1
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
2
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
3
|
Vila-Casahonda RG, Lozano-Aponte J, Guerrero-Beltrán CE. HSP60-Derived Peptide as an LPS/TLR4 Modulator: An in silico Approach. Front Cardiovasc Med 2022; 9:731376. [PMID: 35433873 PMCID: PMC9010565 DOI: 10.3389/fcvm.2022.731376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
As a part of innate immunity mechanisms, the Toll-like receptor (TLR) signaling pathway serves as one of the mainstay lines of defense against pathogenic microorganisms and cell dysfunction. Nevertheless, TLR overactivation induces a systemic proinflammatory environment compromising organ function or causing the patient’s death. TLRs modulators, specially those focused for TLR4, remain a promising approach for inflammatory diseases treatment, being peptide-based therapy a trendy approach. Heat shock protein 60 (HSP60) not only plays a pivotal role in the development of several maladies with strong inflammatory components but also HSP60 peptides possess anti-inflammatory properties in TLR4-mediated diseases, such as diabetes, arthritis, and atherosclerosis. The experimental treatment using HSP60 peptides has proven to be protective in preclinical models of the heart by hampering inflammation and modulating the activity of immune cells. Nonetheless, the effect that these peptides may exert directly on cells that express TLR and its role to inhibit overactivation remain elusive. The aim of this study is to evaluate by molecular docking, a 15 amino acid long-HSP60 peptide (Peptide-2) in the lipopolysaccharide (LPS) binding site of TLR4/MD2, finding most Peptide-2 resulting conformations posed into the hydrophobic pocket of MD2. This observation is supported by binding energy obtained for the control antagonist Eritoran, close to those of Peptide-2. This last does not undergo drastic structural changes, moving into a delimited space, and maintaining the same orientation during molecular dynamics simulation. Based on the two computational techniques applied, interaction patterns were defined for Peptide-2. With these results, it is plausible to propose a peptidic approach for TLR4 modulation as a new innovative therapy to the treatment of TLR4-related cardiovascular diseases.
Collapse
Affiliation(s)
- Rafael Gustavo Vila-Casahonda
- Tecnologico de Monterrey, Medicina Cardiovascular y Metabolómica, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Jorge Lozano-Aponte
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Puebla, Mexico
| | - Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Medicina Cardiovascular y Metabolómica, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
- *Correspondence: Carlos Enrique Guerrero-Beltrán,
| |
Collapse
|
4
|
Ghobadi Z, Mahnam K, Shakhsi-Niaei M. In-silico design of peptides for inhibition of HLA-A*03-KLIETYFSK complex as a new drug design for treatment of multiples sclerosis disease. J Mol Graph Model 2021; 111:108079. [PMID: 34837787 DOI: 10.1016/j.jmgm.2021.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis is recognized as a chronic inflammatory disease. Human leukocyte antigen (HLA) plays an important role in initiating adaptive immune responses. HLA class I is present in almost all nucleated cells and presents the cleaved endogenous peptide antigens to cytotoxic T cells. HLA-A*03 is one of the HLA class I alleles, which is reported as substantially related HLA to MS disease. In 2011, the structure of the HLA-A*03 in complex was identified with an immunodominant proteolipid protein (PLP) epitope (KLIETYFSK). This complex has been reported as an important autoantigen-presenting complex in MS pathogenesis. In this study, new peptides were designed to bind to this complex that may prevent specific pathogenic cytotoxic T cell binding to this autoantigen-presenting complex and CNS demyelination. Herein, 14 new helical peptides containing 19 amino acids were designed and their structures were predicted using the PEP-FOLD server. The binding of each designed peptide to the mentioned complex was then performed. A mutation approach was used by the BeAtMuSiC server to improve the binding affinity of the designed peptide. In each position, amino acid substitutions leading to an increase in the binding affinity of the peptide to the mentioned complex were determined. Finally, the resulting complexes were simulated for 40 ns using AMBER18 software. The results revealed that out of 14 designed peptides, "WRYWWKDWAKQFRQFYRWF" peptide exhibited the highest affinity for binding to the mentioned complex. This peptide can be considered as a potential drug to control multiple sclerosis disease in patients carrying the HLA-A*03 allele.
