1
|
Pang Y, Holtzman NG. Immunopathogenic mechanisms and modulatory approaches to graft-versus-host disease prevention in acute myeloid leukaemia. Best Pract Res Clin Haematol 2023; 36:101475. [PMID: 37353287 PMCID: PMC10291443 DOI: 10.1016/j.beha.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) remains the only potential cure for intermediate to high-risk acute myeloid leukaemia (AML). The therapeutic effect of HSCT is largely dependent on the powerful donor-derived immune response against recipient leukaemia cells, known as graft-versus-leukaemia effect (GvL). However, the donor-derived immune system can also cause acute or chronic damage to normal recipient organs and tissues, in a process known as graft-versus-host disease (GvHD). GvHD is a leading cause of non-relapse mortality in HSCT recipients. There are many similarities and cross talk between the immune pathways of GvL and GvHD. Studies have demonstrated that both processes require the presence of mismatched alloantigens between the donor and recipient, and activation of immune responses centered around donor T-cells, which can be further modulated by various recipient or donor factors. Dissecting GvL from GvHD to achieve more effective GvHD prevention and enhanced GvL has been the holy grail of HSCT research. In this review, we focused on the key factors that contribute to the immune responses of GvL and GvHD, the effect on GvL with different GvHD prophylactic strategies, and the potential impact of various AML relapse prevention therapy or treatments on GvHD.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Haematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA.
| | - Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Abstract
The microbiome may impact cancer development, progression and treatment responsiveness, but its fungal components remain insufficiently studied in this context. In this review, we highlight accumulating evidence suggesting a possible involvement of commensal and pathogenic fungi in modulation of cancer-related processes. We discuss the mechanisms by which fungi can influence tumour biology, locally by activity exerted within the tumour microenvironment, or remotely through secretion of bioactive metabolites, modulation of host immunity and communications with neighbouring bacterial commensals. We examine prospects of utilising fungi-related molecular signatures in cancer diagnosis, patient stratification and assessment of treatment responsiveness, while highlighting challenges and limitations faced in performing such research. In all, we demonstrate that fungi likely constitute important members of mucosal and tumour-residing microbiomes. Exploration of fungal inter-kingdom interactions with the bacterial microbiome and the host and decoding of their causal impacts on tumour biology may enable their harnessing into cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Aurelia Saftien
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Heissig B, Salama Y, Tateno M, Takahashi S, Hattori K. siRNA against CD40 delivered via a fungal recognition receptor ameliorates murine acute graft-versus-host disease. EJHAEM 2022; 3:849-861. [PMID: 36051085 PMCID: PMC9421973 DOI: 10.1002/jha2.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Acute graft-versus-host disease (aGvHD) remains a major threat to a successful outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Although antibody-based targeting of the CD40/CD40 ligand costimulatory pathway can prevent aGvHD, side effects hampered their clinical application, prompting a need for other ways to interfere with this important dendritic T-cell costimulatory pathway. Here, we used small interfering RNA (siRNA) complexed with β-glucan allowing the binding and uptake of the siRNA/β-glucan complex (siCD40/schizophyllan [SPG]; chemical modifications called NJA-312, NJA-302, and NJA-515) into Dectin1+ cells, which recognize this pathogen-associated molecular pattern receptor. aGvHD was induced by the transplantation of splenocytes and bone marrow cells from C57BL/6J into CBF1 mice. Splenic dendritic cells retained Dectin1 expression after HSCT but showed lower expression after irradiation. The administration of siCD40/SPG, NJA-312, and NJA-302 ameliorated aGvHD-mediated lethality and tissue damage of spleen and liver, but not skin. Multiple NJA-312high injections prevented aGvHD but resulted in early weight loss in allogeneic HSCT mice. In addition, NJA-312 treatment caused delayed initial donor T and B-cell recovery but resulted in stable chimerism in surviving mice. Mechanistically, NJA-312 reduced organ damage by suppressing CCR2+, F4/80+, and IL17A-expressing cell accumulation in spleen, liver, and thymus but not the skin of mice with aGvHD. Our work demonstrates that siRNA targeting of CD40 delivered via the PAMP-recognizing lectin Dectin1 changes the immunological niche, suppresses organ-specific murine aGvHD, and induces immune tolerance after organ transplantation. Our work charts future directions for therapeutic interventions to modulate tissue-specific immune reactions using Pathogen-associated molecular pattern (PAMP) molecules like 1,3-β-glucan for cell delivery of siRNA.
