1
|
von Hardenberg S, Klefenz I, Steinemann D, Di Donato N, Baumann U, Auber B, Klemann C. Current genetic diagnostics in inborn errors of immunity. Front Pediatr 2024; 12:1279112. [PMID: 38659694 PMCID: PMC11039790 DOI: 10.3389/fped.2024.1279112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
New technologies in genetic diagnostics have revolutionized the understanding and management of rare diseases. This review highlights the significant advances and latest developments in genetic diagnostics in inborn errors of immunity (IEI), which encompass a diverse group of disorders characterized by defects in the immune system, leading to increased susceptibility to infections, autoimmunity, autoinflammatory diseases, allergies, and malignancies. Various diagnostic approaches, including targeted gene sequencing panels, whole exome sequencing, whole genome sequencing, RNA sequencing, or proteomics, have enabled the identification of causative genetic variants of rare diseases. These technologies not only facilitated the accurate diagnosis of IEI but also provided valuable insights into the underlying molecular mechanisms. Emerging technologies, currently mainly used in research, such as optical genome mapping, single cell sequencing or the application of artificial intelligence will allow even more insights in the aetiology of hereditary immune defects in the near future. The integration of genetic diagnostics into clinical practice significantly impacts patient care. Genetic testing enables early diagnosis, facilitating timely interventions and personalized treatment strategies. Additionally, establishing a genetic diagnosis is necessary for genetic counselling and prognostic assessments. Identifying specific genetic variants associated with inborn errors of immunity also paved the way for the development of targeted therapies and novel therapeutic approaches. This review emphasizes the challenges related with genetic diagnosis of rare diseases and provides future directions, specifically focusing on IEI. Despite the tremendous progress achieved over the last years, several obstacles remain or have become even more important due to the increasing amount of genetic data produced for each patient. This includes, first and foremost, the interpretation of variants of unknown significance (VUS) in known IEI genes and of variants in genes of unknown significance (GUS). Although genetic diagnostics have significantly contributed to the understanding and management of IEI and other rare diseases, further research, exchange between experts from different clinical disciplines, data integration and the establishment of comprehensive guidelines are crucial to tackle the remaining challenges and maximize the potential of genetic diagnostics in the field of rare diseases, such as IEI.
Collapse
Affiliation(s)
| | - Isabel Klefenz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nataliya Di Donato
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Immunology, Rheumatology and Infectiology, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Della Mina E, Jackson KJL, Crawford AJI, Faulks ML, Pathmanandavel K, Acquarola N, O'Sullivan M, Kerre T, Naesens L, Claes K, Goodnow CC, Haerynck F, Kracker S, Meyts I, D'Orsogna LJ, Ma CS, Tangye SG. A Novel Heterozygous Variant in AICDA Impairs Ig Class Switching and Somatic Hypermutation in Human B Cells and is Associated with Autosomal Dominant HIGM2 Syndrome. J Clin Immunol 2024; 44:66. [PMID: 38363477 PMCID: PMC10873450 DOI: 10.1007/s10875-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.
Collapse
Affiliation(s)
- Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Katherine J L Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Alexander J I Crawford
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Megan L Faulks
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Nicolino Acquarola
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| | - Tessa Kerre
- Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Filomeen Haerynck
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Cohn IS, Henrickson SE, Striepen B, Hunter CA. Immunity to Cryptosporidium: Lessons from Acquired and Primary Immunodeficiencies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2261-2268. [PMID: 36469846 PMCID: PMC9731348 DOI: 10.4049/jimmunol.2200512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium is a ubiquitous protozoan parasite that infects gut epithelial cells and causes self-limited diarrhea in immunocompetent individuals. However, in immunocompromised hosts with global defects in T cell function, this infection can result in chronic, life-threatening disease. In addition, there is a subset of individuals with primary immunodeficiencies associated with increased risk for life-threatening cryptosporidiosis. These patients highlight MHC class II expression, CD40-CD40L interactions, NF-κB signaling, and IL-21 as key host factors required for resistance to this enteric pathogen. Understanding which immune deficiencies do (or do not) lead to increased risk for severe Cryptosporidium may reveal mechanisms of parasite restriction and aid in the identification of novel strategies to manage this common pathogen in immunocompetent and deficient hosts.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Kacar M, Shrimpton JK, Jassam M, Mistry A, Arumugakani G, Grammatikos A, Gompels M, Doody GM, Savic S. Hyper-IgM syndrome resulting from heterozygous AICDA variants: A European first? Scand J Immunol 2022; 96:e13155. [PMID: 35271747 DOI: 10.1111/sji.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mark Kacar
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Jennifer K Shrimpton
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Miriam Jassam
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Anoop Mistry
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Gururaj Arumugakani
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | | | - Mark Gompels
- Department of Immunology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Gina M Doody
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
- Leeds Musculoskeletal Biomedical Research Centre, National Institute for Health Research, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| |
Collapse
|
6
|
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation of immunoglobulin (Ig) gene variable regions and class switch recombination (CSR) of Ig heavy chain constant regions. Two decades of intensive research has greatly expanded our knowledge of how AID functions in peripheral B cells to optimize antibody responses against infections, while maintaining tight regulation of AID to restrain its activity to protect B cell genomic integrity. The many exciting recent advances in the field include: 1) the first description of AID's molecular structure, 2) remarkable advances in high throughput approaches that precisely track AID targeting genome-wide, and 3) the discovery that the cohesion-mediate loop extrusion mechanism [initially discovered in V(D)J recombination studies] also governs AID-medicated CSR. These advances have significantly advanced our understanding of AID's biochemical properties in vitro and AID's function and regulation in vivo. This mini review will discuss these recent discoveries and outline the challenges and questions that remain to be addressed.
