1
|
Tak E, An HI, Lee AS, Han K, Choi J, Kim HD, Hong YS, Kim SY, Choi EK, Kim JE, Kim TW. Antitumor effects of immunotherapy combined with BRAF and MEK inhibitors in BRAF V600E metastatic colorectal cancer. Cancer Immunol Immunother 2025; 74:154. [PMID: 40105971 PMCID: PMC11923341 DOI: 10.1007/s00262-025-04005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
BRAF-mutated colorectal cancer correlates with poor prognosis and limited response to standard treatments. Combining immune checkpoint inhibitors with BRAF/MEK inhibitors shows promise against BRAF-mutant melanoma in both preclinical and clinical trials. Therefore, we hypothesized that the treatment would be effective against BRAF-mutant colorectal cancer. In this study, we assessed the efficacy of combining immune checkpoint inhibitors with BRAF and/or MEK inhibitors in BRAF-mutant colorectal cancers. We treated BRAF V600E colorectal cancer cells HT-29 and SNU-1235 with encorafenib (BRAF inhibitor) and binimetinib (MEK inhibitor) and assessed the degrees of MAPK inhibition, JAK/STAT inhibition, cell viability, apoptosis, and the expression of antigen presenting machinery. We also inoculated HT-29 cells into mice and treated them with an immune checkpoint inhibitor (durvalumab), encorafenib, and binimetinib for 4 weeks. We found that treatment with BRAF inhibitor, MEK inhibitor, or their combination led to significant tumor growth reduction, along with the MAPK and JAK/STAT pathway inhibition, antigen presenting machinery induction, and cytotoxic T cell activation. Our study demonstrates the potential effectiveness of combining immune checkpoint inhibitors with BRAF or MEK inhibitors for BRAF-mutated colorectal cancers.
Collapse
Affiliation(s)
- Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Amy Sinyoung Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyuyoung Han
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwan Choi
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyung-Don Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Yong Sang Hong
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Tae Won Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, 05505, Republic of Korea
| |
Collapse
|
2
|
Piercey O, Chantrill L, Hsu H, Ma B, Price T, Tan IB, Teng H, Tie J, Desai J. Expert consensus on the optimal management of BRAF V600E-mutant metastatic colorectal cancer in the Asia-Pacific region. Asia Pac J Clin Oncol 2025; 21:31-45. [PMID: 39456063 PMCID: PMC11733838 DOI: 10.1111/ajco.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The burden of colorectal cancer (CRC) is high in the Asia-Pacific region, and several countries in this region have among the highest and/or fastest growing rates of CRC in the world. A significant proportion of patients will present with or develop metastatic CRC (mCRC), and BRAFV600E-mutant mCRC represents a particularly aggressive phenotype that is less responsive to standard chemotherapies. In light of recent therapeutic advances, an Asia-Pacific expert consensus panel was convened to develop evidence-based recommendations for the diagnosis, treatment, and management of patients with BRAFV600E-mutant mCRC. The expert panel comprised nine medical oncologists from Australia, Hong Kong, Singapore, and Taiwan (the authors), who met to review current literature and develop eight consensus statements that describe the optimal management of BRAFV600E-mutant mCRC in the Asia-Pacific region. As agreed by the expert panel, the consensus statements recommend molecular testing at diagnosis to guide individualized treatment decisions, propose optimal treatment pathways according to microsatellite stability status, advocate for more frequent monitoring of BRAFV600E-mutant mCRC, and discuss local treatment strategies for oligometastatic disease. Together, these expert consensus statements are intended to optimize treatment and improve outcomes for patients with BRAFV600E-mutant mCRC in the Asia-Pacific region.
Collapse
Affiliation(s)
| | - Lorraine Chantrill
- Illawarra Shoalhaven Local Health DistrictIllawarraNew South WalesAustralia
- Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Hung‐Chih Hsu
- Division of Hematology OncologyChang Gung Memorial HospitalNew TaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Brigette Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer InstituteThe Chinese University of Hong KongHong Kong SARChina
| | - Timothy Price
- The Queen Elizabeth HospitalAdelaideSouth AustraliaAustralia
| | - Iain Beehuat Tan
- Division of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Hao‐Wei Teng
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Jeanne Tie
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Jayesh Desai
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Lasota J, Kaczorowski M, Chłopek M, Miłek-Krupa J, Szczepaniak M, Ylaya K, Chodyna M, Iżycka-Świeszewska E, Scherping A, Czapiewski P, Dziuba I, Kato Y, Hałoń A, Kowalik A, Miettinen M. An immunohistochemical and molecular genetic study of 60 colorectal carcinoma brain metastases in pursuit of predictive biomarkers for cancer therapy. Hum Pathol 2025; 155:105717. [PMID: 39824298 DOI: 10.1016/j.humpath.2025.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Colorectal carcinoma brain metastases (n = 60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.3% of cases, respectively. Patients with RAS- and BRAF-mutant tumors could potentially benefit from the treatment with inhibitors. TP53 mutations were detected in 69.1% of metastases. Moreover, altered p53 expression was seen in 91.2% of cases. APC mutations were present in 41.8% of tumors. Diffuse nuclear accumulation of β-catenin was seen in 10.2% of metastases, although only 1 CTNNB1 mutant was identified. Nevertheless, targeting p53 and Wnt/β-catenin pathways may have potential therapeutic implications. Casein kinase 1α1 expression indicating susceptibility to protein kinase inhibitors, was seen in 95% metastases including 10 with strong immunoreactivity. The immune checkpoint marker CD276, a promising target for immunotherapy, was present on tumor cells in 50.8% of metastases and on stromal cells in almost all cases. PRAME, another immunotherapy target, was expressed in 21.7% of tumors. HER2 membrane immunostaining detected in 13.3% of cases implicated potential treatment with HER2 inhibitors. Expression of SLFN11, a predictor of response to DNA-damaging chemotherapies, and a biomarker of sensitivity to PARP inhibitors was seen in 8.3% of tumors. In 6.7% of metastases loss or partial loss of MTAP expression suggested sensitivity to PRMT5 inhibitors. CD44v5 expressed in 35% of cases indicated potential therapeutic utility of anti-CD44v5 monoclonal antibody treatment. Identification of predictive biomarkers through genomic profiling and proteomic analyses is a crucial step toward individually tailored therapeutic regimens for patients with colorectal carcinoma brain metastases.
Collapse
Affiliation(s)
- Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| | - Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA; Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA; Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Justyna Miłek-Krupa
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | | | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Miłosz Chodyna
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Scherping
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Piotr Czapiewski
- Department of Pathology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany; Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ireneusz Dziuba
- Department of Pathology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland; Division of Medical Biology, Institute of Biology Jan Kochanowski University, Kielce, Poland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
4
|
Sun C, Fan E, Huang L, Zhang Z. Second-line systemic treatment for metastatic colorectal cancer: A systematic review and Bayesian network meta-analysis based on RCT. PLoS One 2024; 19:e0313278. [PMID: 39715232 DOI: 10.1371/journal.pone.0313278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The optimal second-line systemic treatment for metastatic colorectal cancer (mCRC) is inconclusive. METHODS We searched PubMed, Web of Science, EMBASE, and Cochrane Library for RCTs comparing second-line systemic treatments for mCRC from the inception of each database up to February 3, 2024. Markov Chain Monte Carlo (MCMC) technique was used in this network meta-analysis (NMA) to generate the direct and indirect comparison results among multiple treatments in progression-free survival (PFS), overall response rate (ORR), overall survival (OS), complete response (CR), partial response (PR), grade 3 and above adverse events (Grade ≥ 3AE), and any adverse events (Any AE). The surface under the cumulative ranking curve (SUCRA) was adopted to evaluate the probability of each treatment being the optimum intervention. Subgroup analyses were performed based on the RAS gene status. RESULTS A total of 47 randomized controlled trials were included, involving 16,925 patients and 44 second-line systemic treatments. In improving OS, FOLFOX + Bevacizumab + Erlotinib exhibited significant superiority (SUCRA:92.7%). In improving PFS, Irinotecan + CMAB009 (SUCRA:86.4%) had advantages over other treatments. FOLFIRI + Trebananib (SUCRA:88.1%) had a significant advantage in improving ORR. Among multiple second-line treatments, the SUCRA values of FOLFOX + Bevacizumab in PFS, OS, ORR, and PR were 83.4%, 74.0%, 81.1%, and 86.1%, respectively, and the safety was not significantly different from other interventions. Subgroup analyses showed that FOLFIRI + Bevacizumab + panitumumab ranked among the top in survival outcomes in the RAS-mutant population (OS SUCRA: 87.9%; PFS SUCRA: 70.2%); whereas in the RAS-wild-type population, FOLFIRI + Bevacizumab significantly improved survival outcomes (OS SUCRA: 73.2%; PFS SUCRA: 65.1%). CONCLUSION For most people, FOLFOX + Bevacizumab may be the best second-line systemic treatment regimen for mCRC. For RAS-mutant populations, FOLFIRI + Bevacizumab + Panitumumab is recommended. However, the therapeutic effect may be affected by the patient's physiological state, and clinicians should apply it based on actual conditions.
Collapse
Affiliation(s)
- Chengyu Sun
- Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luqiao Huang
- Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhengguo Zhang
- Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Matteucci L, Sullo FG, Gallio C, Esposito L, Muratore M, Rapposelli IG, Calistri D, Petracci E, Rengucci C, Capelli L, Chiadini E, Ulivi P, Passardi A, Bittoni A. Multigene Panel Next-Generation Sequencing Techniques in the Management of Patients with Metastatic Colorectal Carcinoma: The Way Forward for Personalized Treatment? A Single-Center Experience. Int J Mol Sci 2024; 25:11071. [PMID: 39456850 PMCID: PMC11507460 DOI: 10.3390/ijms252011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The efficacy and cost-effectiveness of Multigene Panel Next-Generation Sequencing (NGS) in directing patients towards genomically matched therapies remain uncertain. This study investigated metastatic colorectal cancer (mCRC) patients who underwent NGS analysis on formalin-fixed paraffin-embedded tumor samples. Data from 179 patients were analyzed, revealing no mutations in 39 patients (21.8%), one mutation in 83 patients (46.4%), and two or more mutations in 57 patients (31.8%). KRAS mutations were found in 87 patients (48.6%), including KRAS G12C mutations in 5 patients (2.8%), PIK3CA mutations in 40 patients (22.4%), and BRAF mutations in 26 patients (14.5%). Less common mutations were identified: ERBB2 in five patients (2.8%) and SMO in four patients (2.2%). Additionally, MAP2K1, CTNNB1, and MYC were mutated in three patients (2.4%). Two mutations (1.1%) were observed in ERBB3, RAF1, MTOR, JAK1, and FGFR2. No significant survival differences were observed based on number of mutations. In total, 40% of patients had druggable molecular alterations, but only 1.1% received genomically guided treatment, suggesting limited application in standard practice. Despite this, expanded gene panel testing can identify actionable mutations, aiding personalized treatment strategies in metastatic CRC, although current eligibility for biomarker-guided trials remains limited.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Francesco Giulio Sullo
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Chiara Gallio
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Luca Esposito
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Margherita Muratore
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Daniele Calistri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (D.C.); (C.R.); (L.C.); (E.C.); (P.U.)