Collapse
Affiliation(s)
- Beate Heissig
- Department of Research Support Utilizing Bioresource BankGraduate School of MedicineJuntendo University School of MedicineTokyoJapan
| | - Yousef Salama
- An‐Najah Center for Cancer and Stem Cell ResearchFaculty of Medicine and Health SciencesAn‐Najah National UniversityNablusPalestine
| | - Masatoshi Tateno
- Department of PathologyKushiro Red Cross HospitalKushiroHokkaidoJapan
| | - Satoshi Takahashi
- Division of Clinical Precision Research PlatformInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Koichi Hattori
- Center for Genomic & Regenerative MedicineJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
4
|
Gamal A, Elshaer M, Alabdely M, Kadry A, McCormick TS, Ghannoum M. The Mycobiome: Cancer Pathogenesis, Diagnosis, and Therapy. Cancers (Basel) 2022; 14:2875. [PMID: 35740541 PMCID: PMC9221014 DOI: 10.3390/cancers14122875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is among the leading causes of death globally. Despite advances in cancer research, a full understanding of the exact cause has not been established. Recent data have shown that the microbiome has an important relationship with cancer on various levels, including cancer pathogenesis, diagnosis and prognosis, and treatment. Since most studies have focused only on the role of bacteria in this process, in this article we review the role of fungi-another important group of the microbiome, the totality of which is referred to as the "mycobiome"-in the development of cancer and how it can impact responses to anticancer medications. Furthermore, we provide recent evidence that shows how the different microbial communities interact and affect each other at gastrointestinal and non-gastrointestinal sites, including the skin, thereby emphasizing the importance of investigating the microbiome beyond bacteria.
Collapse
Affiliation(s)
- Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
| | - Mohammed Elshaer
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mayyadah Alabdely
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Ahmed Kadry
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Dermatology and Venereology, Al-Azhar University, Cairo 11651, Egypt
| | - Thomas S. McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
| | - Mahmoud Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Teshima T, Hill GR. The Pathophysiology and Treatment of Graft- Versus-Host Disease: Lessons Learnt From Animal Models. Front Immunol 2021; 12:715424. [PMID: 34489966 PMCID: PMC8417310 DOI: 10.3389/fimmu.2021.715424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic HCT. New insights into the pathophysiology of GVHD garnered from our understanding of the immunological pathways within animal models have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical translations include histocompatibility matching, GVHD prophylaxis using cyclosporine and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This review highlights the use of animal transplantation models to guide new therapeutic principles.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, The University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Desamero MJM, Chung SH, Kakuta S. Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models. Int J Mol Sci 2021; 22:4778. [PMID: 33946381 PMCID: PMC8125483 DOI: 10.3390/ijms22094778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been greatly augmented through the utility of various beta-glucan cognate receptor-deficient mouse models. Analysis of dectin-1 knockout mice has clarified the downstream signaling pathways and adaptive effector responses triggered by beta-glucan in anti-fungal immunity. On the other hand, assessment of CR3-deficient mice has elucidated the compelling action of beta-glucans in neutrophil-mediated fungal clearance, and the investigation of EphA2-deficient mice has highlighted its novel involvement in host sensing and defense to oral mucosal fungal infection. Based on these accounts, this review focuses on the recent discoveries made by these gene-targeted mice in beta-glucan research with particular emphasis on the multifaceted aspects of fungal immunity.
Collapse
Affiliation(s)
- Mark Joseph Maranan Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Soo-Hyun Chung
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan;
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| |
Collapse
|
7
|
A Pilot Clinical Study on Post-Operative Recurrence Provides Biological Clues for a Role of Candida Yeasts and Fluconazole in Crohn's Disease. J Fungi (Basel) 2021; 7:jof7050324. [PMID: 33922391 PMCID: PMC8146386 DOI: 10.3390/jof7050324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background and aims: This study prompted by growing evidence of the relationship between the yeast Candida albicans and Crohn’s disease (CD) was intended to assess the effect of a 6-month course of the antifungal fluconazole (FCZ) on post-operative recurrence of CD. Methods: Mycological samples (mouth swabs and stools) and serum samples were collected from 28 CD patients randomized to receive either FCZ (n = 14) or placebo (n = 14) before surgical resection. Serological analysis focused on levels of calprotectin, anti-glycan antibodies, and antibody markers of C. albicans pathogenic transition. Levels of galectin-3 and mannose binding lectin (MBL) involved in C. albicans sensing and inflammation were also measured. Results: 1, 2, 3, and 6 months after surgery, endoscopy revealed recurrence in 5/12 (41.7%) patients in the FCZ group and 5/9 (55.6%) in the placebo group, the small cohort preventing any clinical conclusions. In both groups, surgery was followed by a marked decrease in C. albicans colonization and biomarkers of C. albicans pathogenic transition decreased to non-significant levels. Anti-glycan antibodies also decreased but remained significant for CD. Galectin-3 and calprotectin also decreased. Conversely, MBL levels, which inversely correlated with anti-C. albicans antibodies before surgery, remained stable. Building biostatistical multivariate models to analyze he changes in antibody and lectin levels revealed a significant relationship between C. albicans and CD. Conclusion: Several combinations of biomarkers of adaptive and innate immunity targeting C. albicans were predictive of CD recurrence after surgery, with area under the curves (AUCs) as high as 0.86. FCZ had a positive effect on biomarkers evolution. ClinicalTrials.gov ID: NCT02997059, 19 December 2016. University Hospital Lille, Ministry of Health, France. Effect of Fluconazole on the Levels of Anti-Saccharomyces cerevisiae Antibodies (ASCA) After Surgical Resection for Crohn’s Disease. Multicenter, Randomized, and Controlled in Two Parallel Groups Versus Placebo.
