1
|
Oktiawan W, Sarminingsih A, Hadiwidodo M, Purwono P. Electrocoagulation process for phosphate recovery of agricultural wastewater: effect of calcium adding, voltage, and time. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:842. [PMID: 39186147 DOI: 10.1007/s10661-024-13034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Recovery of valuable resources, such as phosphate recovery from wastewater, can help close the nutrient cycle and is interesting to investigate. This study aims to evaluate phosphate recovery and set aside TOC, OC, and IC in agricultural wastewater using electrocoagulation with a helix electrode configuration. This study employed the Response Surface Methodology (RSM) for statistical analysis and modeling, utilizing a central composite design (CCD). Variation of calcium concentration (2-7 mg/L), voltage (15-45 V), and electrocoagulation time (5-15 min) was applied in an electrocoagulation reactor with a helix-shaped stainless steel cathode and a solid cylindrical Mg anode. Based on RSM analysis, electrocoagulation with a helical electrode configuration significantly affects phosphate recovery and the removal of TOC, OC, and IC when treating agricultural wastewater. Under operating conditions of 15 V, 15 min time, and 2 mg/L calcium concentration, we achieved the lowest phosphate concentration of 0.003 mg/L (99.74% reduction). The highest TOC allowance is > 100% of the initial concentration, the TC allowance is 55.79%, and the IC allowance is 30.91%. The formation of metal hydroxides affects the efficiency of TOC removal in the electrocoagulation process, and higher electrolysis times lead to higher TOC removal efficiency. Higher voltages also improve the coagulation and flotation processes in the reactor. Calcium concentration plays a role in enhancing the flocculation process and binding phosphonates from wastewater.
Collapse
Affiliation(s)
- Wiharyanto Oktiawan
- Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Indonesia.
| | - Anik Sarminingsih
- Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Indonesia
| | - Mochtar Hadiwidodo
- Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Indonesia
| | - Purwono Purwono
- Department of Environmental Sciences, Universitas Islam Negeri Raden Mas Said Surakarta, Kartasura, 57168, Indonesia
| |
Collapse
|
2
|
Zhang S, Yi X, He D, Tang X, Chen Y, Zheng H. Recent progress and perspectives of typical renewable bio-based flocculants: characteristics and application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46877-46897. [PMID: 38980480 DOI: 10.1007/s11356-024-34199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The research on bio-based flocculants for waste resource utilization and environmental protection has garnered significant attention. Bio-based flocculants encompass plant-based, animal-based, and microbial variants that are prepared and modified through biological, chemical, and physical methods. These flocculants possess abundant functional groups, unique structures, and distinctive characteristics. This review comprehensively discussed the removal rates of conventional pollutants and emerging pollutants by bio-based flocculants, the interaction between these flocculants and pollutants, their impact on flocculation performance in wastewater treatment, as well as their application cost. Furthermore, it described the common challenges faced by bio-based flocculants in practical applications along with various improvement strategies to address them. With their safety profile, environmental friendliness, efficiency, renewability, and wide availability from diverse sources, bio-based flocculants hold great potential for widespread use in wastewater treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaohui Yi
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Dilin He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
3
|
Zuo X, Zhang S, Chen S, Sun H. Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. ENVIRONMENTAL TECHNOLOGY 2024; 45:2743-2752. [PMID: 36848218 DOI: 10.1080/09593330.2023.2185911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm2 of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10-2 for blaTEM) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| | - ShaoJie Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| | - Hui Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Aguilar-Ascón E, Marrufo-Saldaña L, Neyra-Ascón W. Enhanced chromium removal from tannery wastewater through electrocoagulation with iron electrodes: Leveraging the Box-Behnken design for optimization. Heliyon 2024; 10:e24647. [PMID: 38356549 PMCID: PMC10865265 DOI: 10.1016/j.heliyon.2024.e24647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
This study is focused on reducing total chromium level in tannery wastewater through the electrocoagulation process, in order to comply with the maximum permissible limits (MPL) and to determine the effects from its main operating factors. For this purpose, a batch electrocoagulation reactor was manufactured using iron electrodes. Next, the response surface methodology was applied in the experimental design using a Box-Behnken design (BBD) with three factors: current intensity, treatment time, and p H level. In addition, the total chromium removal percentage was taken as a response variable. The corresponding statistical analysis revealed that the treatment time, current intensity, and p H level variables were significant at a confidence level of P - v a l u e < 0.05 . Obtained in this study for a 99 % total chromium removal were: current intensity ( I ) = 2.9 A , time ( t ) = 18.1 min , and p H = 5.6 . Our results indicated that the electrocoagulation process effectively removes total chromium from tannery effluents up to MPL values.