Collapse
|
7
|
Kermode W, De Santis D, Truong L, Della Mina E, Salman S, Thompson G, Nolan D, Loh R, Mallon D, Mclean-Tooke A, John M, Tangye SG, O'Sullivan M, D'Orsogna LJ. A Novel Targeted Amplicon Next-Generation Sequencing Gene Panel for the Diagnosis of Common Variable Immunodeficiency Has a High Diagnostic Yield: Results from the Perth CVID Cohort Study. J Mol Diagn 2022; 24:586-599. [PMID: 35570134 DOI: 10.1016/j.jmoldx.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), monogenic forms of common variable immunodeficiency (CVID) have been increasingly described. Our study aimed to identify disease-causing variants in a Western Australian CVID cohort using a novel targeted NGS panel. Targeted amplicon NGS was performed on 22 unrelated subjects who met the formal European Society for Immunodeficiencies-Pan-American Group for Immunodeficiency diagnostic criteria for CVID and had at least one of the following additional criteria: disease onset at age <18 years, autoimmunity, low memory B lymphocytes, family history, and/or history of lymphoproliferation. Candidate variants were assessed by in silico predictions of deleteriousness, comparison to the literature, and classified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology criteria. All detected genetic variants were verified independently by an external laboratory, and additional functional studies were performed if required. Pathogenic or likely pathogenic variants were detected in 6 of 22 (27%) patients. Monoallelic variants of uncertain significance were also identified in a further 4 of 22 patients (18%). Pathogenic variants, likely pathogenic variants, or variants of uncertain significance were found in TNFRSF13B, TNFRSF13C, ICOS, AICDA, IL21R, NFKB2, and CD40LG, including novel variants and variants with unexpected inheritance pattern. Targeted amplicon NGS is an effective tool to identify monogenic disease-causing variants in CVID, and is comparable or superior to other NGS methods. Moreover, targeted amplicon NGS identified patients who may benefit from targeted therapeutic strategies and had important implications for family members.
Collapse
Affiliation(s)
- William Kermode
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Dianne De Santis
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Linh Truong
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Sam Salman
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Grace Thompson
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - David Nolan
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Richard Loh
- Department of Immunology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Dominic Mallon
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Andrew Mclean-Tooke
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Mina John
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Lloyd J D'Orsogna
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
8
|
Della Mina E, Tangye SG. Atypical Autosomal Recessive AID Deficiency-Yet Another Piece of the Hyper-IgM Puzzle. J Clin Immunol 2022; 42:713-715. [PMID: 35332417 DOI: 10.1007/s10875-022-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, 2010, Australia
- St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, 2010, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, 2010, Australia.
- St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, 2010, Australia.
| |
Collapse
|
9
|
Gullickson P, Xu YW, Niedernhofer LJ, Thompson EL, Yousefzadeh MJ. The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Front Immunol 2022; 13:834889. [PMID: 35432317 PMCID: PMC9010869 DOI: 10.3389/fimmu.2022.834889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
An effective humoral immune response necessitates the generation of diverse and high-affinity antibodies to neutralize pathogens and their products. To generate this assorted immune repertoire, DNA damage is introduced at specific regions of the genome. Purposeful genotoxic insults are needed for the successful completion of multiple immunological diversity processes: V(D)J recombination, class-switch recombination, and somatic hypermutation. These three processes, in concert, yield a broad but highly specific immune response. This review highlights the importance of DNA repair mechanisms involved in each of these processes and the catastrophic diseases that arise from DNA repair deficiencies impacting immune system function. These DNA repair disorders underline not only the importance of maintaining genomic integrity for preventing disease but also for robust adaptive immunity.
Collapse
|
10
|
Dirks J, Haase G, Cantaert T, Frey L, Klaas M, Rickert CH, Girschick H, Meffre E, Morbach H. A Novel AICDA Splice-Site Mutation in Two Siblings with HIGM2 Permits Somatic Hypermutation but Abrogates Mutational Targeting. J Clin Immunol 2022; 42:771-782. [PMID: 35246784 PMCID: PMC9166864 DOI: 10.1007/s10875-022-01233-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Hyper-IgM syndrome type 2 (HIGM2) is a B cell intrinsic primary immunodeficiency caused by mutations in AICDA encoding activation-induced cytidine deaminase (AID) which impair immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM). Whereas autosomal-recessive AID-deficiency (AR-AID) affects both CSR and SHM, the autosomal-dominant form (AD-AID) due to C-terminal heterozygous variants completely abolishes CSR but only partially affects SHM. AR-AID patients display enhanced germinal center (GC) reactions and autoimmune manifestations, which are not present in AD-AID, suggesting that SHM but not CSR regulates GC reactions and peripheral B cell tolerance. Herein, we describe two siblings with HIGM2 due to a novel homozygous AICDA mutation (c.428-1G > T) which disrupts the splice acceptor site of exon 4 and results in the sole expression of a truncated AID variant that lacks 10 highly conserved amino acids encoded by exon 4 (AID-ΔE4a). AID-ΔE4a patients suffered from defective CSR and enhanced GC reactions and were therefore indistinguishable from other AR-AID patients. However, the AID-ΔE4a variant only partially affected SHM as observed in AD-AID patients. In addition, AID-ΔE4a but not AD-AID patients revealed impaired targeting of mutational hotspot motives and distorted mutational patterns. Hence, qualitative defects in AID function and altered SHM rather than global decreased SHM activity may account for the disease phenotype in these patients.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, University Childrens' Hospital Würzburg, Würzburg, Germany
| | - Gabriele Haase
- Pediatric Immunology, University Childrens' Hospital Würzburg, Würzburg, Germany
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lea Frey
- Institute of Pathology, Würzburg University, Würzburg, Germany
| | - Moritz Klaas
- Pediatric Rheumatology, Vivantes Hospital Friedrichshain, Berlin, Germany
| | | | - Hermann Girschick
- Pediatric Rheumatology, Vivantes Hospital Friedrichshain, Berlin, Germany
- German Center for Growth and Development "DEUZWEG", Berlin, Germany
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Henner Morbach
- Pediatric Immunology, University Childrens' Hospital Würzburg, Würzburg, Germany.
- Center for Rare Diseases - Reference Center Northern Bavaria (ZESE), Würzburg, Germany.
| |
Collapse
|
11
|
Mendoza J, Quinn J, Infante A, Nath P, Amornruk N. A novel activation-induced cytidine deaminase mutation in an adult with hyper-immunoglobulin M syndrome. Ann Allergy Asthma Immunol 2020; 126:199-200. [PMID: 33127529 DOI: 10.1016/j.anai.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jun Mendoza
- Wilford Hall Allergy Clinic, Lackland Air Force Base, Texas.
| | - James Quinn
- Wilford Hall Allergy Clinic, Lackland Air Force Base, Texas
| | - Anthony Infante
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Priya Nath
- 633(rd) Medical Group, Langley Air Force Base Hospital, Hampton, Virginia
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW B cell disorders result in decreased levels or function of immunoglobulins in an individual. Genetic mutations have been reported in a variety of B cell disorders. This review, in follow-up to a previous review, describes some rare B cell disorders as well as their known underlying genetic etiologies. RECENT FINDINGS Genetic studies identify and permit precise classification of an increasing number of B cell disorders, leading to a greater understanding of B cell development and function. The B cell disorders are rare diseases. While clinicians are most familiar with X-linked agammaglobulinemia and so-called common variable immunodeficiency (CVID), there are many causes of hypogammaglobulinemia. Genetic testing provides a specific diagnosis, offers useful information for genetic counseling, and can identify previously unrecognized B cell disorders.