Collapse
|
8
|
Biernat MM, Urbaniak-Kujda D, Dybko J, Kapelko-Słowik K, Prajs I, Wróbel T. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res 2021; 48:300060520925693. [PMID: 32527171 PMCID: PMC7294377 DOI: 10.1177/0300060520925693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) reduces the efficiency and safety of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In recent years, attempts have been made to transplant fecal microbiota from healthy donors to treat intestinal GvHD. This study presented two cases of patients undergoing allo-HSCT who were later selected for fecal microbiota transplantation (FMT). In the first patient, FMT resulted in the complete resolution of symptoms, whereas therapeutic efficacy was not achieved in the second patient. FMT eliminated drug-resistant pathogens, namely very drug-resistant Enterococcus spp., but not multidrug-resistant Acinetobacter baumannii or Candida spp. Further research is needed, particularly on the safety of FMT in patients with intestinal steroid-resistant GvHD and on the distant impact of transplanted microflora on the outcomes of allo-HSCT. FMT appears promising for the treatment of patients with steroid-resistant GvHD.
Collapse
Affiliation(s)
- Monika Maria Biernat
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Urbaniak-Kujda
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Dybko
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kapelko-Słowik
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Prajs
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
9
|
Iliev ID, Cadwell K. Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology 2021; 160:1050-1066. [PMID: 33347881 PMCID: PMC7956156 DOI: 10.1053/j.gastro.2020.06.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
The intestinal microbiota comprises diverse fungal and viral components, in addition to bacteria. These microbes interact with the immune system and affect human physiology. Advances in metagenomics have associated inflammatory and autoimmune diseases with alterations in fungal and viral species in the gut. Studies of animal models have found that commensal fungi and viruses can activate host-protective immune pathways related to epithelial barrier integrity, but can also induce reactions that contribute to events associated with inflammatory bowel disease. Changes in our environment associated with modernization and the COVID-19 pandemic have exposed humans to new fungi and viruses, with unknown consequences. We review the lessons learned from studies of animal viruses and fungi commonly detected in the human gut and how these might affect health and intestinal disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute, New York University Grossman School of Medicine, New York, New York; Department of Microbiology, New York University Grossman School of Medicine, New York, New York; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, New York.
| |
Collapse
|
10
|
Ringdén O, Remberger M, Törlén J, Finnbogadottir S, Svahn BM, Sadeghi B. Cytokine levels following allogeneic hematopoietic cell transplantation: a match-pair analysis of home care versus hospital care. Int J Hematol 2021; 113:712-722. [PMID: 33544322 DOI: 10.1007/s12185-021-03087-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Following allogeneic hematopoietic cell transplantation (HCT), patients living near the hospital were treated at home instead of in isolation in the hospital. We analyzed cytokines using Luminex assays for the first 3 weeks after HCT and compared patients treated at home (n = 42) with matched patients isolated in the hospital (n = 37). In the multivariate analysis, patients treated at home had decreased GM-CSF, IFN-γ (p < 0.01), IL-13, IL-5 (p < 0.05), and IL-2 (p < 0.07). Bloodstream infections, anti-thymocyte globulin, G-CSF treatment, immunosuppression, reduced-intensity conditioning (RIC), related vs. unrelated donors, and graft source affected various cytokine levels. When patients with RIC were analyzed separately, home care patients had reduced G-CSF (p = 0.04) and increased vascular endothelial growth factor (VEGF, p = 0.001) at 3 weeks compared with hospital care patients. Patients with low GM-CSF (p < 0.036) and low IFNγ (p = 0.07) had improved survival. Acute GVHD grades III-IV was seen in 7% and 16% of home care and hospital care patients, respectively. One-year transplantation-related mortality was 7% and 16% and survival at 5 years was 69% and 57% in the two groups, respectively. To conclude, patients treated in the hospital showed varying increased levels of GM-CSF, IFN-γ, IL-13, G-CSF, IL-5, and IL-2 and decreased VEGF, which may contribute to acute GVHD.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research Group (TCR), Department of Pediatrics, CLINTEC, Karolinska Institutet, Kliniskt Forskningscentrum, KFC, NOVUM Plan 6, Hälsovägen 7-9, 141 57, Huddinge, Sweden.