Collapse
Affiliation(s)
- Zahra Ghobadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran; Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
5
|
An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis. Molecules 2021; 26:molecules26175227. [PMID: 34500662 PMCID: PMC8434400 DOI: 10.3390/molecules26175227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) belongs to demyelinating diseases, which are progressive and highly debilitating pathologies that imply a high burden both on individual patients and on society. Currently, several treatment strategies differ in the route of administration, adverse events, and possible risks. Side effects associated with multiple sclerosis medications range from mild symptoms, such as flu-like or irritation at the injection site, to serious ones, such as progressive multifocal leukoencephalopathy and other life-threatening events. Moreover, the agents so far available have proved incapable of fully preventing disease progression, mostly during the phases that consist of continuous, accumulating disability. Thus, new treatment strategies, able to halt or even reverse disease progression and specific for targeting solely the pathways that contribute to the disease pathogenesis, are highly desirable. Here, we provide an overview of the recent literature about peptide-based systems tested on experimental autoimmune encephalitis (EAE) models. Since peptides are considered a unique therapeutic niche and important elements in the pharmaceutical landscape, they could open up new therapeutic opportunities for the treatment of MS.
Collapse
|
6
|
Najafi H, Tamaddon AM, Abolmaali S, Borandeh S, Azarpira N. Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells. SOFT MATTER 2021; 17:57-67. [PMID: 33001116 DOI: 10.1039/d0sm01299h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fmoc-dipeptides are a class of short aromatic peptides featuring eminent supramolecular self-assembly, which is due to the aromaticity of the Fmoc group, which improves the association of peptide building blocks. This study aimed to introduce a new dipeptide hydrogel scaffold, Fmoc-phenylalanine-valine (Fmoc-FV), for 3D culture of various cells. Peptide hydrogel scaffolds were prepared by the pH-titration method in various concentrations and temperatures, and characterized by spectroscopic methods, including circular dichroism, attenuated total reflection FT-IR and fluorimetry. Mechanical behaviors such as thixotropy and temperature-sensitivity were investigated by oscillatory rheology. The Fmoc-FV hydrogels were then applied in 3D-culture of WJ-MSCs (mesenchymal stem cells), HUVECs (normal endothelial cells), and MDA-MB231 (tumor cell line) by live-dead fluorescence microscopy and Alamar blue viability assay experiments. The results confirmed that the β-sheet structure is principally interlocked by π-π stacking of the Fmoc groups and entangled nanofibrous morphologies as revealed by FE-SEM. Fmoc-FV self-assembly in physiologic conditions resulted in a thermo-sensitive and shear-thinning hydrogel. Notably, the Fmoc-FV hydrogel exhibited cell type-dependent biological activity, so higher cell proliferation was attained in HUVEC or MDA-MB231 cells than WJ-MSCs, indicating a possible need for incorporating cell-adhesion ligands in the Fmoc-FV hydrogel matrix. Therefore, the structural and biological properties of the Fmoc-dipeptide hydrogels are inter-related and can affect their applications in 3D cell culture and regenerative medicine.
