were excluded. Tissue was divided, and a portion was formalin-fixed and immunolabeled for alpha-smooth muscle actin (ASMA), a contractile SMC protein, and markers of synthetic (vimentin) or senescent (p16/p21) SMCs. Another fragment was used for SMC isolation (n = 10). Cultured SMCs were fixed at cell passage 2 and stained for phenotype markers, or were cultured indefinitely to determine replicative capacity. Results In whole tissue, ASMA decreased (R2 = 0.47, P < 0.0001), while vimentin increased (R2 = 0.33, P = 0.02) with age. In cultured SMCs, ASMA decreased (R2 = 0.35, P = 0.03) and vimentin increased (R2 = 0.25, P = 0.04) with age. p16 (R2 = 0.34, P = 0.02) and p21 (R2 = 0.29, P = 0.007) also increased with age in SMCs. Furthermore, the replicative capacity of SMCs from older patients was decreased compared to that of younger patients (P = 0.03). Conclusion By investigating non-dilated aortic samples from individuals with normal TAVs, we found that age itself has a negative impact on SMCs in the ascending aortic wall, whereby SMCs switched from the contractile phenotype to maladaptive synthetic or senescent states with increased age. Therefore, based on our findings, modification of SMC phenotype should be studied as a therapeutic consideration against aneurysms in the future, regardless of etiology.
Collapse
Affiliation(s)
- Brittany Balint
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Germany
| | | | - Tanja Schwab
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of the study is to explore the evidence linking telomere length with atherosclerotic ischemic disease. RECENT FINDINGS There has been a recent expansion in strategies for measuring telomere length, including analyzing genome sequence data and capitalizing on genomic loci that associate with telomere length. These, together with more established approaches, have been used to generate a more complete picture of telomere length relationships with ischemic disease. Whereas earlier meta-analyses suggested an association between short leukocyte telomeres and ischemic disease, several recent large population studies now provide particularly compelling data, including an association with cardiovascular mortality. In addition, whether short leukocyte telomeres might be causally related to ischemic disease has been interrogated using Mendelian randomization strategies, which point to shorter leukocyte telomeres as a determining risk factor. Importantly however, the wide, interindividual variability in telomere length still means that a single assessment of leukocyte telomere length in an individual does not reliably report on a biological aging process. In this regard, recent multi-tissue analyses of telomere length dynamics are providing both new mechanistic insights into how telomere length and shortening rates may participate in atherogenesis and risk prediction opportunities. The balance of evidence indicates that short leukocyte telomeres confer a risk for atherosclerotic cardiovascular disease. Moreover, an integrated analysis of telomere lengths in leukocytes and other tissues may provide a window into individualized telomere dynamics, raising new prospects for risk management.
Collapse
|
18
|
Senescence-Associated Secretory Phenotype of Cardiovascular System Cells and Inflammaging: Perspectives of Peptide Regulation. Cells 2022; 12:cells12010106. [PMID: 36611900 PMCID: PMC9818427 DOI: 10.3390/cells12010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
A senescence-associated secretory phenotype (SASP) and a mild inflammatory response characteristic of senescent cells (inflammaging) form the conditions for the development of cardiovascular diseases: atherosclerosis, coronary heart disease, and myocardial infarction. The purpose of the review is to analyze the pool of signaling molecules that form SASP and inflammaging in cells of the cardiovascular system and to search for targets for the action of vasoprotective peptides. The SASP of cells of the cardiovascular system is characterized by a change in the synthesis of anti-proliferative proteins (p16, p19, p21, p38, p53), cytokines characteristic of inflammaging (IL-1α,β, IL-4, IL-6, IL-8, IL-18, TNFα, TGFβ1, NF-κB, MCP), matrix metalloproteinases, adhesion molecules, and sirtuins. It has been established that peptides are physiological regulators of body functions. Vasoprotective polypeptides (liraglutide, atrial natriuretic peptide, mimetics of relaxin, Ucn1, and adropin), KED tripeptide, and AEDR tetrapeptide regulate the synthesis of molecules involved in inflammaging and SASP-forming cells of the cardiovascular system. This indicates the prospects for the development of drugs based on peptides for the treatment of age-associated cardiovascular pathology.
Collapse
|
19
|
Xia J, Chen J, Vashisth MK, Ge Y, Dai Q, He S, Shi YL, Wang XB. Metformin ameliorates 5-fluorouracil-induced intestinal injury by inhibiting cellular senescence, inflammation, and oxidative stress. Int Immunopharmacol 2022; 113:109342. [DOI: 10.1016/j.intimp.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
20
|
Yuan X, Mitsis A, Nienaber CA. Current Understanding of Aortic Dissection. Life (Basel) 2022; 12:1606. [PMID: 36295040 PMCID: PMC9605578 DOI: 10.3390/life12101606] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023] Open
Abstract
The aorta is the largest artery in the body, delivering oxygenated blood from the left ventricle to all organs. Dissection of the aorta is a lethal condition caused by a tear in the intimal layer of the aorta, followed by blood loss within the aortic wall and separation of the layers to full dissection. The aorta can be affected by a wide range of causes including acute conditions such as trauma and mechanical damage; and genetic conditions such as arterial hypertension, dyslipidaemia, and connective tissue disorders; all increasing the risk of dissection. Both rapid diagnostic recognition and advanced multidisciplinary treatment are critical in managing aortic dissection patients. The treatment depends on the severity and location of the dissection. Open surgical repair is the gold standard of treatment for dissections located to the proximal part of the aorta and the arch, while endovascular interventions are recommended for most distal or type B aortic dissections. In this review article, we examine the epidemiology, pathophysiology, contemporary diagnoses, and management of aortic dissection.