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and KFUE, Uppsala University Hospital, Uppsala, Sweden
| | - Johan Törlén
- Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sigrun Finnbogadottir
- Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Britt-Marie Svahn
- Translational Cell Therapy Research Group (TCR), Department of Pediatrics, CLINTEC, Karolinska Institutet, Kliniskt Forskningscentrum, KFC, NOVUM Plan 6, Hälsovägen 7-9, 141 57, Huddinge, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research Group (TCR), Department of Pediatrics, CLINTEC, Karolinska Institutet, Kliniskt Forskningscentrum, KFC, NOVUM Plan 6, Hälsovägen 7-9, 141 57, Huddinge, Sweden
| |
Collapse
|
11
|
Rafei H, Jenq RR. Microbiome-intestine cross talk during acute graft-versus-host disease. Blood 2020; 136:401-409. [PMID: 32526029 PMCID: PMC7378453 DOI: 10.1182/blood.2019000950] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.
Collapse
Affiliation(s)
| | - Robert R Jenq
- Department of Genomic Medicine, and
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; and
- Cancer Prevention and Research Institute of Texas, Houston, TX
| |
Collapse
|
12
|
Galloway-Peña JR, Kontoyiannis DP. The gut mycobiome: The overlooked constituent of clinical outcomes and treatment complications in patients with cancer and other immunosuppressive conditions. PLoS Pathog 2020; 16:e1008353. [PMID: 32240277 PMCID: PMC7117661 DOI: 10.1371/journal.ppat.1008353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jessica R. Galloway-Peña
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| |
Collapse
|
13
|
Konuma T, Mizusawa M, Suzuki M, Kaito Y, Isobe M, Kato S, Shibata H, Takahashi O, Oiwa‐Monna M, Takahashi S, Tojo A. Candida
colonization is associated with severe acute GVHD in adult patients undergoing single‐unit cord blood transplantation. Eur J Haematol 2019; 104:74-76. [DOI: 10.1111/ejh.13341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Mai Mizusawa
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Masato Suzuki
- Department of Laboratory Medicine The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Yuta Kaito
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Seiko Kato
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Hiroko Shibata
- Department of Laboratory Medicine The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Osamu Takahashi
- Department of Laboratory Medicine The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Maki Oiwa‐Monna
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology The Institute of Medical Science The University of Tokyo Tokyo Japan
| |
Collapse
|
14
|
Kumari R, Palaniyandi S, Hildebrandt GC. Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease. Dig Dis Sci 2019; 64:669-677. [PMID: 30523482 DOI: 10.1007/s10620-018-5369-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Hematopoietic cell transplantation is an intensive therapy used to treat high-risk hematological malignant disorders and other life-threatening hematological and genetic diseases. Graft-versus-host disease (GVHD) presents a barrier to its wider application. A conditioning regimen and medications given to patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) are capable of disturbing the homeostatic crosstalk between the microbiome and the host immune system and of leading to dysbiosis. Intestinal inflammation in the context of GVHD is associated with loss in microbial diversity that could serve as an independent predictor of mortality. Successful gastrointestinal decontamination using high doses of non-absorbable antibiotics likely affect allo-HCT outcomes leading to significantly less acute GVHD (aGVHD). Butyrate-producing Clostridia directly result in the increased presence of regulatory T cells in the gut, which are protective in GVHD development. Beyond the microbiome, Candida, a member of the mycobiome, colonization in the gut has been considered as a risk factor in pathophysiology of aGVHD and reduction in GVHD is observed with antifungal prophylaxis with fluconazole. Reduced number of goblet cells and Paneth cells have been shown to associate with GVHD and has a significant impact on the micro- and mycobiome density and their composition. Lower levels of 3-indoxyl sulfate at initial stages after allo-HCT are related with worse GVHD outcomes and increased mortality. Increased understanding of the vital role of the gut microbiome in GVHD can give directions to move the field towards the development of improved innovative approaches for preventing or treating GVHD following allo-HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Gerhard Carl Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA. .,Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
15
|
Respiratory Tract Colonization by Candida species Portends Worse Outcomes in Immunocompromised Patients. ACTA ACUST UNITED AC 2018; 25:197-201. [PMID: 30911217 DOI: 10.1097/cpm.0000000000000279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background The significance and clinical management of Candida colonization of the respiratory tract are ill-defined. We now report the frequency of Candida species from the lower respiratory tract in hematopoietic stem cell transplant recipients (HSCT) undergoing bronchoscopy with broncheoalveolar lavage (BAL) for pneumonitis post-HSCT. Methods The University of Michigan Clinical Microbiology Lab Database was queried for all respiratory cultures positive for Candida species between 2000-2012. We concurrently performed a retrospective analysis of 515 HSCT recipients with pneumonitis at our institution between 2001-2012. Results During this twelve-year period, there were 2524 unique Candida isolates (78% Candida albicans). Of the 515 HSCT patients with suspected pneumonitis,127 (24.7%) HSCT subjects were culture positive for a fungal pathogen, with Candida species identified in 27 cases (5.2%). When compared with other HSCT subjects, those cultures positive for Candida had significantly increased mortality (p=0.04). Conclusions Candida sp. are commonly cultured from the respiratory tract of HSCT recipients, with increased mortality in affected patients. While there is insufficient evidence for anti-fungal treatment of Candida species colonization, the presence of the yeast may be useful as a surrogate marker of disease severity.