Collapse
|
13
|
Fadlallah J, Chentout L, Boisson B, Pouliet A, Masson C, Morin F, Durandy A, Casanova JL, Oksenhendler E, Kracker S. From Dysgammaglobulinemia to Autosomal-Dominant Activation-Induced Cytidine Deaminase Deficiency: Unraveling an Inherited Immunodeficiency after 50 Years. J Pediatr 2020; 223:207-211.e1. [PMID: 32423680 DOI: 10.1016/j.jpeds.2020.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 01/16/2023]
Abstract
The genetic investigation of a family presenting with a dominant form of hyper IgM syndrome published in 1963 and 1975 revealed a R190X nonsense mutation in activation-induced cytidine deaminase. This report illustrates the progress made over 6 decades in the characterization of primary immunodeficiencies, from immunochemistry to whole-exome sequencing.
Collapse
Affiliation(s)
- Jehane Fadlallah
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, and Paris Diderot University, Paris, France.
| | - Loic Chentout
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY
| | - Aurore Pouliet
- Genomics Core Facility, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Cecile Masson
- Bioinformatics Facility, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Florence Morin
- Immunology and Histocompatibility Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Rockefeller University and Rockefeller University Hospital, New York, NY; Pediatric Immunology and Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, and Paris Diderot University, Paris, France
| | - Sven Kracker
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| |
Collapse
|
14
|
Yu K, Lieber MR. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol 2019; 54:333-351. [PMID: 31509023 PMCID: PMC6856442 DOI: 10.1080/10409238.2019.1659227] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the gene rearrangement process by which B lymphocytes change the Ig heavy chain constant region to permit a switch of Ig isotype from IgM to IgG, IgA, or IgE. At the DNA level, CSR occurs via generation and joining of DNA double strand breaks (DSBs) at intronic switch regions located just upstream of each of the heavy chain constant regions. Activation-induced deaminase (AID), a B cell specific enzyme, catalyzes cytosine deaminations (converting cytosines to uracils) as the initial DNA lesions that eventually lead to DSBs and CSR. Progress on AID structure integrates very well with knowledge about Ig class switch region nucleic acid structures that are supported by functional studies. It is an ideal time to review what is known about the mechanism of Ig CSR and its relation to somatic hypermutation. There have been many comprehensive reviews on various aspects of the CSR reaction and regulation of AID expression and activity. This review is focused on the relation between AID and switch region nucleic acid structures, with a particular emphasis on R-loops.
Collapse
Affiliation(s)
- Kefei Yu
- Michigan State University, Department of Microbiology & Molecular Genetics, 5175 Biomedical Physical Sciences, East Lansing, MI 48824
| | - Michael R. Lieber
- USC Norris Comprehensive Cancer Ctr., Departments of Pathology, of Molecular Microbiology & Immunology, of Biochemistry & Molecular Biology, and of the Section of Molecular & Computational Biology within the Department of Biological Sciences, 1441 Eastlake Ave., NTT5428, Los Angeles, CA 90089-9176
| |
Collapse
|
15
|
Al Ismail A, Husain A, Kobayashi M, Honjo T, Begum NA. Depletion of recombination-specific cofactors by the C-terminal mutant of the activation-induced cytidine deaminase causes the dominant negative effect on class switch recombination. Int Immunol 2019; 29:525-537. [PMID: 29136157 DOI: 10.1093/intimm/dxx061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes. Studies on in vitro mutagenized AID as well as its mutations in human patients with hyper-IgM (HIGM)-syndrome type II revealed that C-terminal AID mutations were defective in CSR whereas their DNA cleavage and SHM activities remained intact. The C-terminal mutants of AID were speculated to exert the dominant negative effect on wild-type (WT) AID whereas its mechanism remains unknown. We generated the JP41 (R190X) mutation in one allele and a null mutation on the other allele in a mouse B cell line (CH12F3-2A) using CRISPR/Cas9 genome-editing tools and studied the effect of JP41 expression on the function of exogenously introduced WT AID fused with estrogen receptor (AIDER) in AIDJP41/∆/AIDER CH12F3-2A cells. We found that JP41 expression strongly suppressed not only CSR but also Igh/c-Myc chromosomal translocations by AIDER. We showed that the dominant negative effect is not evident at the DNA cleavage step but obvious at both deletional and inversional recombination steps. We also confirmed the dominant negative effect of other C-terminal mutants, JP8Bdel (R183X) and P20 (34-aa insertion at residue 182) in AID-deficient spleen B cells. Finally, we showed that the expression of JP41 reduced the binding of AIDER with its cofactors (hnRNP L, SERBP1 and hnRNP U). Together, these data indicate that dominant negative effect of JP41 on CSR is likely due to the depletion of the CSR-specific RNA-binding proteins from WT AID.
Collapse
Affiliation(s)
- Azza Al Ismail
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Afzal Husain
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
16
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
17
|
Jhamnani RD, Nunes-Santos CJ, Bergerson J, Rosenzweig SD. Class-Switch Recombination (CSR)/Hyper-IgM (HIGM) Syndromes and Phosphoinositide 3-Kinase (PI3K) Defects. Front Immunol 2018; 9:2172. [PMID: 30319630 PMCID: PMC6168630 DOI: 10.3389/fimmu.2018.02172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
Antibody production and function represent an essential part of the immune response, particularly in fighting bacterial and viral infections. Multiple immunological phenotypes can result in dysregulation of the immune system humoral compartment, including class-switch recombination (CSR) defects associated with hyper-IgM (HIGM) syndromes. The CSR/HIGM syndromes are defined by the presence of normal or elevated plasma IgM levels in the context of low levels of switched IgG, IgA, and IgE isotypes. Recently described autosomal dominant gain-of-function (GOF) mutations in PIK3CD and PIK3R1 cause combined immunodeficiencies that can also present as CSR/HIGM defects. These defects, their pathophysiology and derived clinical manifestations are described in depth. Previously reported forms of CSR/HIGM syndromes are briefly reviewed and compared to the phosphoinositide 3-kinase (PI3K) pathway defects. Diseases involving the PI3K pathway represent a distinctive subset of CSR/HIGM syndromes, presenting with their own characteristic clinical and laboratory attributes as well as individual therapeutic approaches.