Collapse
Affiliation(s)
- Xun Yuan
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, Strovolos 2029, Cyprus
| | - Christoph A. Nienaber
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
21
|
Hwang HJ, Kim N, Herman AB, Gorospe M, Lee JS. Factors and Pathways Modulating Endothelial Cell Senescence in Vascular Aging. Int J Mol Sci 2022; 23:ijms231710135. [PMID: 36077539 PMCID: PMC9456027 DOI: 10.3390/ijms231710135] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Aging causes a progressive decline in the structure and function of organs. With advancing age, an accumulation of senescent endothelial cells (ECs) contributes to the risk of developing vascular dysfunction and cardiovascular diseases, including hypertension, diabetes, atherosclerosis, and neurodegeneration. Senescent ECs undergo phenotypic changes that alter the pattern of expressed proteins, as well as their morphologies and functions, and have been linked to vascular impairments, such as aortic stiffness, enhanced inflammation, and dysregulated vascular tone. Numerous molecules and pathways, including sirtuins, Klotho, RAAS, IGFBP, NRF2, and mTOR, have been implicated in promoting EC senescence. This review summarizes the molecular players and signaling pathways driving EC senescence and identifies targets with possible therapeutic value in age-related vascular diseases.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Nayeon Kim
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
- Correspondence:
| |
Collapse
|
22
|
Ren H, Guo Z, Liu Y, Song C. Stem Cell-derived Exosomal MicroRNA as Therapy for Vascular Age-related Diseases. Aging Dis 2022; 13:852-867. [PMID: 35656114 PMCID: PMC9116915 DOI: 10.14336/ad.2021.1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular age-related diseases describe a group of age-related chronic diseases that result in a considerable healthcare burden to society. Vascular aging includes structural changes and dysfunctions of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Compared with conventional treatment for vascular age-related diseases, stem cell (SC) therapy elicits better anti-aging effects viathe inhibition/delay ECs and SMCs from entering senescence. Exosomal noncoding RNA (ncRNAs) in vascular aging and stem cell-derived exosomal microRNAs (SCEV-miRNAs), especially in mesenchymal stem cells, have an important role in the development of age-related diseases. This review summarizes SCEV-miRNAs of diverse origins that may play a vital role in treating subclinical and clinical stages of vascular age-related disorders. We further explored possible age-related pathways and molecular targets of SCEV-miRNA, which are associated with dysfunctions of ECs and SMCs in the senescent stage. Moreover, the perspectives and difficulties of SCEV-miRNA clinical translation are discussed. This review aims to provide greater understanding of the biology of vascular aging and to identify critical therapeutic targets for SCEV-miRNAs. Though still in its infancy, the potential value of SCEV-miRNAs for vascular age-related diseases is clear.
Collapse
Affiliation(s)
- Hang Ren
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Mi J, Chen X, Tang Y, You Y, Liu Q, Xiao J, Ling W. S-adenosylhomocysteine induces cellular senescence in rat aorta vascular smooth muscle cells via NF-κB-SASP pathway. J Nutr Biochem 2022; 107:109063. [DOI: 10.1016/j.jnutbio.2022.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
24
|
Daskalova E, Delchev S, Vladimirova-Kitova L, Bivolarski I, Pencheva M, Denev P. Aronia melanocarpa Fruit Juice Modulates ACE2 Immunoexpression and Diminishes Age-Related Remodeling of Coronary Arteries in Rats. Foods 2022; 11:1220. [PMID: 35563943 PMCID: PMC9105828 DOI: 10.3390/foods11091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study is to evaluate the effect of Aronia melanocarpa fruit juice (AMJ) supplementation on age-related coronary arteries remodeled in aged rat hearts. Male Wistar rats (n = 24) were divided into three groups: (1) young controls (CY), aged 2 months, without AMJ supplementation; (2) old controls (CO), aged 27 months, without AMJ supplementation; and (3) the AMJ group (A), which used 27-month old animals, supplemented orally with AMJ for 105 days. AMJ supplementation did not influence the wall-to-diameter parameter (Kernohan index) of the coronary arteries of test animals. Aged rats supplemented with AMJ showed a significant decrease in the amount of collagen fibers in their coronary tunica media, as compared with the old controls. The intensity of the immunoreaction for alpha smooth muscle actin (αSMA) in the coronary tunica media was significantly lower in the supplemented group than in the old controls. The intensity of the angiotensin-converting enzyme 2 (ACE2) immunoreaction in the coronary tunica media of the supplemented group was significantly higher than the one observed in the old controls. These results indicate the positive effects of AMJ supplementation on the age-dependent remodeling of coronary arteries and support for the preventive potential of antioxidant-rich functional food supplementation in age-related diseases.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (E.D.); (S.D.)