Collapse
Affiliation(s)
- Edwar Aguilar-Ascón
- Universidad de Lima, Instituto de Investigación Científica, Grupo de Investigación en Tecnologías Exponenciales, Estudios Generales, Av. Javier Prado 4600, Surco, Lima, Perú
| | - Liliana Marrufo-Saldaña
- Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas Producción, (CITEccal Lima) - ITP, Av. Caquetá 1300, Rímac, Lima, Perú
| | - Walter Neyra-Ascón
- Universidad de Lima, Instituto de Investigación Científica, Av. Javier Prado 4600, Surco, Lima, Perú
| |
Collapse
|
5
|
Shan LL, Tan Z, Chen Y, Wang RS, Zhang M, Pang CL, Cui YH, Liao ZM, Ma HQ, Zhu ZB. Biodegradability enhancement of waste lubricating oil regeneration wastewater using electrocoagulation pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106421-106430. [PMID: 37728675 DOI: 10.1007/s11356-023-29841-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
As a sustainable management of fossil fuel resources and ecological environment protection, recycling used lubricating oil has received widespread attention. However, large amounts of waste lubricating-oil regeneration wastewater (WLORW) are inevitably produced in the recycling process, and challenges are faced by traditional biological treatment of WLORW. Thus, this study investigated the effectiveness of electrocoagulation (EC) as pretreatment and its removal mechanism. The electrolysis parameters (current density, initial pH, and inter-electrode distance) were considered, and maximal 60.06% of oil removal was achieved at a current density of 15 mA/cm2, initial pH of 7, and an inter-electrode distance of 2 cm. The dispersed oil of WLORW was relatively easily removed, and most of the oil removal was contributed by emulsified oil within 5-10 μm. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that effective removal of the biorefractory organic compounds could contribute to the improvement of biodegradability of WLORW. Thus, the 5-day biochemical oxygen demand/chemical oxygen demand ratio (BOD5/COD) was significantly enhanced by 4.31 times, which highly benefits future biological treatment. The routes of WLORW removal could be concluded as charge neutralization, adsorption bridging, sweep flocculation, and air flotation. The results demonstrate that EC has potential as an effective pretreatment technology for WLORW biological treatment.
Collapse
Affiliation(s)
- Li-Li Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
- Jiangxi JDL Environmental Protection Co., Ltd, Nanchang, 330199, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Tan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Yu Chen
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Ruo-Shan Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Meng Zhang
- Jiangxi Academy of Environmental Sciences, Nanchang, 330039, China
| | - Chang-Long Pang
- Jiangxi ZXDH Environmental Protection Industry Tecnology Institute Co., Ltd, Nanchang, 330000, China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Min Liao
- Jiangxi JDL Environmental Protection Co., Ltd, Nanchang, 330199, China
| | - Hong-Qiang Ma
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Ze-Bing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China.