Collapse
Affiliation(s)
- Rekha D Jhamnani
- Allergy and Immunology Fellowship Program, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Instituto da Crianca, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jenna Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Liu X, Meng FL. Generation of Genomic Alteration from Cytidine Deamination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:49-64. [DOI: 10.1007/978-981-13-0593-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
|
20
|
Meng X, Yang B, Suen WC. Prospects for modulating the CD40/CD40L pathway in the therapy of the hyper-IgM syndrome. Innate Immun 2017; 24:4-10. [PMID: 29132233 DOI: 10.1177/1753425917739681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of the CD40/CD40L pathway in B-cell proliferation, immunoglobulin (Ig) isotype switching and germinal center formation has been studied and described extensively in previous literature. Interruption of the CD40/CD40L signal causes hyper-IgM (HIGM) syndrome, which has been classified and recognized as a group of rare inherited immune deficiency disorders. Defects in CD40 and CD40L interactions or in downstream signaling molecules, including activation-induced cytidine deaminase, uracyl-DNA-glycosylase, NF-κB and DNA repair enzymes, result in an increased level of serum IgM and a significantly decreased or absent level of IgA, IgG and IgE that is accompanied by severe recurrent infections and autoimmune diseases. Many genetic defects in HIGM have been identified and, as a result, it is possible for patients to be definitively diagnosed by gene sequencing and to delineate the immunological features of the patients. Modifying the CD40/CD40L signaling pathway may offer the possibility of restoring the normal serum Ab production and curing the immunodeficiency. Hematopoietic stem cell transplantation has achieved a high rate of success using a sibling donor. In addition, successful examples of treating other immunodeficiencies using gene therapy indicated that there was a possibility of eradicating HIGM with this approach. In this review, we summarize the current drugs and a variety of therapeutic approaches for the treatment of the HIGM syndrome by interfering with the defective CD40/CD40L pathway.
Collapse
Affiliation(s)
- Xiangxue Meng
- 1 Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| | - Bin Yang
- 2 Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, PR China
| | - Wen-Chen Suen
- 1 Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| |
Collapse
|
21
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Activation induced cytidine deaminase mutant (AID-His130Pro) from Hyper IgM 2 patient retained mutagenic activity on SHM artificial substrate. Mol Immunol 2016; 79:77-82. [PMID: 27716525 DOI: 10.1016/j.molimm.2016.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023]
Abstract
Activation induced cytidine deaminase (AID) is an essential enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) during secondary immune response. Mutations in the AICDA gene are responsible for Hyper IgM 2 syndrome where both CSR and SHM or only CSR are affected. Indeed, triggering either of the two mechanisms requires the DNA deamination activity of AID. Besides, different domains of AID may be differentially involved in CSR and SHM through their interaction with specific cofactors. Herein, we studied the AID-induced SHM activity of the AID-His130Pro mutant identified in a patient with Hyper IgM 2 syndrome. AID mutagenic activity was monitored by the reversion of nonsense mutations of the EGFP gene assessed by flow cytometry. We found that the His130Pro mutation, which affects CSR, preserves AID mutagenic activity. Indeed, the His130 residue is located in a putative specific CSR region in the APOBEC-like domain, known to involve CSR specific cofactors that probably play a major role in AID physiological activities.
Collapse
|
23
|
Cantaert T, Schickel JN, Bannock JM, Ng YS, Massad C, Delmotte FR, Yamakawa N, Glauzy S, Chamberlain N, Kinnunen T, Menard L, Lavoie A, Walter JE, Notarangelo LD, Bruneau J, Al-Herz W, Kilic SS, Ochs HD, Cunningham-Rundles C, van der Burg M, Kuijpers TW, Kracker S, Kaneko H, Sekinaka Y, Nonoyama S, Durandy A, Meffre E. Decreased somatic hypermutation induces an impaired peripheral B cell tolerance checkpoint. J Clin Invest 2016; 126:4289-4302. [PMID: 27701145 DOI: 10.1172/jci84645] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 08/30/2016] [Indexed: 12/28/2022] Open
Abstract
Patients with mutations in AICDA, which encodes activation-induced cytidine deaminase (AID), display an impaired peripheral B cell tolerance. AID mediates class-switch recombination (CSR) and somatic hypermutation (SHM) in B cells, but the mechanism by which AID prevents the accumulation of autoreactive B cells in blood is unclear. Here, we analyzed B cell tolerance in AID-deficient patients, patients with autosomal dominant AID mutations (AD-AID), asymptomatic AICDA heterozygotes (AID+/-), and patients with uracil N-glycosylase (UNG) deficiency, which impairs CSR but not SHM. The low frequency of autoreactive mature naive B cells in UNG-deficient patients resembled that of healthy subjects, revealing that impaired CSR does not interfere with the peripheral B cell tolerance checkpoint. In contrast, we observed decreased frequencies of SHM in memory B cells from AD-AID patients and AID+/- subjects, who were unable to prevent the accumulation of autoreactive mature naive B cells. In addition, the individuals with AICDA mutations, but not UNG-deficient patients, displayed Tregs with defective suppressive capacity that correlated with increases in circulating T follicular helper cells and enhanced cytokine production. We conclude that SHM, but not CSR, regulates peripheral B cell tolerance through the production of mutated antibodies that clear antigens and prevent sustained interleukin secretions that interfere with Treg function.
Collapse
|
24
|
Phenotypic and Functional Comparison of Class Switch Recombination Deficiencies with a Subgroup of Common Variable Immunodeficiencies. J Clin Immunol 2016; 36:656-66. [PMID: 27484504 PMCID: PMC5018261 DOI: 10.1007/s10875-016-0321-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/18/2016] [Indexed: 11/01/2022]
Abstract
Primary antibody deficiencies (PADs) are the most common immunodeficiency in humans, characterized by low levels of immunoglobulins and inadequate antibody responses upon immunization. These PADs may result from an early block in B cell development with a complete absence of peripheral B cells and lack of immunoglobulins. In the presence of circulating B cells, some PADs are genetically caused by a class switch recombination (CSR) defect, but in the most common PAD, common variable immunodeficiency (CVID), very few gene defects have as yet been characterized despite various phenotypic classifications. Using a functional read-out, we previously identified a functional subgroup of CVID patients with plasmablasts (PBs) producing IgM only. We have now further characterized such CVID patients by a direct functional comparison with patients having genetically well-characterized CSR defects in CD40L, activation-induced cytidine deaminase (AID) and uracil N-glycosylase activity (UNG). The CSR-like CVID patients showed a failure in B cell activation patterns similar to the classical AID/UNG defects in three out of five CVID patients and distinct more individual defects in the two other CVID cases when tested for cellular activation and PB differentiation. Thus, functional categorization of B cell activation and differentiation pathways extends the expected variation in CVID to CSR-like defects of as yet unknown genetic etiology.