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (E.D.); (S.D.)
| | - Lyudmila Vladimirova-Kitova
- First Department of Internal Diseases—Section of Cardiology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Iliya Bivolarski
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Science, 4000 Plovdiv, Bulgaria
| |
Collapse
|
25
|
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol 2022; 10:822561. [PMID: 35265616 PMCID: PMC8898904 DOI: 10.3389/fcell.2022.822561] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The aging population is booming all over the world and arterial aging causes various age-associated pathologies such as cardiovascular diseases (CVDs). The aorta is the largest elastic artery, and transforms pulsatile flow generated by the left ventricle into steady flow to maintain circulation in distal tissues and organs. Age-associated structural and functional changes in the aortic wall such as dilation, tortuousness, stiffening and losing elasticity hamper stable peripheral circulation, lead to tissue and organ dysfunctions in aged people. The extracellular matrix (ECM) is a three-dimensional network of macromolecules produced by resident cells. The composition and organization of key ECM components determine the structure-function relationships of the aorta and therefore maintaining their homeostasis is critical for a healthy performance. Age-associated remodeling of the ECM structural components, including fragmentation of elastic fibers and excessive deposition and crosslinking of collagens, is a hallmark of aging and leads to functional stiffening of the aorta. In this mini review, we discuss age-associated alterations of the ECM in the aortic wall and shed light on how understanding the mechanisms of aortic aging can lead to the development of efficient strategy for aortic pathologies and CVDs.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| | - Kienna Matus
- Department of Pediatrics, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| |
Collapse
|
26
|
Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci 2022; 23:963. [PMID: 35055149 PMCID: PMC8778078 DOI: 10.3390/ijms23020963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other pathologies that induce vascular damage. There is a known and confirmed connection between inflammation and atherosclerosis. However, it has taken a long time to prove the beneficial effects of anti-inflammatory drugs on cardiovascular events. Diabetes can be both a product of inflammation and a cofactor implicated in the progression of vascular disease. When diabetes and inflammation are accompanied by obesity, this ominous trifecta leads to an increased incidence of atherothrombotic events. Research into earlier stages of vascular disease, and documentation of vulnerability to premature vascular disease, might be the key to success in preventing clinical events. Modulation of inflammation, combined with strict control of classical cardiovascular risk factors, seems to be the winning recipe. Identification of population subsets with a successful vascular aging (supernormal vascular aging-SUPERNOVA) pattern could also bring forth novel therapeutic interventions.
Collapse
Affiliation(s)
| | - Mihaela-Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | - Andreea-Catarina Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | | |
Collapse
|
27
|
Kong P, Li CL, Dou YQ, Cao L, Zhang XY, Zhang WD, Bi ZQ, Peng ZY, Yan AQ, Han M. circ-Sirt1 Decelerates Senescence by Inhibiting p53 Activation in Vascular Smooth Muscle Cells, Ameliorating Neointima Formation. Front Cardiovasc Med 2022; 8:724592. [PMID: 34977164 PMCID: PMC8718546 DOI: 10.3389/fcvm.2021.724592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) senescence is a major driver of neointimal formation. We have demonstrated that circ-Sirt1 derived from the SIRT1 gene suppressed VSMC inflammation and neointimal formation. However, the effect of circ-Sirt1 inhibiting inflammation on VSMC senescence during neointimal hyperplasia remains to be elucidated. Here, we showed that circ-Sirt1 was highly expressed in young and healthy arteries, which was decreased in aged arteries and neointima of humans and mice. Overexpression of circ-Sirt1 delayed Ang II-induced VSMC senescence in vitro and ameliorated neointimal hyperplasia in vivo. Mechanically, circ-Sirt1 inhibited p53 activity at the levels of transcription and post-translation modulation. In detail, circ-Sirt1, on the one hand, interacted with and held p53 to block its nuclear translocation, and on the other hand, promoted SIRT1-mediated p53 deacetylation and inactivation. In conclusion, our data suggest that circ-Sirt1 is a novel p53 repressor in response senescence-inducing stimuli, and targeting circ-Sirt1 may be a promising approach to ameliorating aging-related vascular disease.
Collapse
Affiliation(s)
- Peng Kong
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang-Lin Li
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yong-Qing Dou
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Cao
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Yun Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Di Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ze-Qi Bi
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zu-Yi Peng
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - An-Qi Yan
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
29
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
30
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
31
|
Wang G, Han B, Zhang R, Liu Q, Wang X, Huang X, Liu D, Qiao W, Yang M, Luo X, Hou J, Yu B. C1q/TNF-Related Protein 9 Attenuates Atherosclerosis by Inhibiting Hyperglycemia-Induced Endothelial Cell Senescence Through the AMPKα/KLF4 Signaling Pathway. Front Pharmacol 2021; 12:758792. [PMID: 34744738 PMCID: PMC8569937 DOI: 10.3389/fphar.2021.758792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia-induced endothelial cell senescence has been widely reported to be involved in the pathogenesis of type 2 diabetes mellitus‒accelerated atherosclerosis. Thus, understanding the underlying mechanisms and identifying potential therapeutic targets for endothelial cell senescence are valuable for attenuating atherosclerosis progression. C1q/tumor necrosis factor-related protein 9 (CTRP9), an emerging potential cardiokine, exerts a significant protective effect with respect to atherosclerosis, particularly in endothelial cells. However, the exact mechanism by which CTRP9 prevents endothelial cells from hyperglycemia-induced senescence remains unclear. This study aimed to investigate the effects of CTRP9 on hyperglycemia-induced endothelial cell senescence and atherosclerotic plaque formation in diabetic apolipoprotein E knockout (ApoE KO) mice. Human umbilical vein endothelial cells (HUVECs) were cultured in normal glucose (5.5 mM) and high glucose (40 mM) with or without recombinant human CTRP9 protein (3 μg/ml) for 48 h. Purified lentiviruses overexpressing CTRP9 (Lv-CTRP9) and control vectors containing green fluorescent protein (Lv-GFP) were injected via the tail vein into streptozotocin-induced diabetic ApoE KO mice. Results revealed that exposure of HUVECs to HG significantly increased the expression of Krüppel-like factor 4 (KLF4) and cyclin-dependent kinase inhibitor p21 (p21) and decreased that of telomerase reverse transcriptase (TERT). Treatment with recombinant human CTRP9 protein protected HUVECs from HG-induced premature senescence and dysfunction. CTRP9 promoted the phosphorylation of AMP-activated kinase (AMPK), attenuated the expression of KLF4 and p21 induced by HG, and increased the expression of TERT in HUVECs. Furthermore, in the background of AMPKα knockdown or KLF4 activation, the protective effects of CTRP9 were abolished. In-vivo experiments showed that the overexpression of CTRP9 inhibited vascular senescence and reduced atherosclerotic plaque formation in ApoE KO mice with diabetes. In conclusion, we demonstrate that KLF4 upregulation plays a crucial role in HG-induced endothelial senescence. This anti-atherosclerotic effect of CTRP9 may be partly attributed to the inhibition of HG-induced endothelial senescence through an AMPKα/KLF4-dependent mechanism, suggesting that CTRP9 could benefit further therapeutic approaches for type 2 diabetes mellitus‒accelerated atherosclerosis.