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
7
|
Moorman CD, Bastian AG, DeOca KB, Mannie MD. A GM-CSF-neuroantigen tolerogenic vaccine elicits inefficient antigen recognition events below the CD40L triggering threshold to expand CD4 + CD25 + FOXP3 + Tregs that inhibit experimental autoimmune encephalomyelitis (EAE). J Neuroinflammation 2020; 17:180. [PMID: 32522287 PMCID: PMC7285464 DOI: 10.1186/s12974-020-01856-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tolerogenic vaccines represent antigen-specific interventions designed to re-establish self-tolerance and thereby alleviate autoimmune diseases, which collectively comprise over 100 chronic inflammatory diseases afflicting more than 20 million Americans. Tolerogenic vaccines comprised of single-chain GM-CSF-neuroantigen (GMCSF-NAg) fusion proteins were shown in previous studies to prevent and reverse disease in multiple rodent models of experimental autoimmune encephalomyelitis (EAE) by a mechanism contingent upon the function of CD4+ CD25+ FOXP3+ regulatory T cells (Tregs). GMCSF-NAg vaccines inhibited EAE in both quiescent and inflammatory environments in association with low-efficiency T cell receptor (TCR) signaling events that elicited clonal expansion of immunosuppressive Tregs. Methods This study focused on two vaccines, including GMCSF-MOG (myelin oligodendrocyte glycoprotein 35–55/MOG35–55) and GMCSF-NFM (neurofilament medium peptide 13–37/NFM13–37), that engaged the transgenic 2D2 TCR with either low or high efficiencies, respectively. 2D2 mice were crossed with FOXP3 IRES eGFP (FIG) mice to track Tregs and further crossed with Rag−/− mice to reduce pre-existing Treg populations. Results This study provided evidence that low and high efficiency TCR interactions were integrated via CD40L expression levels to control the Treg/Tcon balance. The high-efficiency GMCSF-NFM vaccine elicited memory Tcon responses in association with activation of the CD40L costimulatory system. Conversely, the low-efficiency GMCSF-MOG vaccine lacked adequate TCR signal strength to elicit CD40L expression and instead elicited Tregs by a mechanism that was impaired by a CD40 agonist. When combined, the low- and high-efficiency GMCSF-NAg vaccines resulted in a balanced outcome and elicited both Tregs and Tcon responses without the predominance of a dominant immunogenic Tcon response. Aside from Treg expansion in 2D2-FIG mice, GMCSF-MOG caused a sustained decrease in TCR-β, CD3, and CD62L expression and a sustained increase in CD44 expression in Tcon subsets. Subcutaneous administration of GMCSF-MOG without adjuvants inhibited EAE in wildtype mice, which had a replete Treg repertoire, but was pathogenic rather than tolerogenic in 2D2-FIG-Rag1−/− mice, which lacked pre-existing Tregs. Conclusions This study provided evidence that the GMCSF-MOG vaccine elicited antigenic responses beneath the CD40L triggering threshold, which defined an antigenic niche that drove dominant expansion of tolerogenic myelin-specific Tregs that inhibited EAE.
Collapse
Affiliation(s)
- Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
8
|
Fodor-Kardos A, Kiss ÁF, Monostory K, Feczkó T. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Adv 2020; 10:15893-15900. [PMID: 35493658 PMCID: PMC9052435 DOI: 10.1039/c9ra09928j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
Interferon-beta-1a (IFN-β-1a) can diminish the symptoms of relapsing-remitting multiple sclerosis. Herein, we prepared sustained drug delivery IFN-β-1a-loaded nanoparticles by a double emulsion solvent evaporation method. Bovine serum albumin (BSA) model drug was used to optimize the preparation of nanoparticles composed of four types of poly(lactic-co-glycolic acid) (PLGA) polymers and two pegylated PLGA (PEG-PLGA) polymers. Via optimization, selected PLGA and PEG-PLGA polymers were able to entrap IFN-β-1a with high encapsulation efficiency (>95%) and low size (145 nm and 163 nm, respectively). In vitro release kinetics of BSA and IFN-β showed similar tendency for PLGA and PEG-PLGA nanoparticles, respectively. Although the drug loaded nanoparticles did not show toxicity in hepatocyte cells, mild toxic effects such as pale kidney and pyelectasis were observed in the in vivo studies.
Collapse
Affiliation(s)
- Andrea Fodor-Kardos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary +36-88-624000 ext. 3508
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia Egyetem u. 10 H-8200 Veszprém Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary
| | - Tivadar Feczkó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary +36-88-624000 ext. 3508
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia Egyetem u. 10 H-8200 Veszprém Hungary
| |
Collapse
|
9
|
Yaron JR, Ambadapadi S, Zhang L, Chavan RN, Tibbetts SA, Keinan S, Varsani A, Maldonado J, Kraberger S, Tafoya AM, Bullard WL, Kilbourne J, Stern-Harbutte A, Krajmalnik-Brown R, Munk BH, Koppang EO, Lim ES, Lucas AR. Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Sci Rep 2020; 10:2371. [PMID: 32047224 PMCID: PMC7012916 DOI: 10.1038/s41598-020-59269-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.