Collapse
|
25
|
Yamamoto N, Kerfoot SM, Hutchinson AT, Dela Cruz CS, Nakazawa N, Szczepanik M, Majewska-Szczepanik M, Nazimek K, Ohana N, Bryniarski K, Mori T, Muramatsu M, Kanemitsu K, Askenase PW. Expression of activation-induced cytidine deaminase enhances the clearance of pneumococcal pneumonia: evidence of a subpopulation of protective anti-pneumococcal B1a cells. Immunology 2016; 147:97-113. [PMID: 26456931 DOI: 10.1111/imm.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
We describe a protective early acquired immune response to pneumococcal pneumonia that is mediated by a subset of B1a cells. Mice deficient in B1 cells (xid), or activation-induced cytidine deaminase (AID(-/-) ), or invariant natural killer T (iNKT) cells (Jα18(-/-) ), or interleukin-13 (IL-13(-/-) ) had impaired early clearance of pneumococci in the lung, compared with wild-type mice. In contrast, AID(-/-) mice adoptively transferred with AID(+/+) B1a cells, significantly cleared bacteria from the lungs as early as 3 days post infection. We show that this early bacterial clearance corresponds to an allergic contact sensitivity-like cutaneous response, probably due to a subpopulation of initiating B1a cells. In the pneumonia model, these B1a cells were found to secrete higher affinity antigen-specific IgM. In addition, as in contact sensitivity, iNKT cells were required for the anti-pneumococcal B1a cell initiating response, probably through early production of IL-13, given that IL-13(-/-) mice also failed to clear infection. Our study is the first to demonstrate the importance of AID in generating an appropriate B1a cell response to pathogenic bacteria. Given the antibody affinity and pneumonia resistance data, natural IgM produced by conventional B1a cells are not responsible for pneumonia clearance compared with the AID-dependent subset.
Collapse
Affiliation(s)
- Natsuo Yamamoto
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Steven M Kerfoot
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew T Hutchinson
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naomi Nakazawa
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Marian Szczepanik
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Biology, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Majewska-Szczepanik
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Biology, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Nazimek
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Noboru Ohana
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Krzysztof Bryniarski
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Tsutomu Mori
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Keiji Kanemitsu
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Japan
| | - Philip W Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Abstract
Autoimmune diseases represent a heterogeneous group of common disorders defined by complex trait genetics and environmental effects. The genetic variants usually align in immune and metabolic pathways that affect cell survival or apoptosis and modulate leukocyte function. Nevertheless, the exact triggers of disease development remain poorly understood and the current therapeutic interventions only modify the disease course. Both the prevention and the cure of autoimmune disorders are beyond our present medical capabilities. In contrast, a growing number of single gene autoimmune disorders have also been identified and characterized in the last few decades. Mutations and other gene alterations exert significant effects in these conditions, and often affect genes involved in central or peripheral immunologic tolerance induction. Even though a single genetic abnormality may be the disease trigger, it usually upsets a number of interactions among immune cells, and the biological developments of these monogenic disorders are also complex. Nevertheless, identification of the triggering molecular abnormalities greatly contributes to our understanding of the pathogenesis of autoimmunity and facilitates the development of newer and more effective treatment strategies.
Collapse
Affiliation(s)
- Mark Plander
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and
| | - Bernadette Kalman
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and.,b University of Pecs , Pecs , Hungary
| |
Collapse
|
27
|
Askenase PW, Bryniarski K, Paliwal V, Redegeld F, Groot Kormelink T, Kerfoot S, Hutchinson AT, van Loveren H, Campos R, Itakura A, Majewska-Szczepanik M, Yamamoto N, Nazimek K, Szczepanik M, Ptak W. A subset of AID-dependent B-1a cells initiates hypersensitivity and pneumococcal pneumonia resistance. Ann N Y Acad Sci 2015; 1362:200-14. [PMID: 26662721 PMCID: PMC4681304 DOI: 10.1111/nyas.12975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/20/2015] [Accepted: 10/25/2015] [Indexed: 12/31/2022]
Abstract
We propose that there is a special B-1a B cell subset ("sB-1a" cells) that mediates linked processes very early after immunization to initiate cutaneous contact sensitivity (CS), delayed-type hypersensitivity (DTH), and immune resistance to pneumococcal pneumonia. Our published data indicate that in CS and DTH, these initiating processes are required for elicitation of the delayed onset and late-occurring classical T cell-mediated responses. sB-1a cells resemble memory B2 cells, as they are stimulated within 1 h of immunization and depend on T helper cytokines-uniquely IL-4 from hepatic iNKT cells--for activation and rapid migration from the peritoneal cavity to the spleen to secrete IgM antibody (Ab) and Ab-derived free light chains (FLCs) by only 1 day after immunization. Unlike conventional B-1a (cB-1a) cell-produced IgM natural Ab, IgM Ab produced by sB-1a cells has high Ag affinity owing to immunoglobulin V-region mutations induced by activation-induced cytidine deaminase (AID). The dominant cB-1a cells are increased in immunized AID-deficient mice but do not mediate initiation, CS, or pneumonia resistance because natural Ab has relatively low Ag affinity because of unmutated germ-line V regions. In CS and DTH, sB-1a IgM Ag affinity is sufficiently high to mediate complement activation for generation of C5a that, together with vasoactive mediators such as TNF-α released by FLC-sensitized mast cells, activate local endothelium for extravascular recruitment of effector T cells. We conclude by discussing the possibility of functional sB-1 cells in humans.