Collapse
Affiliation(s)
- Gang Wang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baihe Han
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, Harbin Yinghua Hospital, Harbin, China
| | - Qi Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Wang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingtao Huang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weishen Qiao
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyue Yang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Luo
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingbo Hou
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int J Mol Sci 2021; 22:ijms221810175. [PMID: 34576337 PMCID: PMC8468233 DOI: 10.3390/ijms221810175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Vascular aging is accompanied by the fragmentation of elastic fibers and collagen deposition, leading to reduced distensibility and increased vascular stiffness. A rigid artery facilitates elastin to degradation by MMPs, exposing vascular cells to greater mechanical stress and triggering signaling mechanisms that only exacerbate aging, creating a self-sustaining inflammatory environment that also promotes vascular calcification. In this review, we highlight the role of crosstalk between smooth muscle cells and the vascular extracellular matrix (ECM) and how aging promotes smooth muscle cell phenotypes that ultimately lead to mechanical impairment of aging arteries. Understanding the underlying mechanisms and the role of associated changes in ECM during aging may contribute to new approaches to prevent or delay arterial aging and the onset of cardiovascular diseases.
Collapse
|
33
|
Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L, Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr SS, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. ACTA ACUST UNITED AC 2021; 1:598-615. [PMID: 34888528 PMCID: PMC8654267 DOI: 10.1038/s43587-021-00082-y] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8-96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes.
Collapse
|
34
|
Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens 2021; 38:1682-1698. [PMID: 32649623 DOI: 10.1097/hjh.0000000000002508] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: Inflammation is a physiological response to aggression of pathogenic agents aimed at eliminating the aggressor agent and promoting healing. Excessive inflammation, however, may contribute to tissue damage and an alteration of arterial structure and function. Increased arterial stiffness is a well recognized cardiovascular risk factor independent of blood pressure levels and an intermediate endpoint for cardiovascular events. In the present review, we discuss immune-mediated mechanisms by which inflammation can influence arterial physiology and lead to vascular dysfunction such as atherosclerosis and arterial stiffening. We also show that acute inflammation predisposes the vasculature to arterial dysfunction and stiffening, and alteration of endothelial function and that chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis are accompanied by profound arterial dysfunction which is proportional to the severity of inflammation. Current findings suggest that treatment of inflammation by targeted drugs leads to regression of arterial dysfunction. There is hope that these treatments will improve outcomes for patients.
Collapse
|
35
|
Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, Hu H, Guan X, Ma W, Zhang Y, He Y, Liu B, Tang S, Jiang W, Xue J, Xin H. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther 2021; 6:223. [PMID: 34112762 PMCID: PMC8192533 DOI: 10.1038/s41392-021-00625-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
CD38 is the main enzyme for nicotinamide adenine dinucleotide (NAD) degradation in mammalian cells. Decreased NAD levels are closely related to metabolic syndromes and aging-related diseases. Our study showed that CD38 deficiency significantly alleviated angiotensin II (Ang II)-induced vascular remodeling in mice, as shown by decreased blood pressures; reduced vascular media thickness, media-to-lumen ratio, and collagen deposition; and restored elastin expression. However, our bone marrow transplantation assay showed that CD38 deficiency in lymphocytes led to lack of protection against Ang II-induced vascular remodeling, suggesting that the effects of CD38 on Ang II-induced vascular remodeling might rely primarily on vascular smooth muscle cells (VSMCs), not lymphocytes. In addition, we observed that CD38 deficiency or NAD supplementation remarkably mitigated Ang II-induced vascular senescence by suppressing the biogenesis, secretion, and internalization of senescence-associated small extracellular vesicles (SA-sEVs), which facilitated the senescence of neighboring non-damaged VSMCs. Furthermore, we found that the protective effects of CD38 deficiency on VSMC senescence were related to restoration of lysosome dysfunction, particularly with respect to the maintenance of sirtuin-mediated mitochondrial homeostasis and activation of the mitochondria-lysosomal axis in VSMCs. In conclusion, our findings demonstrated that CD38 and its associated intracellular NAD decline are critical for Ang II-induced VSMC senescence and vascular remodeling.