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy;
| | - Claudia Rengucci
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (D.C.); (C.R.); (L.C.); (E.C.); (P.U.)
| | - Laura Capelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (D.C.); (C.R.); (L.C.); (E.C.); (P.U.)
| | - Elisa Chiadini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (D.C.); (C.R.); (L.C.); (E.C.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (D.C.); (C.R.); (L.C.); (E.C.); (P.U.)
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (L.M.); (F.G.S.); (C.G.); (L.E.); (M.M.); (I.G.R.); (A.B.)
| |
Collapse
|
6
|
Piercey O, Tie J, Hollande F, Wong HL, Mariadason J, Desai J. BRAF V600E-Mutant Metastatic Colorectal Cancer: Current Evidence, Future Directions, and Research Priorities. Clin Colorectal Cancer 2024; 23:215-229. [PMID: 38816264 DOI: 10.1016/j.clcc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
BRAFV600E-mutant metastatic colorectal cancer represents a distinct molecular phenotype known for its aggressive biological behavior, resistance to standard therapies, and poor survival rates. Improved understanding of the biology of the BRAF oncogene has led to the development of targeted therapies that have paved the way for a paradigm shift in managing this disease. However, despite significant recent advancements, responses to targeted therapies are short-lived, and several challenges remain. In this review, we discuss how progress in treating BRAFV600E-mutant metastatic colorectal cancer has been made through a better understanding of its unique biological and clinical features. We provide an overview of the evidence to support current treatment approaches and discuss critical areas of need and future research strategies that hold the potential to refine clinical practice further. We also discuss some challenging aspects of managing this disease, particularly the complexity of acquired resistance mechanisms that develop under the selective pressure of targeted therapies and rational strategies being investigated to overcome them.
Collapse
Affiliation(s)
- Oliver Piercey
- Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia.
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederic Hollande
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia
| | - Hui-Li Wong
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - John Mariadason
- Olivia Newton John Cancer Wellness and Research Centre, Heidelberg, Australia; School of Medicine, La Trobe University, Melbourne, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Gu R, Fang H, Wang R, Dai W, Cai G. A comprehensive overview of the molecular features and therapeutic targets in BRAF V600E-mutant colorectal cancer. Clin Transl Med 2024; 14:e1764. [PMID: 39073010 PMCID: PMC11283586 DOI: 10.1002/ctm2.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
As one of the most prevalent digestive system tumours, colorectal cancer (CRC) poses a significant threat to global human health. With the emergence of immunotherapy and target therapy, the prognosis for the majority of CRC patients has notably improved. However, the subset of patients with BRAF exon 15 p.V600E mutation (BRAFV600E) has not experienced remarkable benefits from these therapeutic advancements. Hence, researchers have undertaken foundational investigations into the molecular pathology of this specific subtype and clinical effectiveness of diverse therapeutic drug combinations. This review comprehensively summarised the distinctive molecular features and recent clinical research advancements in BRAF-mutant CRC. To explore potential therapeutic targets, this article conducted a systematic review of ongoing clinical trials involving patients with BRAFV600E-mutant CRC.
Collapse
Affiliation(s)
- Ruiqi Gu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hongsheng Fang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Renjie Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weixing Dai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Guoxiang Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Bansal VV, Belmont E, Godley F, Dhiman A, Witmer HD, Li S, Liao A, Eng OS, Turaga KK, Shergill A. Utility of Circulating Tumor DNA Assessment in Characterizing Recurrence Sites after Optimal Resection for Metastatic Colorectal Cancer. J Am Coll Surg 2024; 238:1013-1020. [PMID: 38299640 DOI: 10.1097/xcs.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Plasma circulating tumor DNA (ctDNA) is a promising biomarker for metastatic colorectal cancer (mCRC); however, its role in characterizing recurrence sites after mCRC resection remains poorly understood. This single-institution study investigated the timing of ctDNA detection and its levels in the context of recurrence at different sites after mCRC resection. STUDY DESIGN Patients who underwent optimal resection of CRC metastases involving the peritoneum, distant lymph nodes, or liver, with serial postoperative tumor-informed ctDNA assessments (Signatera) were included. Recurrence sites, as defined by surveillance imaging or laparoscopy, were categorized as peritoneal-only and other distant sites (liver, lung, lymph nodes, or body wall). RESULTS Among the 31 included patients, ctDNA was detected in all 26 (83.4%) patients with postoperative recurrence and was persistently undetectable in 5 patients who did not experience recurrence. At 3 months postsurgery, ctDNA was detected in 2 (25%) of 8 patients with peritoneal-only recurrence and 17 (94.4%) of 18 patients with distant recurrence (p < 0.001). Beyond 3 months, ctDNA was detected in the remaining 6 patients with peritoneal-only disease and 1 patient with distant disease. ctDNA detection preceded the clinical diagnosis of recurrence by a median of 9 weeks in both groups. At recurrence, peritoneal-only recurrent cases exhibited lower ctDNA levels (median 0.4 mean tumor molecules/mL, interquartile range 0.1 to 0.8) compared with distant recurrence (median 5.5 mean tumor molecules/mL, interquartile range 0.8 to 33.3, p = 0.004). CONCLUSIONS Peritoneal-only recurrence was associated with delayed ctDNA detection and low levels of ctDNA after optimal resection for mCRC. ctDNA testing may effectively characterize recurrence sites and may help guide subsequent treatments specific to the disease sites involved.
Collapse
Affiliation(s)
- Varun V Bansal
- From the Division of Surgical Oncology, Yale School of Medicine, New Haven, CT (Bansal, Turaga)
| | - Erika Belmont
- Department of Medicine, Section of Hematology/Oncology (Belmont, Liao, Shergill), University of Chicago Medical Center, Chicago, IL
| | - Frederick Godley
- Division of General Surgery and Surgical Oncology, Department of Surgery (Godley IV, Witmer, Li), University of Chicago Medical Center, Chicago, IL
| | - Ankit Dhiman
- Department of Surgery, Medical College of Georgia, Augusta, GA (Dhiman)
| | - Hunter D Witmer
- Division of General Surgery and Surgical Oncology, Department of Surgery (Godley IV, Witmer, Li), University of Chicago Medical Center, Chicago, IL
| | - Shen Li
- Division of General Surgery and Surgical Oncology, Department of Surgery (Godley IV, Witmer, Li), University of Chicago Medical Center, Chicago, IL
| | - Andy Liao
- Department of Medicine, Section of Hematology/Oncology (Belmont, Liao, Shergill), University of Chicago Medical Center, Chicago, IL
| | - Oliver S Eng
- Department of Surgery, Division of Surgical Oncology, University of California Irvine, Orange, CA (Eng)
| | - Kiran K Turaga
- From the Division of Surgical Oncology, Yale School of Medicine, New Haven, CT (Bansal, Turaga)
| | - Ardaman Shergill
- Department of Medicine, Section of Hematology/Oncology (Belmont, Liao, Shergill), University of Chicago Medical Center, Chicago, IL
| |
Collapse
|
9
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
10
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
11
|
Sutherland RL, Boyne DJ, Brenner DR, Cheung WY. The Impact of BRAF Mutation Status on Survival Outcomes and Treatment Patterns among Metastatic Colorectal Cancer Patients in Alberta, Canada. Cancers (Basel) 2023; 15:5748. [PMID: 38136294 PMCID: PMC10741517 DOI: 10.3390/cancers15245748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer presents via multiple different clinical phenotypes that can arise from a variety of different genetic and molecular alterations. The aim of this study was to describe survival outcomes and treatment patterns of metastatic colorectal cancer (mCRC) patients by v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation status. The Alberta Cancer Registry was used to identify all patients >18 years old who had been diagnosed with mCRC in Alberta between 1 January 2017 and 31 December 2019 and had received at least one cycle of systemic therapy. Treatment patterns were compared between wild-type and mutant BRAF mCRC patients. Cox regression models and Kaplan-Meier curves were created to assess survival differences by both treatment pattern and BRAF status. A total of 488 patients were identified with mCRC, of which 42 (11.4%) were confirmed to have a BRAF mutation. The most common first-line treatment regimen was either capecitabine and oxaliplatin (CAPOX) or leucovorin calcium (folinic acid), fluorouracil, and oxaliplatin (FOLFOX). The median overall survival for mCRC patients was 20.01 months. Mutant BRAF patients had a median survival of 8.21 months compared to 20.03 months among those with wild-type BRAF. BRAF mutations among mCRC patients are associated with a considerably poor prognosis, reinforcing the need for clinical BRAF testing among newly diagnosed patients to better understand their prognosis.
Collapse
Affiliation(s)
- R. Liam Sutherland
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Devon J. Boyne
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Darren R. Brenner
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Winson Y. Cheung
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Judge SJ, Ghalambor T, Cavnar MJ, Lidsky ME, Merkow RP, Cho M, Dominguez-Rosado I, Karanicolas PJ, Mayo SC, Rocha FG, Fields RC, Patel RA, Kennecke HF, Koerkamp BG, Yopp AC, Petrowsky H, Mahalingam D, Kemeny N, D'Angelica M, Gholami S. Current Practices in Hepatic Artery Infusion (HAI) Chemotherapy: An International Survey of the HAI Consortium Research Network. Ann Surg Oncol 2023; 30:7362-7370. [PMID: 37702903 PMCID: PMC11108096 DOI: 10.1245/s10434-023-14207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND An increasing number of hepatic artery infusion (HAI) programs have been established worldwide. Practice patterns for this complex therapy across these programs have not been reported. This survey aimed to identify current practice patterns in HAI therapy with the long-term goal of defining best practices and performing prospective studies. METHODS Using SurveyMonkeyTM, a 28-question survey assessing current practices in HAI was developed by 12 HAI Consortium Research Network (HCRN) surgical oncologists. Content analysis was used to code textual responses, and the frequency of categories was calculated. Scores for rank-order questions were generated by calculating average ranking for each answer choice. RESULTS Thirty-six (72%) HCRN members responded to the survey. The most common intended initial indications for HAI at new programs were unresectable colorectal liver metastases (uCRLM; 100%) and unresectable intrahepatic cholangiocarcinoma (uIHC; 56%). Practice patterns evolved such that uCRLM (94%) and adjuvant therapy for CRLM (adjCRLM; 72%) have become the most common current indications for HAI at established centers. Referral patterns for pump placement differed between uCRLM and uIHC, with most patients referred while receiving second- and first-line therapy, respectively, with physicians preferring to evaluate patients for HAI while receiving first-line therapy for CRLM. Concern for extrahepatic disease was ranked as the most important factor when considering a patient for HAI. CONCLUSIONS Indication and patient selection factors for HAI therapy are relatively uniform across most HCRN centers. The increasing use of adjuvant HAI therapy and overall consistency of practice patterns among HCRN centers provides a robust environment for prospective data collection and randomized clinical trials.