Collapse
Affiliation(s)
- Phillip W Askenase
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Vipin Paliwal
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Frank Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Thomas Groot Kormelink
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Steven Kerfoot
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Andrew T Hutchinson
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Henk van Loveren
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Regis Campos
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Atsuko Itakura
- Department of Internal Medicine, Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Natsuo Yamamoto
- Department of Infection Control and Laboratory Medicine, Fukushima Medical University, Fukushima, Japan
| | - Katarzyn Nazimek
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Jagiellonian University Medical College, Kraków, Poland
| | - Wold Ptak
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
28
|
Cantaert T, Schickel JN, Bannock JM, Ng YS, Massad C, Oe T, Wu R, Lavoie A, Walter JE, Notarangelo LD, Al-Herz W, Kilic SS, Ochs HD, Nonoyama S, Durandy A, Meffre E. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance. Immunity 2015; 43:884-95. [PMID: 26546282 DOI: 10.1016/j.immuni.2015.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/05/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022]
Abstract
Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.
Collapse
Affiliation(s)
- Tineke Cantaert
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jason M Bannock
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Yen-Shing Ng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher Massad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Tyler Oe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Renee Wu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Aubert Lavoie
- Division of Immunology/Allergy, Centre Hospitalier de l'Université de Québec, Québec City, G1V 4G2, Canada
| | - Jolan E Walter
- Pediatric Allergy & Immunology and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, 13110, Kuwait
| | - Sara Sebnem Kilic
- Uludag University Medical Faculty, Department of Pediatrics, Gorukle-Bursa, 16285, Turkey
| | - Hans D Ochs
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | | | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
29
|
Individual substitution mutations in the AID C terminus that ablate IgH class switch recombination. PLoS One 2015; 10:e0134397. [PMID: 26267846 PMCID: PMC4534307 DOI: 10.1371/journal.pone.0134397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.
Collapse
|
30
|
Ucher AJ, Ranjit S, Kadungure T, Linehan EK, Khair L, Xie E, Limauro J, Rauch KS, Schrader CE, Stavnezer J. Mismatch repair proteins and AID activity are required for the dominant negative function of C-terminally deleted AID in class switching. THE JOURNAL OF IMMUNOLOGY 2014; 193:1440-50. [PMID: 24973444 DOI: 10.4049/jimmunol.1400365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The AID C terminus is required for CSR, but not for S-region DNA double-strand breaks (DSBs) during CSR, and it is not required for SHM. AID lacking the C terminus (ΔAID) is a dominant negative (DN) mutant, because human patients heterozygous for this mutant fail to undergo CSR. In agreement, we show that ΔAID is a DN mutant when expressed in AID-sufficient mouse splenic B cells. To have DN function, ΔAID must have deaminase activity, suggesting that its ability to induce DSBs is important for the DN function. Supporting this hypothesis, Msh2-Msh6 have been shown to contribute to DSB formation in S regions, and we find in this study that Msh2 is required for the DN activity, because ΔAID is not a DN mutant in msh2(-/-) cells. Our results suggest that the DNA DSBs induced by ΔAID are unable to participate in CSR and might interfere with the ability of full-length AID to participate in CSR. We propose that ΔAID is impaired in its ability to recruit nonhomologous end joining repair factors, resulting in accumulation of DSBs that undergo aberrant resection. Supporting this hypothesis, we find that the S-S junctions induced by ΔAID have longer microhomologies than do those induced by full-length AID. In addition, our data suggest that AID binds Sμ regions in vivo as a monomer.
Collapse
Affiliation(s)
- Anna J Ucher
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Sanjay Ranjit
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Tatenda Kadungure
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Erin K Linehan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Lyne Khair
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Elaine Xie
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jennifer Limauro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Katherina S Rauch
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
31
|
Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, Etzioni A, Gambineri E, Haddad E, Kobrynski L, Le Deist F, Nonoyama S, Oliveira JB, Perez E, Picard C, Rezaei N, Sleasman J, Sullivan KE, Torgerson T. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol 2014; 34:398-424. [PMID: 24619621 DOI: 10.1007/s10875-014-0003-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/17/2014] [Indexed: 01/27/2023]
Abstract
Primary immunodeficiencies are intrinsic defects in the immune system that result in a predisposition to infection and are frequently accompanied by a propensity to autoimmunity and/or immunedysregulation. Primary immunodeficiencies can be divided into innate immunodeficiencies, phagocytic deficiencies, complement deficiencies, disorders of T cells and B cells (combined immunodeficiencies), antibody deficiencies and immunodeficiencies associated with syndromes. Diseases of immune dysregulation and autoinflammatory disorder are many times also included although the immunodeficiency in these disorders are often secondary to the autoimmunity or immune dysregulation and/or secondary immunosuppression used to control these disorders. Congenital primary immunodeficiencies typically manifest early in life although delayed onset are increasingly recognized. The early diagnosis of congenital immunodeficiencies is essential for optimal management and improved outcomes. In this International Consensus (ICON) document, we provide the salient features of the most common congenital immunodeficiencies.
Collapse
Affiliation(s)
- John Routes
- Department of Pediatrics, Medical College of Wisconsin, and Children's Research Institute, Milwaukee, WI, 53226-4874, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci U S A 2014; 111:E988-97. [PMID: 24591601 DOI: 10.1073/pnas.1320486111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.
Collapse
|
33
|
Jimenez MJ, Steele RW. Recurrent severe arthralgia. Clin Pediatr (Phila) 2013; 52:882-5. [PMID: 23978668 DOI: 10.1177/0009922813498154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Frasca D, Andrisani G, Diaz A, Felice C, Guidi L, Blomberg BB. AID in aging and autoimmune diseases. Autoimmunity 2013. [PMID: 23190037 DOI: 10.3109/08916934.2012.750300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of this study was to evaluate the quality of B cell responses in patients with Inflammatory Bowel Disease (IBD) and healthy individuals of different ages, vaccinated with the pandemic (p)2009 influenza vaccine. The in vivo response was measured by the hemagglutination inhibition (HAI) assay, which represents the most established correlate with vaccine protectiveness. The in vitro response was measured by activation-induced cytidine deaminase (AID) in cultures of vaccine-stimulated PBMC. Both responses are somewhat impaired in IBD patients undergoing anti-TNF-α treatment but these are much more decreased in IBD patients undergoing treatment with anti-TNF-α and immunosuppressive (IS) drugs. These latter patients had in vivo and in vitro B cell responses similar to those of elderly individuals. Moreover, as we have previously demonstrated in healthy subjects, the in vitro response to the polyclonal stimulus CpG may be used as a biomarker for subsequent vaccine response and AID activation is correlated with the serum response in IBD patients, as it is in healthy individuals. These results altogether indicate that IBD patients on anti-TNF-α and IS have significantly impaired in vivo and in vitro B cell responses, as compared to those on monotherapy. This is the first report to demonstrate that B cell defects, as measured by the autonomous AID reporter, in IBD patients contribute to reduced humoral responses to the influenza vaccine, as we have previously shown for elderly individuals.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 016960, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
Primary antibody deficiencies (PADs) are the most common inherited immunodeficiencies in humans. The use of novel approaches, such as whole-exome sequencing and mouse genetic engineering, has helped to identify new genes that are involved in the pathogenesis of PADs and has enabled the characterization of the molecular pathways that are involved in B cell development and function. Here, we review the different PADs in terms of their known or putative mechanisms, which can be B cell intrinsic, B cell extrinsic or not defined so far. We also describe the clinical manifestations (including susceptibility to infections, autoimmunity and cancer) that have been associated with the various PADs.