| |
Collapse
|
6
|
Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Davaasambuu S, Chuluunsukh D, Amarsanaa A. Formation of Arsenic Minerals in Aqueous Media During Electrocoagulation using Iron Electrodes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sarangerel Davaasambuu
- Department of Chemistry Division of Natural Sciences School of Arts and Sciences National University of Mongolia Ulaanbaatar 14200 Mongolia
| | - Delgersaikhan Chuluunsukh
- Department of Chemistry Division of Natural Sciences School of Arts and Sciences National University of Mongolia Ulaanbaatar 14200 Mongolia
| | - Altangerel Amarsanaa
- Department of Chemistry Division of Natural Sciences School of Arts and Sciences National University of Mongolia Ulaanbaatar 14200 Mongolia
| |
Collapse
|
8
|
Amalina F, Razak ASA, Krishnan S, Zularisam A, Nasrullah M. Dyes removal from textile wastewater by agricultural waste as an absorbent – A review. CLEANER WASTE SYSTEMS 2022; 3:100051. [DOI: 10.1016/j.clwas.2022.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Amalina F, Razak ASA, Krishnan S, Zularisam A, Nasrullah M. The effects of chemical modification on adsorbent performance on water and wastewater treatment - A review. BIORESOURCE TECHNOLOGY REPORTS 2022; 20:101259. [DOI: 10.1016/j.biteb.2022.101259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Imwene KO, Ngumba E, Kairigo PK. Emerging technologies for enhanced removal of residual antibiotics from source-separated urine and wastewaters: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116065. [PMID: 36063692 DOI: 10.1016/j.jenvman.2022.116065] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic residues are of significant concern in the ecosystem because of their capacity to mediate antibiotic resistance development among environmental microbes. This paper reviews recent technologies for the abatement of antibiotics from human urine and wastewaters. Antibiotics are widely distributed in the aquatic environment as a result of the discharge of municipal sewage. Their existence is a cause for worry due to the potential ecological impact (for instance, antibiotic resistance) on bacteria in the background. Numerous contaminants that enter wastewater treatment facilities and the aquatic environment, as a result, go undetected. Sludge can act as a medium for some chemicals to concentrate while being treated as wastewater. The most sewage sludge that has undergone treatment is spread on agricultural land without being properly checked for pollutants. The fate of antibiotic residues in soils is hence poorly understood. The idea of the Separation of urine at the source has recently been propagated as a measure to control the flow of pharmaceutical residues into centralized wastewater treatment plants (WWTPs). With the ever increasing acceptance of urine source separation practices, visibility and awareness on dedicated treatement technologies is needed. Human urine, as well as conventional WWTPs, are point sources of pharmaceutical micropollutants contributing to the ubiquitous detection of pharmaceutical residues in the receiving water bodies. Focused post-treatment of source-separated urine includes distillation and nitrification, ammonia stripping, and adsorption processes. Other reviewed methods include physical and biological treatment methods, advanced oxidation processes, and a host of combination treatment methods. All these are aimed at ensuring minimized risk products are returned to the environment.
Collapse
Affiliation(s)
- K O Imwene
- University of Nairobi, Faculty of Science and Technology, Department of Chemistry, PO Box 30197, 00100, Nairobi, Kenya
| | - E Ngumba
- Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry, P.O. Box 62000-00200, Nairobi, Kenya
| | - P K Kairigo
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyvaskyla, Finland.
| |
Collapse
|
11
|
Nasrullah M, Ansar S, Krishnan S, Singh L, Peera SG, Zularisam AW. Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application. CHEMOSPHERE 2022; 299:134387. [PMID: 35339529 DOI: 10.1016/j.chemosphere.2022.134387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In the electrocoagulation wastewater treatment process, extremely polluted water treatment requires an effective technique, and using high current is one of those. This study aims to optimize electrocoagulation parameters such as operation time, electrodes gap and the initial pH by applying high current intensity to treat palm oil mill effluent (POME) via Box-Behnken design (BBD) method. Chemical oxygen demand (COD), biological oxygen demand (BOD), and suspended solids (SS) were used as the response variables in the quadratic polynomial model. Most of the selected models in the analysis of variance (ANOVA) have shown significant results. A high connection between the parameters and dependent variables was surprisingly discovered in this study which the obtained value of R2 for removal percentage of COD, BOD and SS were 0.9975, 0.9984 and 0.9979 respectively. Optimal removal was achieved at 19.07 A of current intensity (equivalent to 542 mA/cm2 of current density), 44.97 min of treatment time, 8.60 mm of inter-electrode distance and 4.37 of pH value, resulted in 97.21%, 99.26% and 99.00% of COD, BOD and SS removal respectively. This optimized scheme of operating parameters combination offers an alternate choice for enhancing the treatment efficiency of POME and also can be a benchmark for other researchers to treat highly polluted wastewater.