Collapse
Affiliation(s)
- Sean J Judge
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara Ghalambor
- Department of Surgery, University of California, Davis, Sacramento, CA, USA
| | - Michael J Cavnar
- Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Michael E Lidsky
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ryan P Merkow
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - May Cho
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Ismael Dominguez-Rosado
- Department of Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Tlalpan, Mexico City, Mexico
| | - Paul J Karanicolas
- Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Skye C Mayo
- Division of Surgical Oncology, Department of Surgery, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Flavio G Rocha
- Division of Surgical Oncology, Department of Surgery, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ryan C Fields
- Division of Surgical Oncology, Department of Surgery, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Reema A Patel
- Department of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Hagen F Kennecke
- GI Oncology, Providence Health Cancer Institute, Portland, OR, USA
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Adam C Yopp
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Henrik Petrowsky
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Nancy Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sepideh Gholami
- Department of Surgery, Northwell Health Cancer Institute, New Hyde Park, NY, USA.
| |
Collapse
|
13
|
Dao V, Heestand G. Beyond EGFR inhibitors in advanced colorectal cancer: Targeting BRAF and HER2. Curr Probl Cancer 2023; 47:100960. [PMID: 37285606 DOI: 10.1016/j.currproblcancer.2023.100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
The addition of antiepidermal growth factor receptor (EGFR) monoclonal antibodies, cetuximab or panitumumab, to conventional chemotherapy has improved clinical outcomes for rat sarcoma virus (RAS) wild-type advanced colorectal cancer patients, however, durable responses and 5-year overall survival rates remain limited. BRAF V600E somatic mutation and human epidermal growth factor receptor (HER2) amplification/overexpression have been separately implicated in primary resistance to anti-EGFR therapeutic strategies via aberrant activation of the mitogen-activated protein kinase (MAPK) signaling pathway, resulting in poorer outcomes. In addition to being a negative predictive biomarker for anti-EGFR therapy, BRAF V600E mutation and HER2 amplification/overexpression serve as positive predictors of response to therapies targeting these respective tumor promoters. This review will highlight key clinical studies that support the rational use of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) and HER2-targeted therapies, often in combination with other targeted agents, cytotoxic chemotherapy, and immune checkpoint inhibitors. We discuss current challenges with BRAF and HER2-targeted therapies in metastatic colorectal cancer and potential opportunities for improvement.
Collapse
Affiliation(s)
- Vinh Dao
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Gregory Heestand
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
14
|
Piringer G, Decker J, Trommet V, Kühr T, Heibl S, Dörfler K, Thaler J. Ongoing complete response after treatment cessation with dabrafenib, trametinib, and cetuximab as third-line treatment in a patient with advanced BRAF V600E mutated, microsatellite-stable colon cancer: A case report and literature review. Front Oncol 2023; 13:1166545. [PMID: 37213293 PMCID: PMC10196488 DOI: 10.3389/fonc.2023.1166545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Metastatic BRAFV600E mutated colorectal cancer is associated with poor overall survival and modest effectiveness to standard therapies. Furthermore, survival is influenced by the microsatellite status. Patients with microsatellite-stable and BRAFV600E mutated colorectal cancer have the worst prognosis under the wide range of genetic subgroups in colorectal cancer. Herein, we present a patient case of an impressive therapeutic efficacy of dabrafenib, trametinib, and cetuximab as later-line therapy in a 52-year-old woman with advanced BRAFV600E mutated, microsatellite-stable colon cancer. This patient achieved a complete response after 1 year of triple therapy. Due to skin toxicity grade 3 and recurrent urinary tract infections due to mucosal toxicity, a therapy de-escalation to dabrafenib and trametinib was performed, and the double therapy was administered for further 41 months with ongoing complete response. For 1 year, the patient was off therapy and is still in complete remission.
Collapse
Affiliation(s)
- Gudrun Piringer
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Jörn Decker
- Department of Internal Medicine, Klinikum Rohrbach, Rohrbach, Austria
| | - Vera Trommet
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
| | - Thomas Kühr
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Konrad Dörfler
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
15
|
Quintanilha JCF, Graf RP, Oxnard GR. BRAF V600E and RNF43 Co-mutations Predict Patient Outcomes With Targeted Therapies in Real-World Cases of Colorectal Cancer. Oncologist 2023; 28:e171-e174. [PMID: 36779536 PMCID: PMC10020799 DOI: 10.1093/oncolo/oyac265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 02/14/2023] Open
Abstract
Anti-BRAF/EGFR therapy is approved for metastatic colorectal cancer (mCRC) with BRAFV600E mutations, although not all patients respond. Novel recent findings indicate the potential of RNF43 mutations to predict outcomes in patients with BRAF-mutated microsatellite stable (MSS) mCRC treated with anti-BRAF/EGFR therapy. This study aimed to independently and rapidly validate BRAFV600E/RNF43 co-mutations as predictive biomarkers of benefit to anti-EGFR/BRAF therapy. Clinical data were derived from electronic health record data from ~280 US cancer clinics between January 2011 and March 2022 from the Flatiron Health-Foundation Medicine real-world clinico-genomic mCRC database. Real-world cases of BRAFV600E-mutated mCRC, with patients receiving anti-BRAF/EGFR therapy (n = 49), were included. Patients who were MSS, with RNF43 mutations, had favorable progression-free survival (hazard ratio [HR] 0.29; 95% CI [CI], 0.13-0.65) and overall survival (HR 0.32, 95% CI, 0.12-0.84) compared with wild type. No difference in outcomes was observed between patient groups with RNF43-mutant versus wild-type receiving standard-of-care chemotherapy. BRAFV600E/RNF43 co-mutations predict mCRC anti-BRAF/EGFR outcomes in diverse clinical settings.
Collapse
Affiliation(s)
| | - Ryon P Graf
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | - Geoffrey R Oxnard
- Corresponding author: Geoffrey R. Oxnard, Foundation Medicine, 150 Second St, Cambridge, Massachusetts. Tel: +1 617 418 2200;
| |
Collapse
|
16
|
Tan L, Tran B, Tie J, Markman B, Ananda S, Tebbutt NC, Michael M, Link E, Wong SQ, Chandrashekar S, Guinto J, Ritchie D, Koldej R, Solomon BJ, McArthur GA, Hicks RJ, Gibbs P, Dawson SJ, Desai J. A Phase Ib/II Trial of Combined BRAF and EGFR Inhibition in BRAF V600E Positive Metastatic Colorectal Cancer and Other Cancers: The EVICT (Erlotinib and Vemurafenib In Combination Trial) Study. Clin Cancer Res 2023; 29:1017-1030. [PMID: 36638198 PMCID: PMC10011885 DOI: 10.1158/1078-0432.ccr-22-3094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE BRAF V600E mutant metastatic colorectal cancer represents a significant clinical problem, with combination approaches being developed clinically with oral BRAF inhibitors combined with EGFR-targeting antibodies. While compelling preclinical data have highlighted the effectiveness of combination therapy with vemurafenib and small-molecule EGFR inhibitors, gefitinib or erlotinib, in colorectal cancer, this therapeutic strategy has not been investigated in clinical studies. PATIENTS AND METHODS We conducted a phase Ib/II dose-escalation/expansion trial investigating the safety/efficacy of the BRAF inhibitor vemurafenib and EGFR inhibitor erlotinib. RESULTS Thirty-two patients with BRAF V600E positive metastatic colorectal cancer (mCRC) and 7 patients with other cancers were enrolled. No dose-limiting toxicities were observed in escalation, with vemurafenib 960 mg twice daily with erlotinib 150 mg daily selected as the recommended phase II dose. Among 31 evaluable patients with mCRC and 7 with other cancers, overall response rates were 32% [10/31, 16% (5/31) confirmed] and 43% (3/7), respectively, with clinical benefit rates of 65% and 100%. Early ctDNA dynamics were predictive of treatment efficacy, and serial ctDNA monitoring revealed distinct patterns of convergent genomic evolution associated with acquired treatment resistance, with frequent emergence of MAPK pathway alterations, including polyclonal KRAS, NRAS, and MAP2K1 mutations, and MET amplification. CONCLUSIONS The Erlotinib and Vemurafenib In Combination Trial study demonstrated a safe and novel combination of two oral inhibitors targeting BRAF and EGFR. The dynamic assessment of serial ctDNA was a useful measure of underlying genomic changes in response to this combination and in understanding potential mechanisms of resistance.
Collapse
Affiliation(s)
- Lavinia Tan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Tran
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ben Markman
- Monash Health, Melbourne, Victoria, Australia
| | - Sumi Ananda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Niall C Tebbutt
- Olivia Newton John Cancer Wellness and Research Centre, Melbourne, Victoria, Australia
| | - Michael Michael
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Link
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Jerick Guinto
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Victoria, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Meng Q, Zhao J, Yu Y, Wang K, Ren J, Xu C, Wang Y, Wang G. Survival comparison of first-line treatment regimens in patients with braf-mutated advanced colorectal cancer: a multicenter retrospective study. BMC Cancer 2023; 23:191. [PMID: 36849918 PMCID: PMC9969634 DOI: 10.1186/s12885-023-10640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Patients with V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) V600E-mutated advanced colorectal cancer (CRC) have a poor prognosis, and treatment options that can improve outcome are still under investigation. The purpose of this study was to discuss the differences of overall survival (OS) and progression-free survival (PFS) between patients with BRAF V600E-mutated advanced CRC who were treated with chemotherapy alone and chemotherapy combined with targeted therapy in advanced first-line therapy. METHODS Grouping of 61 patients according to first-line treatment regimen (chemotherapy alone/chemotherapy combined with bevacizumab). Kaplan-Meier method and log-rank test were used to compare OS and PFS. Cox proportional hazards regression model was used to measure the risk of first-line medication therapies while correcting for confounding factors that may affect PFS and OS. RESULTS There was no significant difference in OS between patients treated with chemotherapy alone and those treated with chemotherapy combined with bevacizumab (P = 0.93; HR, 1.027; 95% CI, 0.555-1.901). Likewise, there was no significant difference in PFS between the two groups (P = 0.29; HR, 0.734; 95% CI, 0.413-1.304). Subgroup analysis showed that OS and PFS of different treatment regimens were not significantly different among subgroups. Multivariate analysis suggested that surgical treatment of primary tumor (P = 0.001; HR, 0.326; 95% CI, 0.169-0.631) and presence of liver metastasis (P = 0.009; HR, 2.399; 95% CI, 1.242-4.635) may serve as independent prognostic indicators in patients with BRAF-mutated advanced CRC. Surgical treatment of the primary tumor (P = 0.041; HR, 0.523; 95% CI, 0.280-0.974) was significantly associated with PFS too. CONCLUSION For patients with BRAF V600E-mutated advanced CRC, chemotherapy alone did not differ significantly in OS and PFS compared with chemotherapy + bevacizumab for advanced first-line therapy. Chemotherapy combined with targeted therapy did not render a survival benefit to these patients, demonstrating that the importance of developing new treatment options for this population.