Collapse
|
16
|
Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood 2017; 128:2395-2402. [PMID: 27856471 DOI: 10.1182/blood-2016-06-716738] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022] Open
Abstract
Intestinal graft-versus-host disease (GVHD) remains a significant obstacle to the success of allogeneic hematopoietic cell transplantation. The intestinal mucosa comprises the inner lining of the intestinal tract and maintains close proximity with commensal microbes that reside within the intestinal lumen. Recent advances have significantly improved our understanding of the interactions between the intestinal mucosa and the enteric microbiota. Changes in host mucosal tissue and commensals posttransplant have been actively investigated, and provocative insights into mucosal immunity and the enteric microbiota are now being translated into clinical trials of novel approaches for preventing and treating acute GVHD. In this review, we summarize recent findings related to aspects of the intestinal mucosa during acute GVHD.
Collapse
|
17
|
Hueso T, Coiteux V, Joncquel Chevalier Curt M, Labreuche J, Jouault T, Yakoub-Agha I, Seguy D. Citrulline and Monocyte-Derived Macrophage Reactivity before Conditioning Predict Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:913-921. [PMID: 28263922 DOI: 10.1016/j.bbmt.2017.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/01/2017] [Indexed: 12/20/2022]
Abstract
During conditioning, intestinal damage induces microbial translocation which primes macrophage reactivity and leads to donor-derived T cell stimulation. Little is known about the role of intestinal health and macrophage reactivity before conditioning in the development of acute graft-versus-host disease (aGVHD) in patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT). We assessed (1) citrulline, a surrogate marker of functional enterocyte mass and (2) circulating monocyte-derived macrophage reactivity, before allo-HCT. Forty-seven consecutive patients were prospectively included. Citrulline levels from blood samples withdrawn 30 days before transplantation were assessed using liquid chromatography combined with mass spectrometry. Monocyte-derived macrophages were isolated and incubated with 5 pathogen-associated molecular patterns: lipopolysaccharide, PamCSK4, flagellin, muramyl dipeptide, and curdlan. Multiplex fluorescent immunoassay on culture supernatant assessed levels of TNF-α, IL-1β, IL-6, and IL-10 in each condition. Citrulline and cytokine levels were analyzed relatively to aGVHD onset within 100 days after transplantation. Citrulline levels were lower in the aGVHD group (n = 20) than in the no-aGVHD group (n = 27) (P = .005). Conversely, IL-6 and IL-10 were greater in aGVHD group, especially after curdlan stimulation (P = .005 and P = .012). Citrulline levels ≤20 µmol/L, IL-6 ≥ 332 pg/mL, and IL-10 ≥ 90 pg/mL were associated with aGVHD development (log-rank test, P = .002, P = .041, and P < .0001, respectively). In multivariate analysis, IL-10 ≥ 90 pg/mL, myeloablative conditioning, and citrulline ≤20 µmol/L remained independent factors of aGVHD development (hazard ratio [HR], 8.18, P = .0003; HR, 4.28, P = .006; and HR, 4.43, P = .01, respectively). Preconditioning citrulline and monocyte-derived macrophage reactivity are objective surrogate markers suitable to identify patients at risk of developing aGVHD. This work highlights the influence of preconditioning status in aGVHD development.