Collapse
Affiliation(s)
- Anne Durandy
- National Institute of Health and Medical Research, INSERM U768, Necker Children's Hospital, F-75015 Paris, France.
| | | | | |
Collapse
|
37
|
Zahn A, Daugan M, Safavi S, Godin D, Cheong C, Lamarre A, Di Noia JM. Separation of function between isotype switching and affinity maturation in vivo during acute immune responses and circulating autoantibodies in UNG-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5949-60. [PMID: 23667108 DOI: 10.4049/jimmunol.1202711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activation-induced deaminase converts deoxycytidine to deoxyuridine at the Ig loci. Complementary pathways, initiated by the uracil-DNA glycosylase (UNG) or the mismatch repair factor MSH2/MSH6, must process the deoxyuridine to initiate class-switch recombination (CSR) and somatic hypermutation. UNG deficiency most severely reduces CSR efficiency and only modestly affects the somatic hypermutation spectrum in vitro. This would predict isotype-switching deficiency but normal affinity maturation in Ung(-/-) mice in vivo, but this has not been tested. Moreover, puzzling differences in the amount of circulating Ig between UNG-deficient humans and mice make it unclear to what extent MSH2/MSH6 can complement for UNG in vivo. We find that Ab affinity maturation is indeed unaffected in Ung(-/-) mice, even allowing IgM responses with higher than normal affinity. Ung(-/-) mice display normal to only moderately reduced basal levels of most circulating Ig subclasses and gut-associated IgA, which are elicited in response to chronically available environmental Ag. In contrast, their ability to produce switched Ig in response to immunization or vesicular stomatitis virus infection is strongly impaired. Our results uncover a specific need for UNG in CSR for timely and efficient acute Ab responses in vivo. Furthermore, Ung(-/-) mice provide a novel model for separating isotype switching and affinity maturation during acute (but not chronic) Ab responses, which could be useful for dissecting their relative contribution to some infections. Interestingly, Ung(-/-) mice present with circulating autoantibodies, suggesting that UNG may impinge on tolerance.
Collapse
Affiliation(s)
- Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Mahdaviani SA, Hirbod-Mobarakeh A, Wang N, Aghamohammadi A, Hammarström L, Masjedi MR, Pan-Hammarström Q, Rezaei N. Novel mutation of the activation-induced cytidine deaminase gene in a Tajik family: special review on hyper-immunoglobulin M syndrome. Expert Rev Clin Immunol 2013; 8:539-46. [PMID: 22992148 DOI: 10.1586/eci.12.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hyper-immunoglobulin M (HIGM) syndrome comprises a group of primary immunodeficiency disorders characterized by normal or elevated serum levels of IgM and low levels of other immunoglobulin classes. Patients with HIGM usually suffer from a variety of recurrent infections. Herein, we report two siblings of a Tajik family with a HIGM phenotype in which a novel missense mutation in the activation-induced cytidine deaminase (AICDA) gene was detected. Mutations in this gene are responsible for an autosomal recessive form of HIGM. We have also reviewed and summarized all published cases with HIGM due to defects in AICDA.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hu Y, Ericsson I, Torseth K, Methot SP, Sundheim O, Liabakk NB, Slupphaug G, Di Noia JM, Krokan HE, Kavli B. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching. J Mol Biol 2013; 425:424-43. [PMID: 23183374 DOI: 10.1016/j.jmb.2012.11.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.
Collapse
Affiliation(s)
- Yi Hu
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Durandy A, Cantaert T, Kracker S, Meffre E. Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans. Autoimmunity 2013; 46:148-56. [PMID: 23215867 DOI: 10.3109/08916934.2012.750299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autoimmune manifestations are paradoxical and frequent complications of primary immunodeficiencies, including T and/or B cell defects. Among pure B cell defects, the Activation-induced cytidine Deaminase (AID)-deficiency, characterized by a complete lack of immunoglobulin class switch recombination and somatic hypermutation, is especially complicated by autoimmune disorders. We summarized in this review the different autoimmune and inflammatory manifestations present in 13 patients out of a cohort of 45 patients. Moreover, we also review the impact of AID mutations on B-cell tolerance and discuss hypotheses that may explain why central and peripheral B-cell tolerance was abnormal in the absence of functional AID. Hence, AID plays an essential role in controlling autoreactive B cells in humans and prevents the development of autoimmune syndromes.
Collapse
Affiliation(s)
- Anne Durandy
- INSERM, Unité U768, Hôpital Necker Enfants-Malades, Paris, France.
| | | | | | | |
Collapse
|
41
|
Jaszczur M, Bertram JG, Pham P, Scharff MD, Goodman MF. AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 2012. [PMID: 23178850 DOI: 10.1007/s00018-012-1212-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.