Collapse
Affiliation(s)
- Qianhao Meng
- grid.412651.50000 0004 1808 3502Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040 People’s Republic of China
| | - Jian Zhao
- grid.263452.40000 0004 1798 4018Department of Digestive, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013 People’s Republic of China
| | - Yuanyuan Yu
- grid.412651.50000 0004 1808 3502Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040 People’s Republic of China
| | - Ke Wang
- grid.412651.50000 0004 1808 3502Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040 People’s Republic of China
| | - Jing Ren
- grid.412651.50000 0004 1808 3502Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040 People’s Republic of China
| | - Chang Xu
- grid.412651.50000 0004 1808 3502Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040 People’s Republic of China
| | - Yusheng Wang
- Department of Digestive, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, People's Republic of China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
18
|
Ruiz-Saenz A, Atreya CE, Wang C, Pan B, Dreyer CA, Brunen D, Prahallad A, Muñoz DP, Ramms DJ, Burghi V, Spassov DS, Fewings E, Hwang YC, Cowdrey C, Moelders C, Schwarzer C, Wolf DM, Hann B, VandenBerg SR, Shokat K, Moasser MM, Bernards R, Gutkind JS, van 't Veer LJ, Coppé JP. A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAF V600E colorectal tumors. NATURE CANCER 2023; 4:240-256. [PMID: 36759733 PMCID: PMC9970872 DOI: 10.1038/s43018-022-00508-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through β-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Departments of Cell Biology & Medical Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chloe E Atreya
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Changjun Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Pan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Courtney A Dreyer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Diede Brunen
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anirudh Prahallad
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Denise P Muñoz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dana J Ramms
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Valeria Burghi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Danislav S Spassov
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Eleanor Fewings
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Institute for Computational Biomedicine, Heidelberg, Germany
| | - Yeonjoo C Hwang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cynthia Cowdrey
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Moelders
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cecilia Schwarzer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott R VandenBerg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevan Shokat
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark M Moasser
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Silvio Gutkind
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Laura J van 't Veer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
20
|
Boku S, Satake H, Ohta T, Mitani S, Kawakami K, Suzuki Y, Matsumoto T, Terazawa T, Yamazaki E, Hasegawa H, Ikoma T, Uemura M, Yamaguchi T, Naito A, Ishizuka Y, Kurokawa Y, Sakai D, Kawakami H, Shimokawa T, Tsujinaka T, Kato T, Satoh T, Kagawa Y. TRESBIEN (OGSG 2101): encorafenib, binimetinib and cetuximab for early recurrent stage II/III BRAF V600E-mutated colorectal cancer. Future Oncol 2022; 18:4153-4160. [PMID: 36475784 DOI: 10.2217/fon-2022-0949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The BRAF V600E mutation accounts for approximately 5% of colorectal cancer (CRC) cases and is an extremely poor prognostic factor. However, there are no clear recommendations regarding first-line therapy for patients with early recurrent BRAF V600E-mutated CRC, during or after adjuvant chemotherapy. Recently, a novel combination of encorafenib, binimetinib and cetuximab, showed a higher response rate than standard chemotherapy in patients with BRAF V600E-mutated CRC. Here we describe our plan for the TRESBIEN study (OGSG 2101), which is an open-label, multicenter, single-arm, phase II study designed to evaluate whether encorafenib, binimetinib and cetuximab are effective for patients with early recurrent BRAF V600E-mutated colorectal cancer, during or after adjuvant chemotherapy. The planned number of subjects is 25.
Collapse
Affiliation(s)
- Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Hironaga Satake
- Department of Medical Oncology, Kochi Medical School, Nankoku, 783-8505, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Amagasaki, 660-8511, Japan
| | - Seiichiro Mitani
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Kentaro Kawakami
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Sapporo, 003-0027, Japan
| | - Yozo Suzuki
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, 560-8565, Japan
| | - Toshihiko Matsumoto
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Tetsuji Terazawa
- Cancer Chemotherapy Center, Osaka Medical & Pharmaceutical University Hospital, Takatsuki, 569-8686, Japan
| | - Eiki Yamazaki
- Cancer Chemotherapy Center, Osaka Medical & Pharmaceutical University Hospital, Takatsuki, 569-8686, Japan
| | - Hiroko Hasegawa
- Department of Gastroenterology & Hepatology, National Hospital Organization, Osaka National Hospital, Osaka, 578-8588, Japan
| | - Tatsuki Ikoma
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Toshifumi Yamaguchi
- Cancer Chemotherapy Center, Osaka Medical & Pharmaceutical University Hospital, Takatsuki, 569-8686, Japan
| | - Atsushi Naito
- Department of Surgery, Osaka Police Hospital, Osaka, 543-8502, Japan
| | - Yasunobu Ishizuka
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Daisuke Sakai
- Center for Cancer Genomics & Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Toshio Shimokawa
- Clinical Study Support Center, Wakayama Medical University Hospital, Wakayama, 641-8509, Japan
| | | | - Takeshi Kato
- Department of Colorectal Surgery, National Hospital Organization, Osaka National Hospital, Osaka, 578-8588, Japan
| | - Taroh Satoh
- Palliative & Supportive Care Center, Osaka University Hospital, Suita, 565-0871, Japan
| | - Yoshinori Kagawa
- Department of Colorectal Surgery, Osaka General Medical Center, Osaka, 558-8588, Japan
| |
Collapse
|
21
|
Shimozaki K, Hirata K, Sato T, Nakamura M, Kato K, Hirano H, Kumekawa Y, Hino K, Kawakami K, Kito Y, Matsumoto T, Kawakami T, Komoda M, Nagashima K, Sato Y, Yamazaki K, Hironaka S, Takaishi H, Hamamoto Y, Muro K. WJOG13219G: The Efficacy and Safety of FOLFOXIRI or Doublet plus Anti-VEGF Therapy in Previously Untreated BRAF V600E Mutant Metastatic Colorectal Cancer: A Multi-Institutional Registry-Based Study (BRACELET Study). Clin Colorectal Cancer 2022; 21:339-346. [PMID: 36117091 DOI: 10.1016/j.clcc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The real-world survival benefit of FOLFOXIRI (fluorouracil, leucovorin, oxaliplatin, and irinotecan) plus anti-VEGF therapy (Triplet) over doublet chemotherapy (Doublet) remains controversial in patients with BRAFV600E mutant metastatic colorectal cancer (mCRC). PATIENTS AND METHODS WJOG13219G was a multicenter, retrospective, registry-based study of patients with BRAFV600E mutant mCRC who received first-line triplet or doublet chemotherapy from January 2014 to December 2019 in Japan. Inverse probability of treatment weighting (IPTW) was used to adjust for patient background. RESULTS The analysis included 79 and 91 patients in the Triplet and Doublet groups, respectively. The Triplet group was significantly younger and had better performance status. No statistical difference was noted in progression-free survival (PFS; HR, 0.82; 95% CI, 0.60-1.13; P = .22) and overall survival (OS; HR, 0.88; 95% CI, 0.62-1.25; P = .48) between both groups. IPTW analysis also showed no difference between the 2 groups in PFS (HR, 0.86; 95% CI, 0.69-1.08; P = .20) and OS (HR, 0.93; 95% CI, 0.73-1.20; P = .59). The Triplet and Doublet groups had an objective response rate of 53% and 41%, respectively (P = .10). At least one grade 3 or 4 adverse event was seen in 51 (65%) and 43 (47%) patients in the Triplet and Doublet groups, respectively, with the incidence of neutropenia being significantly higher in the former. CONCLUSION Triplet therapy had no survival benefit versus doublet therapy in the overall and IPTW cohorts or specific subgroups for real-world patients with BRAFV600E mutant mCRC.
Collapse
Affiliation(s)
- Keitaro Shimozaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenro Hirata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Taro Sato
- Gastroenterology Center, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Maho Nakamura
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Kyoko Kato
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yosuke Kumekawa
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Kaori Hino
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Kentaro Kawakami
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Hokkaido, Japan
| | - Yosuke Kito
- Ishikawa Prefectural Central Hospital Department of Medical Oncology, Ishikawa, Japan
| | | | - Takeshi Kawakami
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masato Komoda
- National Hospital Organization Kyushu Cancer Center, Department of Gastrointestinal and Medical Oncology, Fukuoka, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University, Tokyo, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shuichi Hironaka
- Department of Medical Oncology, Gastroenterological Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiromasa Takaishi
- Center for Preventive Medicine, Keio University Hospital, Tokyo, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University Hospital, Tokyo, Japan
| | - Kei Muro
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
22
|
Elez E, Ros J, Fernández J, Villacampa G, Moreno-Cárdenas AB, Arenillas C, Bernatowicz K, Comas R, Li S, Kodack DP, Fasani R, Garcia A, Gonzalo-Ruiz J, Piris-Gimenez A, Nuciforo P, Kerr G, Intini R, Montagna A, Germani MM, Randon G, Vivancos A, Smits R, Graus D, Perez-Lopez R, Cremolini C, Lonardi S, Pietrantonio F, Dienstmann R, Tabernero J, Toledo RA. RNF43 mutations predict response to anti-BRAF/EGFR combinatory therapies in BRAF V600E metastatic colorectal cancer. Nat Med 2022; 28:2162-2170. [PMID: 36097219 PMCID: PMC9556333 DOI: 10.1038/s41591-022-01976-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Anti-BRAF/EGFR therapy was recently approved for the treatment of metastatic BRAFV600E colorectal cancer (mCRCBRAF-V600E). However, a large fraction of patients do not respond, underscoring the need to identify molecular determinants of treatment response. Using whole-exome sequencing in a discovery cohort of patients with mCRCBRAF-V600E treated with anti-BRAF/EGFR therapy, we found that inactivating mutations in RNF43, a negative regulator of WNT, predict improved response rates and survival outcomes in patients with microsatellite-stable (MSS) tumors. Analysis of an independent validation cohort confirmed the relevance of RNF43 mutations to predicting clinical benefit (72.7% versus 30.8%; P = 0.03), as well as longer progression-free survival (hazard ratio (HR), 0.30; 95% confidence interval (CI), 0.12–0.75; P = 0.01) and overall survival (HR, 0.26; 95% CI, 0.10–0.71; P = 0.008), in patients with MSS-RNF43mutated versus MSS-RNF43wild-type tumors. Microsatellite-instable tumors invariably carried a wild-type-like RNF43 genotype encoding p.G659fs and presented an intermediate response profile. We found no association of RNF43 mutations with patient outcomes in a control cohort of patients with MSS-mCRCBRAF-V600E tumors not exposed to anti-BRAF targeted therapies. Overall, our findings suggest a cross-talk between the MAPK and WNT pathways that may modulate the antitumor activity of anti-BRAF/EGFR therapy and uncover predictive biomarkers to optimize the clinical management of these patients. The presence of inactivating mutations in RNF43, a negative regulator of WNT, in tumor cells predicts improved response rates and survival outcomes in patients with metastatic BRAFV600E colorectal cancer treated with anti-BRAF/EGFR therapy.