Collapse
Affiliation(s)
- Thomas Hueso
- LIRIC UMR 995 Inserm, University of Lille, Lille, France
| | | | | | | | | | - Ibrahim Yakoub-Agha
- LIRIC UMR 995 Inserm, University of Lille, Lille, France; Stem Cell Transplantation Unit, CHU Lille, Lille, France
| | - David Seguy
- LIRIC UMR 995 Inserm, University of Lille, Lille, France; Department of Nutrition, CHU Lille, Lille, France.
| |
Collapse
|
18
|
Peled JU, Hanash AM, Jenq RR. Role of the intestinal mucosa in acute gastrointestinal GVHD. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:119-127. [PMID: 27913470 PMCID: PMC5575743 DOI: 10.1182/asheducation-2016.1.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Intestinal graft-versus-host disease (GVHD) remains a significant obstacle to the success of allogeneic hematopoietic cell transplantation. The intestinal mucosa comprises the inner lining of the intestinal tract and maintains close proximity with commensal microbes that reside within the intestinal lumen. Recent advances have significantly improved our understanding of the interactions between the intestinal mucosa and the enteric microbiota. Changes in host mucosal tissue and commensals posttransplant have been actively investigated, and provocative insights into mucosal immunity and the enteric microbiota are now being translated into clinical trials of novel approaches for preventing and treating acute GVHD. In this review, we summarize recent findings related to aspects of the intestinal mucosa during acute GVHD.
Collapse
Affiliation(s)
- Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Weill Cornell Medical College, New York, NY
| | - Alan M Hanash
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Robert R Jenq
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
19
|
Toubai T, Mathewson ND, Magenau J, Reddy P. Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Front Immunol 2016; 7:539. [PMID: 27965667 PMCID: PMC5126092 DOI: 10.3389/fimmu.2016.00539] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Graft-versus-host response after allogeneic hematopoietic stem cell transplantation (allo-HCT) represents one of the most intense inflammatory responses observed in humans. Host conditioning facilitates engraftment of donor cells, but the tissue injury caused from it primes the critical first steps in the development of acute graft-versus-host disease (GVHD). Tissue injuries release pro-inflammatory cytokines (such as TNF-α, IL-1β, and IL-6) through widespread stimulation of pattern recognition receptors (PRRs) by the release of danger stimuli, such as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs and PAMPs function as potent stimulators for host and donor-derived antigen presenting cells (APCs) that in turn activate and amplify the responses of alloreactive donor T cells. Emerging data also point towards a role for suppression of DAMP induced inflammation by the APCs and donor T cells in mitigating GVHD severity. In this review, we summarize the current understanding on the role of danger stimuli, such as the DAMPs and PAMPs, in GVHD.
Collapse
Affiliation(s)
- Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA , USA
| | - John Magenau
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| |
Collapse
|
20
|
Teshima T, Reddy P, Zeiser R. Reprint of: Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transplant 2016; 22:S3-8. [PMID: 26899274 DOI: 10.1016/j.bbmt.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Graft-versus-host disease (GVHD) continues to be a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Recent insights into intestinal homeostasis and uncovering of new pathways and targets have greatly reconciled our understanding of GVHD pathophysiology and will reshape contemporary GVHD prophylaxis and treatment. Gastrointestinal (GI) GVHD is the major cause of mortality. Emerging data indicate that intestinal stem cells (ISCs) and their niche Paneth cells are targeted, resulting in dysregulation of the intestinal homeostasis and microbial ecology. The microbiota and their metabolites shape the immune system and intestinal homeostasis, and they may alter host susceptibility to GVHD. Protection of the ISC niche system and modification of the intestinal microbiota and metabolome to restore intestinal homeostasis may, thus, represent a novel approach to modulate GVHD and infection. Damage to the intestine plays a central role in amplifying systemic GVHD by propagating a proinflammatory cytokine milieu. Molecular targeting to inhibit kinase signaling may be a promising approach to treat GVHD, ideally via targeting the redundant effect of multiple cytokines on immune cells and enterocytes. In this review, we discuss insights on the biology of GI GVHD, interaction of microflora and metabolome with the hosts, identification of potential new target organs, and identification and targeting of novel T cell-signaling pathways. Better understanding of GVHD biology will, thus, pave a way to develop novel treatment strategies with great clinical benefits.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
21
|
Lamarthée B, Malard F, Saas P, Mohty M, Gaugler B. Interleukin-22 in Graft-Versus-Host Disease after Allogeneic Stem Cell Transplantation. Front Immunol 2016; 7:148. [PMID: 27148267 PMCID: PMC4836046 DOI: 10.3389/fimmu.2016.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 01/20/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative treatment for hematologic malignancies and non-malignant diseases. Because of the lower toxicity of reduced intensity conditioning, the number of transplants is in constant increase. However, allo-HSCT is still limited by complications, such as graft-versus-host disease (GVHD), which is associated with important morbidity and mortality. Acute GVHD is an exacerbated inflammatory response that leads to the destruction of healthy host tissues by donor immune cells. Recently, the contribution of innate immunity in GVHD triggering has been investigated by several groups and resulted in the identification of new cellular and molecular effectors involved in GVHD pathogenesis. Interleukin-22 (IL-22) is produced by both immune and adaptive cells and has both protective and inflammatory properties. Its role in GVHD processes has been investigated, and the data suggest that its effect depends on the timing, the target tissue, and the origin of the producing cells (donor/host). In this review, we discuss the role of IL-22 in allo-HSCT and GVHD.