Collapse
Affiliation(s)
- Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Demin Liu
- Cardiology Department, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jing Liu
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Erya Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lian Liu
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hang Hu
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaohui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Wen Ma
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanzi Zhang
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yarong He
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bofu Liu
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Songling Tang
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jianxin Xue
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
36
|
Meng X, Han J, Wang L, Wu Q. Aortic dissection during pregnancy and postpartum. J Card Surg 2021; 36:2510-2517. [PMID: 33928681 DOI: 10.1111/jocs.15575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Patients with aortic dissection during pregnancy and postpartum period exhibit a high mortality. At present, a complete overview of aortic dissection during pregnancy and postpartum period is lacking. Methods: This systematic review included 80 reports published from 2000 to 2020, comprising a total study population of 103 patients with aortic dissection. Results: We found that Stanford Type A aortic dissection was more common in prepartum cases, especially in the third trimester, while postpartum cases of aortic dissection were more common in Stanford Type B. The most common risk factor was connective tissue disease, with no other known risk factors. The mode of delivery had no significant effect on the type of postpartum aortic dissection. Reduced maternal and fetal mortality was observed when patients with Stanford Type A aortic dissection occurring after 28 gestational weeks underwent cesarean section followed by aortic replacement. Patients with Stanford Type B aortic dissection were treated mainly with medication and/or endovascular repair. Conclusion: Contemporary management of patients during pregnancy and within 12 weeks postpartum requires multidisciplinary cooperation and includes serial, noninvasive imaging, biomarker testing, and genetic risk profiling for aortopathy. Early diagnosis and accurate treatment are essential to reduce maternal and fetal mortality.
Collapse
Affiliation(s)
- Xiangli Meng
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jijing Han
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Li Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Kim GD, Park S. Effects of Cudrania tricuspidata on anti-senescence in high glucose-treated endothelial cells via the Akt/p53/p21 pathway. Food Sci Nutr 2020; 8:5999-6006. [PMID: 33282251 PMCID: PMC7684615 DOI: 10.1002/fsn3.1885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The roles of Cudrania tricuspidata (CT) in the prevention of senescence and the underlying mechanisms have not been elucidated. In a high glucose (HG)-induced senescent endothelial cell (EC) culture, CT (20 µg/ml) reduced the number of senescence-associated β-galactosidase-positive cells by 8.3% compared with the control group and increased the expression of p-Sirt1 by more than twofold compared with the control group. Moreover, 20 μg/ml CT treatment doubled the activity of p-Akt, which was inhibited by HG, compared with the control group. In addition, CT treatment decreased the expression of p53, p21, and Rb, which was increased by HG. Overall, CT delays HG-induced senescence via the Akt/p53/p21 pathway, suggesting its potential as a functional agent for the protection of ECs.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and NutritionKyungnam UniversityChangwon‐siRepublic of Korea
| | - Seonghee Park
- Department of Biological ScienceSookmyung Women's UniversitySeoulRepublic of Korea
| |
Collapse
|
38
|
Kim SR, Zou X, Tang H, Puranik AS, Abumoawad AM, Zhu XY, Hickson LJ, Tchkonia T, Textor SC, Kirkland JL, Lerman LO. Increased cellular senescence in the murine and human stenotic kidney: Effect of mesenchymal stem cells. J Cell Physiol 2020; 236:1332-1344. [PMID: 32657444 DOI: 10.1002/jcp.29940] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue-derived MSCs 2 weeks earlier, or sham. STK senescence-associated β-galactosidase (SA-β-Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence-associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue-derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA-β-Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA-β-Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiangyu Zou
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amrutesh S Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
Venturini W, Olate-Briones A, Valenzuela C, Méndez D, Fuentes E, Cayo A, Mancilla D, Segovia R, Brown NE, Moore-Carrasco R. Platelet Activation Is Triggered by Factors Secreted by Senescent Endothelial HMEC-1 Cells In Vitro. Int J Mol Sci 2020; 21:ijms21093287. [PMID: 32384773 PMCID: PMC7246568 DOI: 10.3390/ijms21093287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the main risk factors for the development of chronic diseases, with both the vascular endothelium and platelets becoming functionally altered. Cellular senescence is a form of permanent cell cycle arrest initially described in primary cells propagated in vitro, although it can also be induced by anticancer drugs and other stressful stimuli. Attesting for the complexity of the senescent phenotype, senescent cells synthesize and secrete a wide variety of bioactive molecules. This “senescence-associated secretory phenotype” (SASP) endows senescent cells with the ability to modify the tissue microenvironment in ways that may be relevant to the development of various physiological and pathological processes. So far, however, the direct role of factors secreted by senescent endothelial cells on platelet function remains unknown. In the present work, we explore the effects of SASP factors derived from senescent endothelial cells on platelet function. To this end, we took advantage of a model in which immortalized endothelial cells (HMEC-1) were induced to senesce following exposure to doxorubicin, a chemotherapeutic drug widely used in the clinic. Our results indicate that (1) low concentrations of doxorubicin induce senescence in HMEC-1 cells; (2) senescent HMEC-1 cells upregulate the expression of selected components of the SASP and (3) the media conditioned by senescent endothelial cells are capable of inducing platelet activation and aggregation. These results suggest that factors secreted by senescent endothelial cells in vivo could have a relevant role in the platelet activation observed in the elderly or in patients undergoing therapeutic stress.