Collapse
Affiliation(s)
- Elena Elez
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. .,Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Jose Fernández
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Guillermo Villacampa
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Belén Moreno-Cárdenas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carlota Arenillas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Kinga Bernatowicz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Comas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ariadna Garcia
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Gonzalo-Ruiz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Piris-Gimenez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Grainne Kerr
- Oncology Department, Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Rossana Intini
- Department of Oncology, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Aldo Montagna
- Department of Oncology, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Trans-lational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Diana Graus
- Oncology Department, Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland.,Ridgeline Discovery, Basel, Switzerland
| | - Raquel Perez-Lopez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Chiara Cremolini
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Trans-lational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rodrigo Dienstmann
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), Madrid, Spain.,UVic-UCC, IOB-Quirón, Barcelona, Spain
| | - Rodrigo A Toledo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
23
|
Rausch C, Schwicht C, Doedens D, Forstpointner R, Westphalen CB, Heinemann V. Panitumumab can safely and effectively be substituted for cetuximab in the treatment of BRAF V600Emut metastatic colorectal cancer (mCRC) - A case series. Eur J Cancer 2022; 174:37-39. [PMID: 35970034 DOI: 10.1016/j.ejca.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Christian Rausch
- Medizinische Klinik und Poliklinik III, Campus Grosshadern, LMU Klinikum Munich.
| | - Charlotte Schwicht
- Medizinische Klinik und Poliklinik III, Campus Grosshadern, LMU Klinikum Munich
| | - Daphne Doedens
- Medizinische Klinik und Poliklinik III, Campus Grosshadern, LMU Klinikum Munich
| | | | | | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Campus Grosshadern, LMU Klinikum Munich
| |
Collapse
|
24
|
Alfaro Alfaro ÁE, Murillo Castillo B, Cordero García E, Tascón J, Morales AI. Colon Cancer Pharmacogenetics: A Narrative Review. PHARMACY 2022; 10:95. [PMID: 36005935 PMCID: PMC9413567 DOI: 10.3390/pharmacy10040095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, metastatic colon cancer is treated with monotherapeutic regimens such as folinic acid, fluorouracil, and oxaliplatin (FOLFOX), capecitabine and oxaliplatin (CapeOX), and leucovorin, fluorouracil, and irinotecan hydrochloride (FOLFIRI). Other treatments include biological therapies and immunotherapy with drugs such as bevacizumab, panitumumab, cetuximab, and pembrolizumab. After the research, it was found that some mutations make those treatments not as effective in all patients. In this bibliographic review, we investigated the pharmacogenetic explanations for how mutations in the genes coding for rat sarcoma virus (RAS) and rapidly accelerated fibrosarcoma (RAF) reduce the effectiveness of these treatments and allow the continued proliferation of tumors. Furthermore, we note that patients with mutations in the dihydropyrimidine dehydrogenase (DPDY) gene usually require lower doses of therapies such as 5-fluorouracyl (5-FU) and capecitabine to avoid severe adverse effects. Some other mutations in the thymidylate synthase gene (TSYM), methylenetetrahydrofolate reductase gene (MTHFR), and ATP binding cassette transporter B (ABCB1 and ABCB2) affect efficacy and security of the treatments. It is important to address the clinical implication of the oncologist in the study of gene mutations than can influence in the antitumoral response and safety of colon cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Javier Tascón
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana I. Morales
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Li D, Jiang S, Zhou X, Si C, Shao P, Jiang Q, Zhu L, Shen L, Meng Q, Yin JC, Shao Y, Sun Y, Yang L. FBXW7 and Its Downstream NOTCH Pathway Could be Potential Indicators of Organ-Free Metastasis in Colorectal Cancer. Front Oncol 2022; 11:783564. [PMID: 35712679 PMCID: PMC9197223 DOI: 10.3389/fonc.2021.783564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths globally. Metastasis is associated with a poor prognosis, yet the underlying molecular mechanism(s) remained largely unknown. In this study, a total of 85 CRC patients were included and the primary tumor lesions were evaluated by next-generation sequencing using a targeted panel for genetic aberrations. Patients were sub-divided according to their metastasis pattern into the non-organ metastases (Non-OM) and organ metastases (OM) groups. By comparing the genetic differences between the two groups, we found that mutations in FBXW7 and alterations in its downstream NOTCH signaling pathway were more common in the Non-OM group. Moreover, correlation analysis suggested that FBXW7 mutations were independent of other somatic alterations. The negative associations of alterations in FBXW7 and its downstream NOTCH signaling pathway with CRC organ metastasis were validated in a cohort of 230 patients in the TCGA CRC dataset. Thus, we speculated that the genomic alterations of FBXW7/NOTCH axis might be an independent negative indicator of CRC organ metastases.
Collapse
Affiliation(s)
- Dongzheng Li
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shiye Jiang
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xin Zhou
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chengshuai Si
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Peng Shao
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Qian Jiang
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Lu Shen
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qi Meng
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jiani C Yin
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- Division of Colorectal Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China & The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liu Yang
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
26
|
Moretto R, Elliott A, Rossini D, Intini R, Conca V, Pietrantonio F, Sartore-Bianchi A, Antoniotti C, Rasola C, Scartozzi M, Salati M, Pella N, Calegari MA, Carullo M, Corti F, Mauri G, Fassan M, Masi G, Brodskiy P, Lenz HJ, Shields A, Lonardi S, Korn M, Cremolini C. Benefit from upfront FOLFOXIRI and bevacizumab in BRAFV600E-mutated metastatic colorectal cancer patients: does primary tumour location matter? Br J Cancer 2022; 127:957-967. [PMID: 35665778 DOI: 10.1038/s41416-022-01852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
|
27
|
Immune Profile of BRAF-Mutated Metastatic Colorectal Tumors with Good Prognosis after Palliative Chemotherapy. Cancers (Basel) 2022; 14:cancers14102383. [PMID: 35625987 PMCID: PMC9139363 DOI: 10.3390/cancers14102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: BRAF-mutated colorectal cancers (BRAF-MT CRCs) are known to have poor prognoses. BRAF-MT CRC was reported to be possibly related to the immune-activated phenotype. Objectives: This study aimed to investigate the association between the immune microenvironment and prognosis of BRAF-MT CRC. Methods: We evaluated clinical outcomes and investigated the immune profile of the BRAF-MT CRC tumors using the multiplex immunohistochemistry of immune-related markers: cytokeratin, programmed death ligand-1 (PD-L1), programmed cell death protein-1 (PD-1), and a cluster of differentiation 8 (CD8). Results: Out of 2313 tumors, 123 were BRAF-MT tumors. Among them, 86 tumors with available tissue were included. Out of 86 patients, 75 patients were non-good responders (GR), whereas 11 patients were GR. Median progression-free survival after first-line chemotherapy (4.6 vs. 12.4 months, p = 0.008) and overall survival (11.8 vs. 45.0 months) were longer in the GR group (p < 0.001). Median CD8+ T cell (254.29 vs. 656.0, p = 0.092), PD-L1+ tumor cell (0.95 vs.15.56, p = 0.050), PD-L1+ stromal cell (3.17 vs. 72.38, p = 0.025), PD-L1+ tumor and stromal cell (5.08 vs. 74.92, p = 0.032), and PD-1+ stromal cell (45.08 vs. 325.40, p = 0.046) counts were greater in the GR group. Conclusion: The clinical outcomes of unselected patients with BRAF-MT CRC were generally similar to those in previous studies. Based on the immune profile analysis, higher PD-L1 expression and CD8-positive cell infiltration were observed in BRAF-MT tumors with a good prognosis.
Collapse
|
28
|
Systematic review of randomised clinical trials and observational studies for patients with RAS wild-type or BRAF V600E-mutant metastatic and/or unresectable colorectal cancer. Crit Rev Oncol Hematol 2022; 173:103646. [PMID: 35344913 DOI: 10.1016/j.critrevonc.2022.103646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Approximately 8-10% of metastatic colorectal cancer (mCRC) tumours harbour BRAFV600E mutations. Eleven randomised controlled trials (RCTs) and 24 non-RCTs were identified. Seven studies evaluated BRAF inhibitors. Single-agent BRAF inhibitors had minimal efficacy, whereas BRAF inhibitor plus anti-EGFR therapy improved outcomes. In BEACON CRC, overall survival (OS) was significantly longer for patients receiving encorafenib plus cetuximab ± binimetinib when compared with irinotecan/FOLFIRI plus cetuximab as second- and third-line therapy. Seven prospective non-RCTs reported worse OS and progression-free survival (PFS) for patients with BRAFV600E-mutant vs BRAF wild-type mCRC. Eight RCTs reported that PFS and OS were generally shorter for patients with BRAFV600E-mutant mCRC vs those with KRAS or RAS wild-type mCRC. Patients with BRAFV600E-mutant mCRC have worse outcomes with conventional therapy vs patients with BRAF wild-type tumours. BRAF inhibitors in conjunction with anti-EGFR therapy improves outcomes for patients with BRAFV600E-mutant mCRC vs conventional therapy or a BRAF inhibitor alone.
Collapse
|
29
|
Rodriquenz MG, Ciardiello D, Latiano TP, Maiorano BA, Martinelli E, Silvestris N, Ciardiello F, Maiello E. Exploring biological heterogeneity and implications on novel treatment paradigm in BRAF-mutant metastatic colorectal cancer. Crit Rev Oncol Hematol 2022; 173:103657. [PMID: 35337969 DOI: 10.1016/j.critrevonc.2022.103657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
Approximatively 8-15% of patients with metastatic colorectal cancer (mCRC) harbor mutation in BRAF gene. Recent advances in molecular biology enabled a better knowledge of the molecular heterogeneity within BRAF mutant (BRAFMT) CRCs, including high rate of overlapping with MSI-H status and detection of non-V600E mutations related to more favorable behavior. Treatment armamentarium has been rapidly growing in this subgroup and includes targeted combinations and immunotherapy for concomitant MSI-H patients, thereby making BRAFMT mCRC an innovative model for precision oncology. Nevertheless, duration of responses to targeted strategies remains unsatisfactory due to the development of secondary resistance, which is currently the field of major clinical research on BRAFMT mCRC. This review explores the molecular, clinical and therapeutic landscape of BRAFMT mCRC as well as an update on current treatment strategies and future perspectives in light of the heterogeneity of BRAF-mutated disease. Furthermore, a novel treatment algorithm for BRAFMT mCRC will be proposed.
Collapse
Affiliation(s)
- Maria Grazia Rodriquenz
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy.
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy; Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Tiziana Pia Latiano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy; Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Erika Martinelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
30
|
Currais P, Rosa I, Claro I. Colorectal cancer carcinogenesis: From bench to bedside. World J Gastrointest Oncol 2022; 14:654-663. [PMID: 35321283 PMCID: PMC8919024 DOI: 10.4251/wjgo.v14.i3.654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the main causes of cancer death in developed countries. Yet, it is potentially preventable, by removing the precursor lesions - adenomas or serrated lesions. Several studies proved that this intervention reduces CRC mortality and that the first colonoscopy’s results can guide surveillance strategies. More recently, it became clear that several carcinogenesis pathways may lead to sporadic CRC. CRC is a heterogeneous disease, characterized by multiple molecular subtypes. Three main pathways have been implicated in the development of CRC: Chromosomal instability, microsatellite instability, and the “serrated” pathways, with overlapping features between them. This and other molecular and genetic based CRC classifications are known to have clinical implications, spanning from familial risk assessment to therapy choices. The authors review basic science data and provide insight on current implications for the management of patients with CRC.