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Florent Malard
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Philippe Saas
- INSERM UMR1098, Besançon, France; UMR 1098, SFR FED 4234, Université de Bourgogne Franche-Comté, Besançon, France; UMR 1098, Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Mohamad Mohty
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France; Service d'Hématologie Clinique, Hôpital Saint-Antoine, Paris, France
| | - Béatrice Gaugler
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
22
|
Teshima T, Reddy P, Zeiser R. Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transplant 2015; 22:11-6. [PMID: 26453971 DOI: 10.1016/j.bbmt.2015.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Graft-versus-host disease (GVHD) continues to be a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Recent insights into intestinal homeostasis and uncovering of new pathways and targets have greatly reconciled our understanding of GVHD pathophysiology and will reshape contemporary GVHD prophylaxis and treatment. Gastrointestinal (GI) GVHD is the major cause of mortality. Emerging data indicate that intestinal stem cells (ISCs) and their niche Paneth cells are targeted, resulting in dysregulation of the intestinal homeostasis and microbial ecology. The microbiota and their metabolites shape the immune system and intestinal homeostasis, and they may alter host susceptibility to GVHD. Protection of the ISC niche system and modification of the intestinal microbiota and metabolome to restore intestinal homeostasis may, thus, represent a novel approach to modulate GVHD and infection. Damage to the intestine plays a central role in amplifying systemic GVHD by propagating a proinflammatory cytokine milieu. Molecular targeting to inhibit kinase signaling may be a promising approach to treat GVHD, ideally via targeting the redundant effect of multiple cytokines on immune cells and enterocytes. In this review, we discuss insights on the biology of GI GVHD, interaction of microflora and metabolome with the hosts, identification of potential new target organs, and identification and targeting of novel T cell-signaling pathways. Better understanding of GVHD biology will, thus, pave a way to develop novel treatment strategies with great clinical benefits.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
23
|
Kim HJ, Lee E, Lee SH, Kang MJ, Hong SJ. Mold elicits atopic dermatitis by reactive oxygen species: Epidemiology and mechanism studies. Clin Immunol 2015. [PMID: 26205459 DOI: 10.1016/j.clim.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mold has been implicated in the development of atopic dermatitis (AD); however, the underlying mechanisms remain unknown. The aim of the study was to investigate the effects of mold exposure in early life through epidemiologic and mechanistic studies in vivo and in vitro. Exposure to visible mold inside the home during the first year of life was associated with an increased risk for current AD by two population-based cross-sectional human studies. Children with the AG+GG genotype of GSTP1 showed increased risk for current AD when exposed to mold. In the mouse model, treatment with patulin induced and aggravated clinically significant AD and Th2-related inflammation of the affected mouse skin. Additionally, reactive oxygen species (ROS) were released in the mouse skin as well by human keratinocytes. In conclusions, mold exposure increases the risk for AD related to ROS generation mediated by Th2-promoting inflammatory cytokines.
Collapse
Affiliation(s)
- Ha-Jung Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Jin Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Zeiser R. Activation of Innate Immunity in Graft-versus-Host Disease: Implications for Novel Targets? Oncol Res Treat 2015; 38:239-43. [PMID: 25966771 DOI: 10.1159/000381296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
Acute graft-versus-host disease (GvHD) is mediated by alloreactive donor-derived T cells with a suitable T cell receptor recognizing recipient major histocompatibility complex or minor histocompatibility antigens. However, the process of T cell activation and tissue injury sensing is also dependent on innate immune cells and non-hematopoietic cells. Different cell types of the innate immune system have the ability to sense danger-associated and pathogen-associated molecular patterns via pattern recognition receptors which can be transmembrane Toll-like receptors or cytoplasmic nucleotide-binding oligomerization domain-like receptors. Infectious stimuli include bacterial, viral, and fungal components, while non-infectious stimuli can be components derived from damaged cells or extracellular matrix. A better understanding of the complex sensing and effector mechanisms of innate immune cells in GvHD may help to improve preventive and therapeutic strategies in GvHD.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg i.Br., Germany
| |
Collapse
|
25
|
α-Mannan induces Th17-mediated pulmonary graft-versus-host disease in mice. Blood 2015; 125:3014-23. [PMID: 25740827 DOI: 10.1182/blood-2014-12-615781] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapy for various hematopoietic disorders. Graft-versus-host disease (GVHD) and infections are the major obstacles of HSCT, and their close relationship has been suggested. Although roles of bacterial and viral infections in the pathophysiology of GVHD are well described, impacts of fungal infection on GVHD remain to be elucidated. In mouse models of GVHD, injection of α-mannan (Mn), a major component of fungal cell wall, or heat-killed Candida albicans exacerbated GVHD, particularly in the lung. Mn-induced donor T-cell polarization toward Th17 and lung-specific chemokine environment in GVHD led to accumulation of Th17 cells in the lung. The detrimental effects of Mn on GVHD depended on donor IL-17A production and host C-type lectin receptor Dectin-2. These results suggest a previously unrecognized link between pulmonary GVHD and fungal infection after allogeneic HSCT.