Collapse
Affiliation(s)
- Whitney Venturini
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Alexandra Olate-Briones
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7500000, Chile
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Núcleo Científico Multidisciplinario, Universidad de Talca, Talca 3460000, Chile
| | - Diego Méndez
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000 Chile
| | - Eduardo Fuentes
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000 Chile
| | - Angel Cayo
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Daniel Mancilla
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
| | - Raul Segovia
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Nelson E. Brown
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile
- Correspondence: (N.E.B.); (R.M.-C.)
| | - Rodrigo Moore-Carrasco
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile
- Correspondence: (N.E.B.); (R.M.-C.)
| |
Collapse
|
40
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
41
|
Jesel L, Abbas M, Park SH, Matsushita K, Kindo M, Hasan H, Auger C, Sato C, Ohlmann P, Mazzucotelli JP, Toti F, Kauffenstein G, Schini-Kerth V, Morel O. Atrial Fibrillation Progression Is Associated with Cell Senescence Burden as Determined by p53 and p16 Expression. J Clin Med 2019; 9:jcm9010036. [PMID: 31878008 PMCID: PMC7019631 DOI: 10.3390/jcm9010036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Background: Whilst the link between aging and thrombogenicity in atrial fibrillation (AF) is well established, the cellular underlying mechanisms are unknown. In AF, the role of senescence in tissue remodeling and prothrombotic state remains unclear. Aims: We investigated the link between AF and senescence by comparing the expression of senescence markers (p53 and p16), with prothrombotic and inflammatory proteins in right atrial appendages from patients in AF and sinus rhythm (SR). Methods: The right atrial appendages of 147 patients undergoing open-heart surgery were harvested. Twenty-one non-valvular AF patients, including paroxysmal (PAF) or permanent AF (PmAF), were matched with 21 SR patients according to CHA2DS2-VASc score and treatment. Protein expression was assessed by tissue lysates Western blot analysis. Results: The expression of p53, p16, and tissue factor (TF) was significantly increased in AF compared to SR (0.91 ± 0.31 vs. 0.58 ± 0.31, p = 0.001; 0.76 ± 0.32 vs. 0.35 ± 0.18, p = 0.0001; 0.88 ± 0.32 vs. 0.68 ± 0.29, p = 0.045, respectively). Expression of endothelial NO synthase (eNOS) was lower in AF (0.25 ± 0.15 vs. 0.35 ± 0.12, p = 0.023). There was a stepwise increase of p53, p16, TF, matrix metalloproteinase-9, and an eNOS progressive decrease between SR, PAF, and PmAF. AF was the only predictive factor of p53 and p16 elevation in multivariate analysis. Conclusions: The study brought new evidence indicating that AF progression is strongly related to human atrial senescence burden and points at a link between senescence, thrombogenicity, endothelial dysfunction and atrial remodeling.
Collapse
Affiliation(s)
- Laurence Jesel
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
| | - Malak Abbas
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
| | - Sin-Hee Park
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
| | - Kensuke Matsushita
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
| | - Michel Kindo
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
| | - Hira Hasan
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
| | - Cyril Auger
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
| | - Chisato Sato
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
| | - Patrick Ohlmann
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
| | - Jean-Philippe Mazzucotelli
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
| | - Florence Toti
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
| | - Gilles Kauffenstein
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
| | - Valérie Schini-Kerth
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
- Correspondence: (V.S.-K.); (O.M.); Tel.: +33-368-854-127 (V.S.-K.); +33-369-550-948 (O.M.); Fax: +33-368-854-313 (V.S.-K.); +33-369-551-788 (O.M.)
| | - Olivier Morel
- INSERM UMR 1260–Regenerative Nanomedecine, FMTS, Université de Strasbourg-Faculté de Pharmacie, 67401 Illkirch-Graffenstaden, France; (L.J.); (M.A.); (S.-H.P.); (K.M.); (H.H.); (C.A.); (C.S.); (F.T.); (G.K.)
- Hôpitaux Universitaires de Strasbourg, Pôle d’Activité Médico-Chirurgicale Cardio-Vasculaire, 67000 Strasbourg, France; (M.K.); (P.O.); (J.-P.M.)
- Correspondence: (V.S.-K.); (O.M.); Tel.: +33-368-854-127 (V.S.-K.); +33-369-550-948 (O.M.); Fax: +33-368-854-313 (V.S.-K.); +33-369-551-788 (O.M.)
| |
Collapse
|
42
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
43
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
44
|
Wang M, Yin X, Zhang S, Mao C, Cao N, Yang X, Bian J, Hao W, Fan Q, Liu H. Autoantibodies against AT1 Receptor Contribute to Vascular Aging and Endothelial Cell Senescence. Aging Dis 2019; 10:1012-1025. [PMID: 31595199 PMCID: PMC6764731 DOI: 10.14336/ad.2018.0919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
Vascular aging predisposes the elderly to the progression of many aging-related vascular disorders and leads to deterioration of cardiovascular diseases (CVD). However, the underlying mechanisms have not been clearly elucidated. Agonistic autoantibodies against angiotensin II type 1 (AT1) receptor (AT1-AAs) have been demonstrated to be pro-inflammatory and contribute to the progression of atherosclerosis. However, the association between AT1-AAs and vascular aging has not been defined. Peripheral arterial disease (PAD) is an acknowledged vascular aging-related disease. In this study, AT1-AAs were detected in the sera of patients with PAD and the positive rate was 44.44% (n=63) vs. 17.46% in non-PAD volunteers (n=63). In addition, case-control analysis showed that AT1-AAs level was positively correlated with PAD. To reveal the causal relationship between AT1-AAs and vascular aging, an AT1-AAs-positive rat model was established by active immunization. The carotid pulse wave velocity was higher, and the aortic endothelium-dependent vasodilatation was attenuated significantly in the immunized rats. Morphological staining showed thickening of the aortic wall. Histological examination showed that levels of the senescent markers were increased in the aortic tissue, mostly located at the endothelium. In addition, purified AT1-AAs-IgGs from both the immunized rats and PAD patients induced premature senescence in cultured human umbilical vein endothelial cells. These effects were significantly blocked by the AT1 receptor blocker. Taken together, our study demonstrates that AT1-AAs contribute to the progression of vascular aging and induce EC senescence through AT1 receptor. AT1-AA is a novel biomarker of vascular aging and aging-related CVD that acts to accelerate EC senescence.