Collapse
|
43
|
Mu Y, Prochnow C, Pham P, Chen XS, Goodman MF. A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem 2012; 287:28007-16. [PMID: 22715099 DOI: 10.1074/jbc.m112.370189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III). Each mutant was expressed and purified from insect cells and compared biochemically to wild type (WT) AID. Four point mutants retained catalytic activity at 1/3rd to 1/200th the level of WT AID. These "active" point mutants mimic the behavior of WT AID for motif recognition specificity, deamination spectra, and high deamination processivity. We constructed a series of C-terminal deletion mutants (class IV) that retain catalytic activity and processivity for deletions ≤18 amino acids, with ΔC(10) and ΔC(15) having 2-3-fold higher specific activities than WT AID. Deleting 19 C-terminal amino acids inactivates AID. WT AID and active and inactive point mutants bind cooperatively to single-stranded DNA (Hill coefficients ∼1.7-3.2) with microscopic dissociation constant values (K(A)) ranging between 10 and 250 nm. Active C-terminal deletion mutants bind single-stranded DNA noncooperatively with K(A) values similar to wild type AID. A structural analysis is presented that shows how localized defects in different regions of AID can contribute to loss of catalytic function.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | |
Collapse
|
44
|
Lackey L, Demorest ZL, Land AM, Hultquist JF, Brown WL, Harris RS. APOBEC3B and AID have similar nuclear import mechanisms. J Mol Biol 2012; 419:301-14. [PMID: 22446380 DOI: 10.1016/j.jmb.2012.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/17/2022]
Abstract
Members of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) protein family catalyze DNA cytosine deamination and underpin a variety of immune defenses. For instance, several family members, including APOBEC3B (A3B), elicit strong retrotransposon and retrovirus restriction activities. However, unlike the other proteins, A3B is the only family member with steady-state nuclear localization. Here, we show that A3B nuclear import is an active process requiring at least one amino acid (Val54) within an N-terminal motif analogous to the nuclear localization determinant of the antibody gene diversification enzyme AID (activation-induced cytosine deaminase). Mechanistic conservation with AID is further suggested by A3B's capacity to interact with the same subset of importin proteins. Despite these mechanistic similarities, enforced A3B expression cannot substitute for AID-dependent antibody gene diversification by class switch recombination. Regulatory differences between A3B and AID are also visible during cell cycle progression. Our studies suggest that the present-day A3B enzyme retained the nuclear import mechanism of an ancestral AID protein during the expansion of the APOBEC3 locus in primates. Our studies also highlight the likelihood that, after nuclear import, specialized mechanisms exist to guide these enzymes to their respective physiological substrates and prevent gratuitous chromosomal DNA damage.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
45
|
Gardès P, Forveille M, Alyanakian MA, Aucouturier P, Ilencikova D, Leroux D, Rahner N, Mazerolles F, Fischer A, Kracker S, Durandy A. Human MSH6 deficiency is associated with impaired antibody maturation. THE JOURNAL OF IMMUNOLOGY 2012; 188:2023-9. [PMID: 22250089 DOI: 10.4049/jimmunol.1102984] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ig class-switch recombination (Ig-CSR) deficiencies are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect, defective Ig-CSR may also be associated with impaired somatic hypermutation (SHM) of the Ig V regions. Although the mechanisms underlying Ig-CSR and SHM in humans have been revealed (at least in part) by studying natural mutants, the role of mismatch repair in this process has not been fully elucidated. We studied in vivo and in vitro Ab maturation in eight MSH6-deficient patients. The skewed SHM pattern strongly suggests that MSH6 is involved in the human SHM process. Ig-CSR was found to be partially defective in vivo and markedly impaired in vitro. The resolution of γH2AX foci following irradiation of MSH6-deficient B cell lines was also found to be impaired. These data suggest that in human CSR, MSH6 is involved in both the induction and repair of DNA double-strand breaks in switch regions.
Collapse
Affiliation(s)
- Pauline Gardès
- INSERM U768, Hôpital Necker Enfants Malades, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
47
|
Kuraoka M, McWilliams L, Kelsoe G. AID expression during B-cell development: searching for answers. Immunol Res 2011; 49:3-13. [PMID: 21136202 DOI: 10.1007/s12026-010-8185-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of activation-induced cytidine deaminase (AID) by germinal center (GC) B cells drives the processes of immunoglobulin (Ig) somatic hypermutation (SHM) and class switch recombination (CSR) necessary for the generation of high affinity IgG serum antibody and the memory B-cell compartment. Increasing evidence indicates that AID is also expressed at low levels in developing B cells but to date, this early, developmentally regulated AID expression has no known function. Does the timing and extent of AID expression in developmentally immature, non-GC B cells provide clues to reveal its physiologic role?
Collapse
Affiliation(s)
- Masayuki Kuraoka
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
48
|
Study of patients with Hyper-IgM type IV phenotype who recovered spontaneously during late childhood and review of the literature. Eur J Pediatr 2011; 170:1039-47. [PMID: 21274562 DOI: 10.1007/s00431-011-1400-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/11/2011] [Indexed: 01/21/2023]
Abstract
UNLABELLED Hyper-IgM syndromes are characterized by normal or elevated serum IgM levels with the absence or reduced levels of other immunoglobulins. There are some patients with defective class-switch recombination (CSR) who do not have CD40L, CD40, AID, and UNG defects. The aim of this study is to determine the B-cell functions of patients with Hyper-IgM type 4 phenotype. Ten patients (seven males and three females) 84.2 ± 16.5 months of age with initial low serum IgG and IgA and high or normal IgM levels were included. Clinically, 50% had recurrent upper respiratory tract, 10% urinary tract, 10% lower respiratory tract infections, and 30% had mixed type infections. Lymphoid hyperplasia, overt autoimmune manifestations, or malignancy was not noted. Seven of 10 patients were studied twice; at the age of 34.2 ± 13.7 and at 86.6 ± 12.3 months. Absolute lymphocyte counts and lymphocyte subsets were normal in all cases. All of them had normal expression of CD40 on B cells and CD40L on activated T cells for males. At first examination, all patients had normal in vitro sCD40L+rIL-4-induced B cell proliferation response and somatic hypermutation but CSR towards IgE was absent. AID and UNG genes did not show any abnormalities. All showed improvement in both clinical findings and Ig levels during the follow-up period of 55.8 ± 14.8 months. Ages for normalization of IgG and IgA were 68.2 ± 8.7 and 70.2 ± 21.6 months, respectively. During the second evaluation: In vitro sCD40L+rIL-4-induced B-cell proliferation was normal in all cases, whereas CSR was still abnormal in five of eight patients. Two of the patients had an increase in in vitro CSR response but still low IgG2 subclass levels. Three patients with initially absent in vitro CSR response also normalized. CONCLUSION Clinical manifestations and immunoglobulin levels of the patients with Hyper-IgM type 4 phenotype recovered in late childhood at about 6 years of age. There was a transient CSR defect which was not observed in cases with transient hypogammaglobulinemia of infancy. Detection of a non-AID or non-UNG associated CSR defect in infancy should be confirmed later on since spontaneous recovery may occur.
Collapse
|
49
|
Kracker S, Durandy A. Insights into the B cell specific process of immunoglobulin class switch recombination. Immunol Lett 2011; 138:97-103. [DOI: 10.1016/j.imlet.2011.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
50
|
Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc Natl Acad Sci U S A 2011; 108:11584-9. [PMID: 21709240 DOI: 10.1073/pnas.1018726108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation.
Collapse
|