Collapse
|
26
|
Jia XM, Tang B, Zhu LL, Liu YH, Zhao XQ, Gorjestani S, Hsu YMS, Yang L, Guan JH, Xu GT, Lin X. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. ACTA ACUST UNITED AC 2014; 211:2307-21. [PMID: 25267792 PMCID: PMC4203953 DOI: 10.1084/jem.20132349] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands in mice. However, Dectin-1–induced H-Ras activation is mediated by a complex with CARD9, which leads to ERK activation for host innate immune responses to Candida albicans infection. Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)–mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1–induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)–dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans–infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection.
Collapse
Affiliation(s)
- Xin-Ming Jia
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Bing Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Le-Le Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Yan-Hui Liu
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xue-Qiang Zhao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sara Gorjestani
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yen-Michael S Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Long Yang
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian-Hong Guan
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Guo-Tong Xu
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
27
|
Batbayar S, Lee DH, Kim HW. Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1. Biomol Ther (Seoul) 2014; 20:433-45. [PMID: 24009832 PMCID: PMC3762275 DOI: 10.4062/biomolther.2012.20.5.433] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 01/23/2023] Open
Abstract
During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. β-Glucans are glucose polymers of a linear β(1,3)-glucan backbone with β(1,6)-linked side chains. The immunostimulatory and antitumor activities of β-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate β-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled β-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of β-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of β-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of β-glucan contributes to its immunostimulating effect in hosts and the potential uses of β-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of β-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.
Collapse
Affiliation(s)
- Sainkhuu Batbayar
- Department of Life Sciences, BK21 Cellular Stress Team, University of Seoul, Seoul 130-743, Korea
| | | | | |
Collapse
|
28
|
Systems biology of infectious diseases: a focus on fungal infections. Immunobiology 2011; 216:1212-27. [PMID: 21889228 DOI: 10.1016/j.imbio.2011.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/06/2011] [Indexed: 12/21/2022]
Abstract
The study of infectious disease concerns the interaction between the host species and a pathogen organism. The analysis of such complex systems is improving with the evolution of high-throughput technologies and advanced computational resources. This article reviews integrative, systems-oriented approaches to understanding mechanisms underlying infection, immune response and inflammation to find biomarkers of disease and design new drugs. We focus on the systems biology process, especially the data gathering and analysis techniques rather than the experimental technologies or latest computational resources.
Collapse
|
29
|
Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 2011; 14:392-9. [DOI: 10.1016/j.mib.2011.07.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/13/2011] [Accepted: 07/01/2011] [Indexed: 01/10/2023]
|
30
|
|
31
|
Abstract
Th17 cells are a recently discovered subset of T helper cells characterised by the release of IL-17, and are thought to be important for mobilization of immune responses against microbial pathogens, but which also contribute to the development of autoimmune diseases. The identification of C-type lectin receptors which are capable of regulating the balance between Th1 and Th17 responses has been of particular recent interest, which they control, in part, though the release of Th17 inducing cytokines. Many of these receptors recognise fungi, and other pathogens, and play key roles in driving the development of protective anti-microbial immunity. Here we will review the C-type lectins that have been linked to Th17 type responses and will briefly examine the role of Th17 responses in murine and human anti-fungal immunity.
Collapse
Affiliation(s)
| | | | - Gordon D. Brown
- Aberdeen Fungal Group, Section of Infection and Immunity, Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
32
|
Kontoyiannis DP. Antifungal prophylaxis in hematopoietic stem cell transplant recipients: the unfinished tale of imperfect success. Bone Marrow Transplant 2010; 46:165-73. [DOI: 10.1038/bmt.2010.256] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Marakalala MJ, Kerrigan AM, Brown GD. Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome 2010; 22:55-65. [PMID: 20700596 PMCID: PMC3026934 DOI: 10.1007/s00335-010-9277-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022]
Abstract
The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease.
Collapse
Affiliation(s)
- Mohlopheni J Marakalala
- Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, CLS, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|