Collapse
Affiliation(s)
- Pedro Currais
- Department of Gastroenterology, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| | - Isadora Rosa
- Department of Gastroenterology, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| | - Isabel Claro
- Department of Gastroenterology, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| |
Collapse
|
31
|
Medicina de precisión en cáncer colorrectal y gastroesofágico avanzado. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Yeh JH, Tsai HL, Chen YC, Li CC, Huang CW, Chang TK, Su WC, Chen PJ, Liu YP, Wang JY. BRAF, MEK, and EGFR Triplet Inhibitors as Salvage Therapy in BRAF-Mutated Metastatic Colorectal Cancer-A Case Series Study Target Therapy of BRAF- Mutated mCRC. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1339. [PMID: 34946284 PMCID: PMC8707783 DOI: 10.3390/medicina57121339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/01/2023]
Abstract
Backgroundand objectives: Patients with BRAF-mutated metastatic colorectal cancer have considerably poorer responses to conventional systemic treatment. The real-world effects of triplet therapy with BRAF, mitogen-activated protein kinase kinase, and epidermal growth factor receptor inhibitors in Asia have not been well-reported. Materials and Methods: This single-center case series included patients with BRAF-mutated metastatic colorectal cancer undergoing triplet therapy after failure of prior systemic treatment from 2016 to 2020. The primary outcome was progression-free survival, and secondary outcomes were overall survival, response rate, disease control rate, and adverse events. Results: Nine eligible patients with BRAF-mutated metastatic colorectal cancer receiving triplet therapy were enrolled, with a median follow-up time of 14.5 months (range, 1-26). Most patients (88.8%) had two or more prior systemic treatments, and the triplet regimen was mainly dabrafenib, trametinib, and panitumumab. The overall response rate and disease control rate were 11.1% and 33.3%, respectively. Median progression-free survival and overall survival were 2.9 and 7.4 months, respectively, and a trend toward better overall survival was found with left-sided metastatic colorectal cancer compared with right-sided disease (9.2 vs. 6.9 months, p = 0.093). Adverse events were mostly Grade 1-2, including nausea, hypertension, gastrointestinal symptoms, and skin disorders. Conclusions: In this single-center case series, triplet therapy with BRAF, mitogen-activated protein kinase kinase, and epidermal growth factor receptor inhibitors in BRAF-mutated metastatic colorectal cancer had an acceptable safety profile and reasonable efficacy.
Collapse
Grants
- KMUH109-9R32, KMUH109-9R33, KMUH109-9R34, KMUH109-9M30, KMUH109-9M31, KMUH109-9M32, KMUH109-9M33, KMUHSA10903, KMUHSA11013, KMUH-DK(C)110010, KMUH-DK(B)110004-3 Kaohsiung Medical University Chung-Ho Memorial Hospital
Collapse
Affiliation(s)
- Jen-Hao Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.Y.); (Y.-P.L.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung 80794, Taiwan
- Department of Medical technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 82445, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.Y.); (Y.-P.L.)
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.Y.); (Y.-P.L.)
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| |
Collapse
|
33
|
Ji J, Wang C, Fakih M. Rechallenge With BRAF and anti-EGFR Inhibitors in Patients With Metastatic Colorectal Cancer Harboring BRAF Mutation Who Progressed on Cetuximab and Encorafenib With or Without Binimetinib: A Case Series. Clin Colorectal Cancer 2021; 21:267-271. [DOI: 10.1016/j.clcc.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022]
|
34
|
Modeling of Personalized Treatments in Colon Cancer Based on Preclinical Genomic and Drug Sensitivity Data. Cancers (Basel) 2021; 13:cancers13236018. [PMID: 34885128 PMCID: PMC8656546 DOI: 10.3390/cancers13236018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This experimental preclinical study developed a strategy to identify signatures for the personalized treatment of colon cancer focusing on target-specific drug combinations. Tumor growth inhibition was analyzed in a preclinical phase II study using 25 patient-derived xenograft models (PDX) treated with drug combinations blocking alternatively activated oncogenic pathways. Results reveal an improved response by combinatorial treatment in some defined molecular subgroups and potential alternative treatment options in KRAS- and BRAF-mutated colon cancer. Abstract The current standard therapies for advanced, recurrent or metastatic colon cancer are the 5-fluorouracil and oxaliplatin or irinotecan schedules (FOxFI) +/− targeted drugs cetuximab or bevacizumab. Treatment with the FOxFI cytotoxic chemotherapy regimens causes significant toxicity and might induce secondary cancers. The overall low efficacy of the targeted drugs seen in colon cancer patients still is hindering the substitution of the chemotherapy. The ONCOTRACK project developed a strategy to identify predictive biomarkers based on a systems biology approach, using omics technologies to identify signatures for personalized treatment based on single drug response data. Here, we describe a follow-up project focusing on target-specific drug combinations. Background for this experimental preclinical study was that, by analyzing the tumor growth inhibition in the PDX models by cetuximab treatment, a broad heterogenic response from complete regression to tumor growth stimulation was observed. To provide confirmation of the hypothesis that drug combinations blocking alternatively activated oncogenic pathways may improve therapy outcomes, 25 models out of the well-characterized ONCOTRACK PDX panel were subjected to treatment with a drug combination scheme using four approved, targeted cancer drugs.
Collapse
|
35
|
Chen HH, Ke TW, Huang CW, Jiang JK, Chen CC, Hsieh YY, Teng HW, Lin BW, Liang YH, Su YL, Hsu HC, Kuan FC, Chou YH, Lin J, Lin BR, Chang YY, Wang JY. Taiwan Society of Colon and Rectal Surgeons Consensus on mCRC Treatment. Front Oncol 2021; 11:764912. [PMID: 34868987 PMCID: PMC8634841 DOI: 10.3389/fonc.2021.764912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022] Open
Abstract
Therapeutic options for metastatic CRC (mCRC) have changed significantly in recent years, greatly increasing the complexity of therapeutic decision-making. Although oncology guidelines have helped improve the care process, guidelines may also limit the flexibility to individualize in-clinic decision-making. This consensus paper addresses specific gaps in the current international guidelines to assist Taiwanese colon and rectal experts make specific therapeutic choices. Over 3 years and three meetings with selected experts on "real-world" Taiwanese practice patterns for mCRC, consensus was achieved. The experts also discussed specific questions during in-depth one-on-one consultation. Outcomes of the discussion were then correlated with published evidence by an independent medical writer. The final consensus includes clinically implementable recommendations to provide guidance in treating Taiwanese mCRC patients. The consensus includes criteria for defining fit and unfit intensive treatment patients, treatment goals, treatment considerations of molecular profiles, treatment consideration, and optimal treatment choices between different patient archetypes, including optimal treatment options based on RAS, BRAF, and microsatellite instability (MSI) status. This consensus paper is the second in the Taiwan Society of Colon and Rectal Surgeons (TSCRS) Consensus series to address unmet gaps in guideline recommendations in lieu of Taiwanese mCRC management. Meticulous discussions with experts, the multidisciplinary nature of the working group, and the final drafting of the consensus by independent medical professionals have contributed to the strong scientific value of this consensus.
Collapse
Affiliation(s)
- Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaoshiung, Taiwan
| | - Jeng-Kae Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Veterans General Hospital, Taipei, Taiwan
| | - Chou-Chen Chen
- Department of Surgery, Veterans General Hospital, Taichung, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Veterans General Hospital, Taipei, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Hsin Liang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yenn-Hwei Chou
- Division of General Surgery, Department of Surgery, Shin-Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | - Johnson Lin
- Division of Hematology and Oncology, MacKey Memorial Hospital, Taipei, Taiwan
| | - Ben-Ren Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Yao Chang
- Department of Colorectal Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaoshiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaoshiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| |
Collapse
|
36
|
Hummel M, Hegewisch-Becker S, Neumann JHL, Vogel A. BRAF testing in metastatic colorectal carcinoma and novel, chemotherapy-free therapeutic options. DER PATHOLOGE 2021; 42:98-109. [PMID: 34259881 PMCID: PMC8571135 DOI: 10.1007/s00292-021-00946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
In the past 25 years, treatment of metastatic colorectal cancer (mCRC) has undergone profound changes. The approval of newer chemotherapeutics such as irinotecan and oxaliplatin was followed in 2005 by the first targeted therapies, for example, monoclonal antibodies directed against the epidermal growth factor receptor (EGFR), as cetuximab and panitumumab, or the angiogenesis inhibitors bevacizumab, ramucirumab, and aflibercept. With the rapidly progressing molecular characterization of mCRC in the last 10 years and the classification of the disease in four consensus subtypes, further changes are emerging, which will promote, among other things, the introduction of protein-kinase inhibitors developed for specific molecular aberrations as well as immune checkpoint inhibitors into the treatment algorithm.Thorough molecular pathologic testing is indispensable today for guideline-compliant treatment of mCRC patients. In addition to RAS testing as a precondition for the therapy decision with regard to cetuximab and panitumumab, BRAF testing is of considerable relevance to allow decision making with regard to the newly approved chemotherapy-free combination of the BRAF inhibitor encorafenib and cetuximab in cases where a BRAF-V600E mutation is detected. Additional diagnostic tests should also include genome instability (microsatellite instability). Overall, more and more molecular alterations need to be investigated simultaneously, so that the use of focused next-generation sequencing is increasingly recommended.This overview describes the prognostic relevance of BRAF testing in the context of molecular pathologic diagnostics of mCRC, presents new treatment options for BRAF-mutated mCRC patients, and explains which modern DNA analytical and immunohistochemical methods are available to detect BRAF mutations in mCRC patients.
Collapse
Affiliation(s)
- Michael Hummel
- Institut für Pathologie der Charité, Universitätsmedizin, Campus Charité Mitte, Virchowweg 16/17a, 10117, Berlin, Germany.
| | | | - Jens H L Neumann
- Pathologisches Institut der Medizinischen Fakultät, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
37
|
Hummel M, Hegewisch-Becker S, Neumann J, Vogel A. [BRAF-V600E testing in metastatic colorectal cancer and new, chemotherapy-free therapy options. German version]. DER PATHOLOGE 2021; 42:578-590. [PMID: 33956173 PMCID: PMC8536591 DOI: 10.1007/s00292-021-00942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
In the past 25 years, treatment of metastatic colorectal cancer (mCRC) has undergone profound changes. The approval of newer chemotherapeutics such as irinotecan and oxaliplatin was followed in 2005 by the first targeted therapies, for example, monoclonal antibodies directed against the epidermal growth factor receptor (EGFR), as cetuximab and panitumumab, or the angiogenesis inhibitors bevacizumab, ramucirumab, and aflibercept. With the rapidly progressing molecular characterization of mCRC in the last 10 years and the classification of the disease in four consensus subtypes, further changes are emerging, which will promote, among other things, the introduction of protein-kinase inhibitors developed for specific molecular aberrations as well as immune checkpoint inhibitors into the treatment algorithm.Thorough molecular pathologic testing is indispensable today for guideline-compliant treatment of mCRC patients. In addition to RAS testing as a precondition for the therapy decision with regard to cetuximab and panitumumab, BRAF testing is of considerable relevance to allow decision making with regard to the newly approved chemotherapy-free combination of the BRAF inhibitor encorafenib and cetuximab in cases where a BRAF-V600E mutation is detected. Additional diagnostic tests should also include genome instability (microsatellite instability). Overall, more and more molecular alterations need to be investigated simultaneously, so that the use of focused next-generation sequencing is increasingly recommended.This overview describes the prognostic relevance of BRAF testing in the context of molecular pathologic diagnostics of mCRC, presents new treatment options for BRAF-mutated mCRC patients, and explains which modern DNA analytical and immunohistochemical methods are available to detect BRAF mutations in mCRC patients.