Collapse
Affiliation(s)
- Jordan R Yaron
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ramani N Chavan
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shahar Keinan
- Cloud Pharmaceuticals, Research Triangle Park (RTP), North Carolina, USA
| | - Arvind Varsani
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center of Evolution and Medicine Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Juan Maldonado
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- KED Genomics Core, Arizona State University, Tempe, Arizona, USA
| | - Simona Kraberger
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Whitney L Bullard
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alison Stern-Harbutte
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rosa Krajmalnik-Brown
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Barbara H Munk
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erling O Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
10
|
De Souza ALS, Rudin S, Chang R, Mitchell K, Crandall T, Huang S, Choi JK, Okitsu SL, Graham DL, Tomkinson B, Dellovade T. ATX-MS-1467 Induces Long-Term Tolerance to Myelin Basic Protein in (DR2 × Ob1)F1 Mice by Induction of IL-10-Secreting iTregs. Neurol Ther 2018; 7:103-128. [PMID: 29542041 PMCID: PMC5990509 DOI: 10.1007/s40120-018-0094-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Antigen-specific immunotherapy could provide a targeted approach for the treatment of multiple sclerosis that removes the need for broad-acting immunomodulatory drugs. ATX-MS-1467 is a mixture of four peptides identified as the main immune-dominant disease-associated T-cell epitopes in myelin basic protein (MBP), an autoimmune target for activated autoreactive T cells in multiple sclerosis. Previous animal studies have shown that ATX-MS-1467 treatment prevented the worsening of signs of disease in experimental autoimmune encephalitis (EAE) in the humanized (DR2 × Ob1)F1 mouse in a dose-dependent fashion. METHODS AND RESULTS Our study extends these observations to show that subcutaneous treatment with 100 µg of ATX-MS-1467 after induction of EAE in the same mouse model reversed established clinical disability (p < 0.0001) and histological markers of inflammation and demyelination (p < 0.001) compared with vehicle-treated animals; furthermore, in longitudinal magnetic resonance imaging analyses, disruption of blood-brain barrier integrity was reversed, compared with vehicle-treated animals (p < 0.05). Chronic treatment with ATX-MS-1467 was associated with an enduring shift from a pro-inflammatory to a tolerogenic state in the periphery, as shown by an increase in interleukin 10 secretion, relative to interleukin 2, interleukin 17 and interferon γ, a decrease in splenocyte proliferation and an increase in interleukin 10+ Foxp3- T cells in the spleen. CONCLUSION Our results suggest that ATX-MS-1467 can induce splenic iTregs and long-term tolerance to MBP with the potential to partially reverse the pathology of multiple sclerosis, particularly during the early stages of the disease. FUNDING EMD Serono, Inc., a business of Merck KGaA.
Collapse
Affiliation(s)
- Adriano Luís Soares De Souza
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA.
| | - Stefan Rudin
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Rui Chang
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Keith Mitchell
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Timothy Crandall
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Shuning Huang
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shinji L Okitsu
- TIP Immunology, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Danielle L Graham
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Blake Tomkinson
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Tammy Dellovade
- Neurology eTIP, Translational and Biomarker Research Group, EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| |
Collapse
|
11
|
Zhao Z, Ukidve A, Dasgupta A, Mitragotri S. Transdermal immunomodulation: Principles, advances and perspectives. Adv Drug Deliv Rev 2018; 127:3-19. [PMID: 29604373 DOI: 10.1016/j.addr.2018.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Immunomodulation, manipulation of the immune responses towards an antigen, is a promising strategy to treat cancer, infectious diseases, allergies, and autoimmune diseases, among others. Unique features of the skin including the presence of tissue-resident immune cells, ease of access and connectivity to other organs makes it a unique target organ for immunomodulation. In this review, we summarize advances in transdermal delivery of agents for modulating the immune responses for vaccination as well as tolerization. The biological foundation of skin-based immunomodulation and challenges in its implementation are described. Technological approaches aimed at enhancing the delivery of immunomodulatory therapeutics into skin are also discussed in this review. Progress made in the treatment of several specific diseases including cancer, infections and allergy are discussed. Finally, this review discusses some practical considerations and offers some recommendations for future studies in the field of transdermal immunomodulation.