Collapse
Affiliation(s)
- Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Santhana Krishnan
- PSU Energy Systems Research Institute, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lakhveer Singh
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Energy Acres, Via Premnager, Dehradun 248007, India; Department of Civil Engineering, Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Shaik Gouse Peera
- Department of Environmental Science and Engineering, Keimyung University, Daegu, 42602, Republic of Korea
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
12
|
Das PP, Sharma M, Purkait MK. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Minimizing the Fluoride Load in Water Using the Electrocoagulation Method: An Experimental Approach. ENVIRONMENTS 2022. [DOI: 10.3390/environments9030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The abundant presence of fluoride (F-) in surface water bodies is an environmental concern because of its effects on human health; medical reports confirmed that fluoride intake above 1.5 mg/L leads to many health complications, including but not limited to weak bones and enamel fluorosis. Thus, the World Health Organisation (WHO) defines 1.20 mg/L as the maximum permissible F- concentration in drinking water. The electrocoagulation method (EC) is globally practised to remove many pollutants from water due to its cost-effectiveness, safety, and ease of use. However, EC has some drawbacks, such as the lack of reactors’ design. In this study, a new EC reactor, which uses four drilled aluminium electrodes and a variant cross-section section container, was designed and used to remove F- from water. The design of the new EC eliminated the need for water mixers. The ability of the new EC unit to remove F- from synthetic water was evaluated at different current densities (CD) (1–3 mA/cm2), electrode distances (ELD) (5–15 mm), pH of the solution (pHoS) (4–10), and initial F- concentrations (IFC) (5–20 mg/L). The outcomes of this study prove that the new reactor could remove as much as 98.3% of 20 mg/l of F- at CD, ELD, pHoS, and IFC of 2 mA/cm2, 5 mm, and 4 and 10 mg/L, respectively.
Collapse
|
14
|
Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14041985] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agro-based final discharge is one of the major contributors to wastewater in the world. It creates high demand for efficient treatment. The electrocoagulation process can be used for agro-based wastewater treatment. The performance of the electrocoagulation process is based on several parameters, including the electrode materials, electrolysis time, current density, and electrolyte support. Agro-based industrial wastewater (AIW) treatment processes depend on the characteristics of the wastewater. The removal of organic content from various sources of AIW can reach up to more than 80%. Some studies show that the performance of the electrochemical process can be increased using a combination with other methods. Those other methods include biological and physical treatment. The results of previous research show that organic content and color can be degraded completely. The relationship between the energy consumption and operating cost was analyzed in order to show the efficiency of electrocoagulation treatment.