Collapse
Affiliation(s)
- Michael Hummel
- Institut für Pathologie, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Virchowweg 16/17a, 10117, Berlin, Deutschland.
| | | | - Jens Neumann
- Pathologisches Institut, Medizinische Fakultät, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| |
Collapse
|
38
|
Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T, Desai J, Ciardiello F, Loupakis F, Hong YS, Steeghs N, Guren TK, Arkenau HT, Garcia-Alfonso P, Elez E, Gollerkeri A, Maharry K, Christy-Bittel J, Kopetz S. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E-Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J Clin Oncol 2021; 39:273-284. [PMID: 33503393 PMCID: PMC8078423 DOI: 10.1200/jco.20.02088] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BEACON CRC evaluated encorafenib plus cetuximab with or without binimetinib versus investigators' choice of irinotecan or FOLFIRI plus cetuximab in patients with BRAFV600E–mutant metastatic colorectal cancer (mCRC), after progression on 1-2 prior regimens. In the previously reported primary analysis, encorafenib, binimetinib plus cetuximab (ENCO/BINI/CETUX; triplet) and encorafenib plus cetuximab (ENCO/CETUX; doublet) regimens improved overall survival (OS) and objective response rate (ORR; by blinded central review) versus standard of care. The purpose of this analysis was to report updated efficacy and safety data.
Collapse
Affiliation(s)
- Josep Tabernero
- Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | | | - Eric Van Cutsem
- University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Rona Yaeger
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Harpreet Wasan
- Hammersmith Hospital, Department of Cancer Medicine, Imperial College London, London, United Kingdom
| | | | - Jayesh Desai
- Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Walter and Aliza Hall Institute, Parkville, Australia
| | | | | | | | | | | | - Hendrik-Tobias Arkenau
- Sarah Cannon Research Institute, UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Elena Elez
- Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | | | | | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
39
|
Precision oncology in metastatic colorectal cancer - from biology to medicine. Nat Rev Clin Oncol 2021; 18:506-525. [PMID: 33864051 DOI: 10.1038/s41571-021-00495-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Remarkable progress has been made in the development of biomarker-driven targeted therapies for patients with multiple cancer types, including melanoma, breast and lung tumours, although precision oncology for patients with colorectal cancer (CRC) continues to lag behind. Nonetheless, the availability of patient-derived CRC models coupled with in vitro and in vivo pharmacological and functional analyses over the past decade has finally led to advances in the field. Gene-specific alterations are not the only determinants that can successfully direct the use of targeted therapy. Indeed, successful inhibition of BRAF or KRAS in metastatic CRCs driven by activating mutations in these genes requires combinations of drugs that inhibit the mutant protein while at the same time restraining adaptive resistance via CRC-specific EGFR-mediated feedback loops. The emerging paradigm is, therefore, that the intrinsic biology of CRC cells must be considered alongside the molecular profiles of individual tumours in order to successfully personalize treatment. In this Review, we outline how preclinical studies based on patient-derived models have informed the design of practice-changing clinical trials. The integration of these experiences into a common framework will reshape the future design of biology-informed clinical trials in this field.
Collapse
|
40
|
Lakatos G, Köhne CH, Bodoky G. Current therapy of advanced colorectal cancer according to RAS/RAF mutational status. Cancer Metastasis Rev 2021; 39:1143-1157. [PMID: 32648137 DOI: 10.1007/s10555-020-09913-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer is a clinically and molecularly heterogeneous disease. Currently, extended RAS and BRAF mutation testing is obligatory in routine clinical practice before starting any treatment in the metastatic setting. Treatment decision making also includes assessment of the clinical condition of the patient, definition of the treatment goal, and consideration of the primary tumor site. Biological treatment is part of the first-line drug combination unless contraindicated. Mutational status is significantly associated with the outcome of patients and is strongly predictive for anti-EGFR-targeted therapy. The prognosis of RAS mutant CRC is clearly inferior to wild-type cases. RAS remains an elusive target, and specific treatment options are not yet available. Recently, promising results of a direct KRAS G12C inhibitor have been reported; however, further confirmation is needed. The biomarker landscape in mCRC is evolving; new promising markers are awaited with the chance of more precise targeted treatment.
Collapse
Affiliation(s)
- Gábor Lakatos
- Department of Oncology, South-Pest Hospital Centre - National Institute for Infectology and Haematology, Budapest, Hungary.
| | - Claus-Henning Köhne
- Klinikum Oldenburg, University Clinic of Oncology and Haematology, Oldenburg, Germany
| | - György Bodoky
- Department of Oncology, South-Pest Hospital Centre - National Institute for Infectology and Haematology, Budapest, Hungary
| |
Collapse
|
41
|
Moretto R, Giordano M, Poma AM, Passardi A, Boccaccino A, Pietrantonio F, Tomasello G, Aprile G, Lonardi S, Conca V, Granetto C, Frassoldati A, Clavarezza M, Bertolini AS, Germani MM, Ugolini C, Fontanini G, Masi G, Falcone A, Cremolini C. Exploring clinical and gene expression markers of benefit from FOLFOXIRI/bevacizumab in patients with BRAF-mutated metastatic colorectal cancer: Subgroup analyses of the TRIBE2 study. Eur J Cancer 2021; 153:16-26. [PMID: 34126333 DOI: 10.1016/j.ejca.2021.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent data from the TRIBE2 study have failed to suggest a higher magnitude of benefit from upfront FOLFOXIRI/bevacizumab in patients with BRAF-mutant metastatic colorectal cancer (mCRC) as previously reported in the TRIBE study. PATIENTS AND METHODS Clinical characteristics and gene expression signatures of patients with BRAF-mutant mCRC enrolled in the TRIBE2 study were evaluated with the aim of understanding that patients may derive benefit from the intensification of the upfront chemotherapy. RESULTS Of 46 BRAF-mutant tumour samples analysed, 24 (52%) and 22 (48%) were classified as BM1 and BM2, respectively, and 27 (59%) and 19 (41%) were assigned to ligand-independent (LI) and ligand-dependent (LD) Wnt pathway subgroups, respectively. No prognostic impact was shown for both BM1/BM2 and LI/LD subtypes. No interaction was evident between BM1/BM2 or LI/LD signatures and the benefit provided by FOLFOXIRI/bevacizumab. Significant interaction effect was evident in terms of progression-free survival between treatment arm and primary tumour sidedness (P = 0.05) and Eastern Cooperative Oncology Group performance status (ECOG-PS; P < 0.001). CONCLUSIONS Gene expression analysis failed to identify patients with BRAF-mutant mCRC candidate to upfront FOLFOXIRI/bevacizumab. ECOG-PS >0 and left-sidedness seem associated with no benefit from the intensified treatment.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Mirella Giordano
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Anello M Poma
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandra Boccaccino
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Gianluca Tomasello
- Oncology Unit, Oncology Department, ASST of Cremona, Cremona, Italy; UOC Medical Oncology, IRCCS Foundation Ca' Granda Maggiore Hospital Policlinic, Milan, Italy
| | - Giuseppe Aprile
- Department of Oncology, University and General Hospital, Udine, Italy; Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Sara Lonardi
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristina Granetto
- Medical Oncology, Azienda Ospedaliera S., Croce e Carle Ospedale di Insegnamento, Cuneo, Italy
| | - Antonio Frassoldati
- Clinical Oncology, Oncology Department, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | | | | | - Marco M Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
42
|
Impact of BRAF mutations on clinical outcomes following liver surgery for colorectal liver metastases: An updated meta-analysis. Eur J Surg Oncol 2021; 47:2722-2733. [PMID: 34099355 DOI: 10.1016/j.ejso.2021.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Data regarding clinical outcomes of patients undergoing hepatic resection for BRAF-mutated colorectal liver metastases (CRLM) are scarce. Most of the studies report an impaired median overall survival (OS) in BRAF-mutated patients, but controversial Results regarding both recurrence-free survival (RFS) and recurrence patterns. The purpose of this updated meta-analysis was to better precise the impact of BRAF mutations on clinical outcomes following liver surgery for CRLM study, especially on recurrence. METHODS A systematic literature review was performed to identify articles reporting clinical outcomes including both OS and RFS, recurrence patterns, and clinicopathological details of patients who underwent complete liver resection for CRLM, stratified according to BRAF mutational status. RESULTS Thirteen retrospective studies, including 5192 patients, met the inclusion criteria. The analysis revealed that both OS (OR = 1.981; 95% CI = [1.613-2.432]) and RFS (OR = 1.49; 95% CI [1.01-2.21]) were impaired following liver surgery for CRLM in BRAF-mutated patients. Risks of both hepatic (OR = 0.42; 95% CI [0.18-0.98]) and extrahepatic recurrences (OR = 0.53; 95% CI [0.33-0.83] were significantly higher in BRAF-mutated patients. These patients tended to have higher rates of right-sided colon primary tumors, primary positive lymph nodes, and multiple CRLM. CONCLUSIONS This meta-analysis confirms that BRAF mutations impair both OS and RFS following liver surgery. Therefore, BRAF mutational status should probably be included in further prognostic scores for the assessment of the expected clinical outcomes following surgery for CRLM.
Collapse
|
43
|
Kam AE, Eng C. BRAF V600E mutated metastatic colorectal cancer: current progress and future directions. Expert Opin Biol Ther 2021; 21:1311-1313. [PMID: 33761808 DOI: 10.1080/14712598.2021.1908994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Audrey E Kam
- Department of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
44
|
UGT1A1 Polymorphism for Irinotecan Dose Escalation in Patients with BRAF-Mutated Metastatic Colorectal Cancer Treated with First-Line Bevacizumab and FOLFIRI. JOURNAL OF ONCOLOGY 2021; 2021:6686517. [PMID: 33777142 PMCID: PMC7972843 DOI: 10.1155/2021/6686517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
Background Patients with metastatic colorectal cancer (mCRC) and BRAF V600E mutation have a poor prognosis, with a median progression-free survival (PFS) of only 5–7 months after initial therapy. The current standard first-line chemotherapy for these patients includes FOLFOX or FOLFIRI plus bevacizumab. In this study, we explored the effects and oncological outcomes of UGT1A1 polymorphism for irinotecan escalation in patients with BRAF-mutated mCRC. Patients and Methods. This retrospective study included 17 patients with BRAF-mutated mCRC between April 2016 and December 2019. UGT1A1 genotyping was performed on all patients prior to initiating bevacizumab plus FOLFIRI chemotherapy. The primary endpoint was PFS, and the secondary endpoints were toxicity, response rate, disease control rate, and overall survival (OS). Results Fifteen and two patients had UGT1A1 1∗/1∗ and 1∗/28∗, respectively. Eight underwent irinotecan dose escalation with tolerable adverse effects (AEs), and nine maintained an irinotecan dose of 180 mg/m2 or required deescalation to 150 mg/m2 due to intolerable AEs. After a median follow-up period of 15.7 (range, 3–54) months, the median PFS and OS were 9.4 and 15.7 months, respectively. Grade 3/4 AEs were observed in three (6%) patients. The disease control and partial response rates were 64.7% and 11.8%, respectively, indicating that most patients (14, 82.3%) could maintain this as a first-line line therapy with stable disease or proceed to second-line therapy if disease progression occurred, thereby maintaining acceptable performance status. Conclusions The oncological outcomes of patients with BRAF-mutated mCRC treated using FOLFIRI plus bevacizumab with irinotecan dose escalation as a first-line therapy are acceptable with tolerable AEs; this may be a feasible treatment option in such patients. Pretherapeutic UGT1A1 genotyping-guided dose adjustment can achieve favorable outcomes.