Collapse
Affiliation(s)
- Meili Wang
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiaochen Yin
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Suli Zhang
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Chenfeng Mao
- 3Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,4Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ning Cao
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiaochun Yang
- 5Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingwei Bian
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Weiwei Hao
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Qian Fan
- 5Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huirong Liu
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Hasan H, Park SH, Auger C, Belcastro E, Matsushita K, Marchandot B, Lee HH, Qureshi AW, Kauffenstein G, Ohlmann P, Schini-Kerth VB, Jesel L, Morel O. Thrombin Induces Angiotensin II-Mediated Senescence in Atrial Endothelial Cells: Impact on Pro-Remodeling Patterns. J Clin Med 2019; 8:jcm8101570. [PMID: 31581517 PMCID: PMC6833093 DOI: 10.3390/jcm8101570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Besides its well-known functions in hemostasis, thrombin plays a role in various non-hemostatic biological and pathophysiologic processes. We examined the potential of thrombin to promote premature atrial endothelial cells (ECs) senescence. METHODS AND RESULTS Primary ECs were isolated from porcine atrial tissue. Endothelial senescence was assessed by measuring beta-galactosidase (SA-β-gal) activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, protein level by Western blot, and matrix metalloproteinases (MMPs) activity using zymography. Atrial endothelial senescence was induced by thrombin at clinically relevant concentrations. Thrombin induced the up-regulation of p53, a key regulator in cellular senescence and of p21 and p16, two cyclin-dependent kinase inhibitors. Nicotinamide adenine dinucleotide phosphate NADPH oxidase, cyclooxygenases and the mitochondrial respiration complex contributed to oxidative stress and senescence. Enhanced expression levels of vascular cell adhesion molecule (VCAM)-1, tissue factor, transforming growth factor (TGF)-β and MMP-2 and 9 characterized the senescence-associated secretory phenotype of atrial ECs. In addition, the pro-senescence endothelial response to thrombin was associated with an overexpression of both angiotensin converting enzyme and AT1 receptors and was inhibited by perindoprilat and losartan. CONCLUSIONS Thrombin promotes premature ageing and senescence of atrial ECs and may pave the way to deleterious remodeling of atrial tissue by a local up-regulation of the angiotensin system and by promoting pro-inflammatory, pro-thrombotic, pro-fibrotic and pro-remodeling responses. Hence, targeting thrombin and/or angiotensin systems may efficiently prevent atrial endothelial senescence.
Collapse
Affiliation(s)
- Hira Hasan
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Sin-Hee Park
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Cyril Auger
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Eugenia Belcastro
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Kensuke Matsushita
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Benjamin Marchandot
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France
| | - Hyun-Ho Lee
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Abdul Wahid Qureshi
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Gilles Kauffenstein
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France.
| | - Patrick Ohlmann
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France
| | - Valérie B Schini-Kerth
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Laurence Jesel
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France
| | - Olivier Morel
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France.
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France.
| |
Collapse
|
46
|
Wu X, Zheng W, Jin P, Hu J, Zhou Q. Role of IGFBP1 in the senescence of vascular endothelial cells and severity of aging‑related coronary atherosclerosis. Int J Mol Med 2019; 44:1921-1931. [PMID: 31545483 PMCID: PMC6777673 DOI: 10.3892/ijmm.2019.4338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
The senescence of vascular endothelial cells (ECs) plays a critical role in aging-related cardiovascular diseases. We previously reported the causal relation of Jagged1 in ECs and the thickening of the arterial wall in aging mice. The aim of the present study was to further investigate the correlation between insulin-like growth factor-binding protein 1 (IGFBP1), one of the secretory proteins regulated by Jagged1, and the severity of coronary atherosclerosis and patient age, as well as its effect on EC senescence. First, microarray analysis was performed to screen the differentially expressed genes regulated by Jagged1 in human coronary arterial ECs (HCAECs). Inhibition of the Jagged1 expression using a small interfering RNA knockdown method in HCAECs led to the upregulation of 17 and the downregulation of 78 genes by >3-fold, and IGFBP1 was confirmed to be a secretory protein expressed by HCAECs and regulated by Jagged1. Subsequently, in 112 consecutively enrolled patients with acute chest pain who underwent coronary angiography, the circulating level of IGFBP1 was found to be positively correlated with age (r=0.512, P<0.001) and Synergy between PCI with TAXUS and Cardiac Surgery (SYNTAX) score (r=0.409, P<0.001). Among age-comparable patients, the circulating IGFBP1 level was found to be increased in patients with higher SYNTAX scores. In cultured HCAECs, IGFBP1 was shown to protect ECs against passage- or H2O2-induced senescence, and these protective effects of IGFBP1 may be partially reversed by LY294002, a known Akt signaling inhibitor. Therefore, the results of the present study suggested that, as a downstream protein of Jagged1, IGFBP1 was correlated with the severity of coronary atherosclerosis in aging patients, and the increase of circulating IGFBP1 levels with aging may be an adaptive response to counter HCAEC senescence through Akt signaling.