Collapse
|
15
|
Yarui S, Kaisheng W, Guangyu A, Fajun Z, Bin M, Zhaoxi D, Dongsheng W. Preparation of Powdered Activated Carbon Matrix Composites and Their Decontamination Performance and Mechanisms for Oily Sewage. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Gong C, Ren X, Han J, Wu Y, Gou Y, Zhang Z, He P. Toxicity reduction of reverse osmosis concentrates from petrochemical wastewater by electrocoagulation and Fered-Fenton treatments. CHEMOSPHERE 2022; 286:131582. [PMID: 34293570 DOI: 10.1016/j.chemosphere.2021.131582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In this work, both Electrocoagulation (EC) and Fered-Fenton (FF) technologies were used to treat reverse osmosis concentrates (ROC) from petrochemical production. The toxicity reduction capacity and mechanism were comparatively assessed during these two treatments. The results showed that FF exhibited higher capacity to reduce toxicity than EC in the 30 min treatment, which could be attributed to the removal of organic pollutants and heavy metals. The results showed that the ROC contained organics with molecular weight of 1200 g mol-1 and 220 g mol-1, which mainly consisted of the soluble microbial by-product-like and humic acid-like substances. The removal of these organics directly led to the noticeable toxicity reduction. Alkanes, haloalkanes, ketones, PAHs, and other four organic pollutants were the dominant species in the ROC, and the removal of small molecular weight organic pollutants played an essential role in reducing toxicity. FF exhibited stronger capacity to remove PAHs, BTEXS and haloalkanes, and the removal efficiencies for the PAHs were in the following order: 5-ring > 4-ring > 3-ring > 2-ring. The promotion of heavy metals removal appeared to be favorable for decreasing toxicity in ROC. This study illustrated the mechanism of the toxicity reduction and the characteristics of pollutants removal during FF and EC treatments, and provided valuable guidance for petrochemical manufacturing to the toxicity reduction and operation of wastewater treatment facilities.
Collapse
Affiliation(s)
- Chenhao Gong
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China.
| | - Xiaojing Ren
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China
| | - Junxing Han
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China
| | - Yue Wu
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China
| | - Yaling Gou
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China
| | - Zhongguo Zhang
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China.
| | - Peiran He
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing, 100095, China
| |
Collapse
|
17
|
Mohamad Z, Razak AA, Krishnan S, Singh L, Zularisam A, Nasrullah M. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Jun KC, Buthiyappan A, Abdul Raman AA. Application of magnetic-biomass-derived activated carbon as an adsorbent for the treatment of recalcitrant wastewater. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01679-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Mousazadeh M, Niaragh EK, Usman M, Khan SU, Sandoval MA, Al-Qodah Z, Khalid ZB, Gilhotra V, Emamjomeh MM. A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43143-43172. [PMID: 34164789 DOI: 10.1007/s11356-021-14631-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elnaz Karamati Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany
| | - Saif Ullah Khan
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, U.P., 202001, India
| | - Miguel Angel Sandoval
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Universidad de Santiago de Chile USACH, Casilla 40, Correo 33, Santiago, Chile
- División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, México
| | - Zakaria Al-Qodah
- Department of Chemical Engineering, Al-Balqa Applied University, Amman, Jordan
| | - Zaied Bin Khalid
- Universiti Malaysia Pahang (UMP), 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mohammad Mahdi Emamjomeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
20
|
Öztürk T, Özcan ÖF. Effectiveness of electrocoagulation and chemical coagulation methods on paper industry wastewaters and optimum operating parameters. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1805465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tuba Öztürk
- Department of Environmental Engineering, University of Namık Kemal, Corlu, Turkey
| | - Ömer Faruk Özcan
- Department of Environmental Engineering, University of Namık Kemal, Corlu, Turkey
| |
Collapse
|
21
|
Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138095. [PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/28/2023]
Abstract
The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
Collapse
Affiliation(s)
- B K Zaied
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia; Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300, Kuantan, Pahang, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India.
| |
Collapse
|
22
|
Yashni G, Al-Gheethi A, Radin Mohamed RMS, Arifin SNH, Mohd Salleh SNA. Conventional and advanced treatment technologies for palm oil mill effluents: a systematic literature review. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1788950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- G. Yashni
- Micropollutant Research Centre (MPRC), Cluster of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Cluster of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Cluster of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
| | - Siti Nor Hidayah Arifin
- Micropollutant Research Centre (MPRC), Cluster of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
| | - Siti Nor Aishah Mohd Salleh
- Micropollutant Research Centre (MPRC), Cluster of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
| |
Collapse
|
23
|
Syam Babu D, Anantha Singh TS, Nidheesh PV, Suresh Kumar M. Industrial wastewater treatment by electrocoagulation process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1671866] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - T. S. Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deenadayal Petroleum University, Gujarat, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M. Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|