Collapse
|
45
|
Halle BR, Johnson DB. Defining and Targeting BRAF Mutations in Solid Tumors. Curr Treat Options Oncol 2021; 22:30. [PMID: 33641072 DOI: 10.1007/s11864-021-00827-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
OPINION STATEMENT BRAF mutations are present in up to 8% of human cancers, and comprise a viable therapeutic target in many patients harboring these mutations. Specific BRAF-targeted therapies, such as vemurafenib, dabrafenib, and encorafenib, have transformed treatment of many BRAF-mutated cancers, producing meaningful clinical benefit with more tolerable safety profiles compared to prior standard-of-care treatments. BRAF inhibitors were first approved for use in metastatic melanoma, although resistance almost always limited their long-term effectiveness. Combination therapy with BRAF and MEK inhibitors has proven effective in delaying the onset of resistance, and produces additional clinical benefit across cancers. Although not promising initially in treatment of BRAF-mutated colorectal carcinoma, BRAF inhibitors in colorectal cancer were successfully combined with EGFR inhibitors, resulting in significant treatment response. Refining the use of BRAF and MEK inhibitors in less common tumor types (and for non-V600 mutations) and delaying the development of resistance remain pertinent future considerations in treating BRAF-mutated cancers. In this review, we will discuss the prevalence of BRAF mutations across human cancers and evidence on the efficacy and safety of current management strategies for various BRAF-mutant solid tumors.
Collapse
Affiliation(s)
- Briana R Halle
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, 777 PRB, 2220 Pierce Ave., Nashville, TN, 37232, USA.
| |
Collapse
|
46
|
Kopetz S, Guthrie KA, Morris VK, Lenz HJ, Magliocco AM, Maru D, Yan Y, Lanman R, Manyam G, Hong DS, Sorokin A, Atreya CE, Diaz LA, Allegra C, Raghav KP, Wang SE, Lieu CH, McDonough SL, Philip PA, Hochster HS. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021; 39:285-294. [PMID: 33356422 PMCID: PMC8462593 DOI: 10.1200/jco.20.01994] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/23/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE BRAFV600E mutations are rarely associated with objective responses to the BRAF inhibitor vemurafenib in patients with metastatic colorectal cancer (CRC). Blockade of BRAFV600E by vemurafenib causes feedback upregulation of EGFR, whose signaling activities can be impeded by cetuximab. METHODS One hundred six patients with BRAFV600E-mutated metastatic CRC previously treated with one or two regimens were randomly assigned to irinotecan and cetuximab with or without vemurafenib (960 mg PO twice daily). RESULTS Progression-free survival, the primary end point, was improved with the addition of vemurafenib (hazard ratio, 0.50, P = .001). The response rate was 17% versus 4% (P = .05), with a disease control rate of 65% versus 21% (P < .001). A decline in circulating tumor DNA BRAFV600E variant allele frequency was seen in 87% versus 0% of patients (P < .001), with a low incidence of acquired RAS alterations at the time of progression. RNA profiling suggested that treatment benefit did not depend on previously established BRAF subgroups or the consensus molecular subtype. CONCLUSION Simultaneous inhibition of EGFR and BRAF combined with irinotecan is effective in BRAFV600E-mutated CRC.
Collapse
Affiliation(s)
- Scott Kopetz
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Van K. Morris
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Dipen Maru
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - David S. Hong
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexey Sorokin
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chloe E. Atreya
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Luis A. Diaz
- Memorial Sloan Kettering Cancer Center, The Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, MD
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The EMA assessment of encorafenib in combination with cetuximab for the treatment of adult patients with metastatic colorectal carcinoma harbouring the BRAFV600E mutation who have received prior therapy. ESMO Open 2021; 6:100031. [PMID: 33422765 PMCID: PMC7809377 DOI: 10.1016/j.esmoop.2020.100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022] Open
Abstract
On 2 June 2020, a marketing authorisation valid through the European Union (EU) was issued for encorafenib in combination with cetuximab in adult patients with metastatic colorectal carcinoma (mCRC) with the BRAFV600E mutation who had received prior systemic therapy. Encorafenib plus cetuximab was evaluated in a randomised phase III trial of encorafenib plus binimetinib plus cetuximab versus encorafenib plus cetuximab versus cetuximab plus irinotecan or FOLFIRI (control arm) to adult patients with BRAFV600E mCRC who had received prior therapy for metastatic disease. The median overall survival was 9.3 months [95% confidence interval (CI): 8.05-11.30] versus 5.88 months (95% CI: 5.09-7.10) for encorafenib plus cetuximab (doublet) versus the control arm, respectively [hazard ratio (HR) 0.61, 95% CI: 0.48-0.77]. Progression-free survival (PFS) was 4.27 months (95% CI: 4.07-5.45) versus 1.54 months (95% CI: 1.48-1.91) (HR 0.44; 95% CI: 0.35-0.55). The most frequent adverse events in patients receiving encorafenib plus cetuximab were fatigue, nausea, diarrhoea, acneiform dermatitis, abdominal pain, arthralgia, decreased appetite, vomiting and rash. The aim of this manuscript is to summarise the scientific review of the application leading to regulatory approval in the EU. Encorafenib was approved in combination with cetuximab for patients with previously treated BRAF plus colorectal carcinoma. The original submission also included binimetinib, which was withdrawn during the procedure. The benefit–risk balance was considered positive due to a large benefit on PFS and strong biologic rationale.
Collapse
|
48
|
Mauri G, Bonazzina E, Amatu A, Tosi F, Bencardino K, Gori V, Massihnia D, Cipani T, Spina F, Ghezzi S, Siena S, Sartore-Bianchi A. The Evolutionary Landscape of Treatment for BRAFV600E Mutant Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:E137. [PMID: 33406649 PMCID: PMC7795863 DOI: 10.3390/cancers13010137] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The BRAFV600E mutation is found in 8-10% of metastatic colorectal cancer (mCRC) patients and it is recognized as a poor prognostic factor with a median overall survival inferior to 20 months. At present, besides immune checkpoint inhibitors (CPIs) for those tumors with concomitant MSI-H status, recommended treatment options include cytotoxic chemotherapy + anti-VEGF in the first line setting, and a combination of EGFR and a BRAF inhibitor (cetuximab plus encorafenib) in second line. However, even with the latter targeted approach, acquired resistance limits the possibility of more than an incremental benefit and survival is still dismal. In this review, we discuss current treatment options for this subset of patients and perform a systematic review of ongoing clinical trials. Overall, we identified six emerging strategies: targeting MAPK pathway (monotherapy or combinations), targeting MAPK pathway combined with cytotoxic agents, intensive cytotoxic regimen combinations, targeted agents combined with CPIs, oxidative stress induction, and cytotoxic agents combined with antiangiogenic drugs and CPIs. In the future, the integration of new therapeutic strategies targeting key players in the BRAFV600E oncogenic pathways with current treatment approach based on cytotoxic chemotherapy and surgery is likely to redefine the treatment landscape of these CRC patients.
Collapse
Affiliation(s)
- Gianluca Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milano, Italy
| | - Erica Bonazzina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Katia Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Viviana Gori
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milano, Italy
| | - Daniela Massihnia
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiziana Cipani
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Francesco Spina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Silvia Ghezzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milano, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (G.M.); (E.B.); (A.A.); (F.T.); (K.B.); (V.G.); (D.M.); (T.C.); (F.S.); (S.G.); (S.S.)
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milano, Italy
| |
Collapse
|
49
|
Ruffinelli JC, Santos Vivas C, Sanz-Pamplona R, Moreno V. New advances in the clinical management of RAS and BRAF mutant colorectal cancer patients. Expert Rev Gastroenterol Hepatol 2021; 15:65-79. [PMID: 32946312 DOI: 10.1080/17474124.2021.1826305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In colorectal carcinogenesis, genetic alterations in RAS and BRAF oncogenes play an important role for cancer initiation and/or progression and represent a key focus in the search for targeted therapies. Despite many years of research and a great amount of studies, until very recently this pathway was considered extremely hard to downregulate to obtain a significant clinical impact in colorectal cancer patients. But better times are coming with the advent of new promising drugs and combinations strategies. AREAS COVERED In this review, we go over the biological characteristics of the MAPK pathway in colorectal tumors, while illustrating the clinical correlation of RAS and BRAF mutations, particularly its prognostic and predictive value. We also present newly data about recent improvements in the treatment strategy for patients harboring these types of tumors. EXPERT COMMENTARY With great advances in the knowledge of molecular basis of RAS and BRAF mutant colorectal cancer in conjunction with biotechnology development and the constant effort for improvement, in the near future many new therapeutic options would be available for the management of this group of patient with dismal prognosis.
Collapse
Affiliation(s)
- Jose Carlos Ruffinelli
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain
| | - Cristina Santos Vivas
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain.,Consortium for Biomedical Research in Oncology (CIBERONC) , Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Barcelona, Spain
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Barcelona, Spain
| |
Collapse
|
50
|
Djanani A, Eller S, Öfner D, Troppmair J, Maglione M. The Role of BRAF in Metastatic Colorectal Carcinoma-Past, Present, and Future. Int J Mol Sci 2020; 21:E9001. [PMID: 33256240 PMCID: PMC7729567 DOI: 10.3390/ijms21239001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
With a global incidence of 1.8 million cases, colorectal cancer represents one of the most common cancers worldwide. Despite impressive improvements in treatment efficacy through cytotoxic and biological agents, the cancer-related death burden of metastatic colorectal cancer (mCRC) is still high. mCRC is not a genetically homogenous disease and various mutations influence disease development. Up to 12% of mCRC patients harbor mutations of the signal transduction molecule BRAF, the most prominent being BRAFV600E. In mCRC, BRAFV600E mutation is a well-known negative prognostic factor, and is associated with a dismal prognosis. The currently approved treatments for BRAF-mutated mCRC patients are of little impact, and there is no treatment option superior to others. However, the gradual molecular understanding over the last decades of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway, resulted in the development of new therapeutic strategies targeting the involved molecules. Recently published and ongoing studies administering a combination of different inhibitors (e.g., BRAF, MEK, and EGFR) showed promising results and represent the new standard of care. In this review, we present, both, the molecular and clinical aspects of BRAF-mutated mCRC patients, and provide an update on the current and future treatment approaches that might direct the therapy of mCRC in a new era.
Collapse
Affiliation(s)
- Angela Djanani
- Clinical Division of Gastroenterology, Hepatology and Metabolism, Department of Internal Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Silvia Eller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.E.); (D.Ö.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.E.); (D.Ö.)
| | - Jakob Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.E.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.E.); (D.Ö.)
| |
Collapse
|