Collapse
Affiliation(s)
- Xiaojing Wu
- Cardiovascular Department of Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518060, P.R. China
| | - Wei Zheng
- Cardiovascular Department of Xinqiao Hospital, Chongqing 400037, P.R. China
| | - Peng Jin
- Cardiovascular Department of Xinqiao Hospital, Chongqing 400037, P.R. China
| | - Junhao Hu
- Cardiovascular Department of The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qi Zhou
- Cardiovascular Department of The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
47
|
Musorina AS, Zenin VV, Turilova VI, Yakovleva TK, Poljanskaya GG. Characterization of a Nonimmortalized Mesenchymal Stem Cell Line Isolated from Human Epicardial Adipose Tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s1990519x19040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Afonso P, Auclair M, Caron-Debarle M, Capeau J. Impact of CCR5, integrase and protease inhibitors on human endothelial cell function, stress, inflammation and senescence. Antivir Ther 2019; 22:645-657. [PMID: 28350300 DOI: 10.3851/imp3160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ageing HIV-infected patients present an increased incidence of cardiovascular diseases, endothelial dysfunction being an early alteration. Some protease inhibitors (PIs) have been shown to increase the risk of cardiovascular disease. We evaluated here the effects of CCR5 or integrase inhibitors as compared to PIs on endothelial functions in vitro. METHODS Human coronary artery endothelial cells (HCAEC) from adult and old non-HIV-infected donors were treated for 15 days with the CCR5 inhibitor maraviroc, the integrase inhibitors dolutegravir or raltegravir or the ritonavir-boosted PIs, darunavir (DRV/r) or atazanavir (ATV/r), all at Cmax concentrations. We evaluated endothelial function, secretion of adhesion molecules and cytokines, inflammation, oxidative stress and senescence. RESULTS In endothelial cells from adult donors, we confirmed that ATV/r and DRV/r adversely affected all assessed endothelial functions and enhanced senescence, these effects being mild for DRV/r. Raltegravir had no effect and maraviroc a mild anti-inflammatory effect. Dolutegravir decreased inflammation, by inhibiting the NFκB pathway, and senescence, by repressing the p21 pathway. Moreover, HCAEC from an old donor presented, constitutively, a high level of senescence. Raltegravir mildly affected inflammation and senescence while maraviroc and dolutegravir decreased oxidative stress, inflammation and senescence and improved endothelial dysfunction. CONCLUSIONS We report here that the integrase inhibitor dolutegravir and the CCR5 inhibitor maraviroc reduced inflammation of human adult endothelial cells to different extents while raltegravir was neutral. Dolutegravir also reduced senescence, while PI/r increased inflammation and senescence. It is important to address the clinical relevance of these results.
Collapse
Affiliation(s)
- Pauline Afonso
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France.,Inserm UMR_S938, Centre de Recherche Saint-Antoine, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Martine Auclair
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France.,Inserm UMR_S938, Centre de Recherche Saint-Antoine, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Martine Caron-Debarle
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France.,Inserm UMR_S938, Centre de Recherche Saint-Antoine, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jacqueline Capeau
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France.,Inserm UMR_S938, Centre de Recherche Saint-Antoine, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
49
|
Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1810-1821. [PMID: 31109451 DOI: 10.1016/j.bbadis.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
50
|
Alique M, Bodega G, Giannarelli C, Carracedo J, Ramírez R. MicroRNA-126 regulates Hypoxia-Inducible Factor-1α which inhibited migration, proliferation, and angiogenesis in replicative endothelial senescence. Sci Rep 2019; 9:7381. [PMID: 31089163 PMCID: PMC6517399 DOI: 10.1038/s41598-019-43689-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Whereas a healthy endothelium maintains physiological vascular functions, endothelial damage contributes to the development of cardiovascular diseases. Endothelial senescence is the main determinant of endothelial dysfunction and thus of age-related cardiovascular disease. The objective of this study is to test the involvement of microRNA-126 and HIF-1α in a model of replicative endothelial senescence and the interrelationship between both molecules in this in vitro model. We demonstrated that senescent endothelial cells experience impaired tube formation and delayed wound healing. Senescent endothelial cells failed to express HIF-1α, and the microvesicles released by these cells failed to carry HIF-1α. Of note, HIF-1α protein levels were restored in HIF-1α stabilizer-treated senescent endothelial cells. Finally, we show that microRNA-126 was downregulated in senescent endothelial cells and microvesicles. With regard to the interplay between microRNA-126 and HIF-1α, transfection with a microRNA-126 inhibitor downregulated HIF-1α expression in early passage endothelial cells. Moreover, while HIF-1α inhibition reduced tube formation and wound healing closure, microRNA-126 levels remained unchanged. These data indicate that HIF-1α is a target of miRNA-126 in protective and reparative functions, and suggest that their therapeutic modulation could benefit age-related vascular disease.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain.
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá. Alcalá de Henares, Madrid, Spain
| | - Chiara Giannarelli
- Cardiovascular Research Center, One Gustave L. Levy Place, New York, NY, USA.,Institute for Genomics and Multiscale Biology, One Gustave L. Levy Place, New York, NY, USA.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| |
Collapse
|