Collapse
Affiliation(s)
- Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Anvay Ukidve
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Anshuman Dasgupta
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
12
|
Moral MEG, Siahaan TJ. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Curr Top Med Chem 2017; 17:3425-3443. [PMID: 29357802 PMCID: PMC5835217 DOI: 10.2174/1568026618666180118154514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings.
Collapse
Affiliation(s)
- Mario E G Moral
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| |
Collapse
|
13
|
Northrup L, Sullivan BP, Hartwell BL, Garza A, Berkland C. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response. Mol Pharm 2016; 14:66-80. [PMID: 28043135 DOI: 10.1021/acs.molpharmaceut.6b00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.
Collapse
Affiliation(s)
- Laura Northrup
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Bradley P Sullivan
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Brittany L Hartwell
- Bioengineering Graduate Program, University of Kansas , Lawrence, Kansas 66045, United States
| | - Aaron Garza
- Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas 66045, United States
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Bioengineering Graduate Program, University of Kansas , Lawrence, Kansas 66045, United States.,Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Candia M, Kratzer B, Pickl WF. On Peptides and Altered Peptide Ligands: From Origin, Mode of Action and Design to Clinical Application (Immunotherapy). Int Arch Allergy Immunol 2016; 170:211-233. [PMID: 27642756 PMCID: PMC7058415 DOI: 10.1159/000448756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
T lymphocytes equipped with clonotypic T cell antigen receptors (TCR) recognize immunogenic peptides only when presented in the context of their own major histocompatibility complex (MHC) molecules. Peptide loading to MHC molecules occurs in intracellular compartments (ER for class I and MIIC for class II molecules) and relies on the interaction of the respective peptides and peptide binding pockets on MHC molecules. Those peptide residues not engaged in MHC binding point towards the TCR screening for possible peptide MHC complex binding partners. Natural or intentional modification of both MHC binding registers and TCR interacting residues of peptides - leading to the formation of altered peptide ligands (APLs) - might alter the way peptides interact with TCRs and hence influence subsequent T cell activation events, and consequently T cell effector functions. This review article summarizes how APLs were detected and first described, current concepts of how APLs modify T cellular signaling, which biological mechanisms might force the generation of APLs in vivo, and how peptides and APLs might be used for the benefit of patients suffering from allergic or autoimmune diseases.
Collapse
Affiliation(s)
- Martín Candia
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| |
Collapse
|
15
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Northrup L, Christopher MA, Sullivan BP, Berkland C. Combining antigen and immunomodulators: Emerging trends in antigen-specific immunotherapy for autoimmunity. Adv Drug Deliv Rev 2016; 98:86-98. [PMID: 26546466 DOI: 10.1016/j.addr.2015.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A majority of current therapies for autoimmune diseases are general immunosuppressants, which can compromise patient response to opportunistic infection and lead to adverse events. Using antigen-specific immunotherapy (ASIT) to selectively disarm autoimmune diseases, without suppressing the global immune response, would be a transformative therapy for patients. ASIT has been used historically in allergy hyposensitization therapy to induce tolerance to an allergen. Similar strategies to induce immune tolerance toward autoantigens responsible for autoimmune disease have been attempted but have yielded limited clinical success. Recent studies of ASIT for autoimmunity have explored combination therapy, combining the disease-causing autoantigen with an immunomodulatory compound. ASIT combination therapy may direct the immune response in an antigen-specific manner, potentially reversing the root cause of autoimmunity while limiting side effects. This review analyzes recent advances in ASIT applied to autoimmune diseases, emphasizing current combination therapies and future strategies.
Collapse
Affiliation(s)
- Laura Northrup
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Matthew A Christopher
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Bradley P Sullivan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
17
|
Badawi AH, Kiptoo P, Siahaan TJ. Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal. JOURNAL OF MULTIPLE SCLEROSIS 2015; 2:1000131. [PMID: 26140285 PMCID: PMC4484621 DOI: 10.4172/2376-0389.1000131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most of the current therapies used in the treatment of multiple sclerosis (MS) are either ineffective or have adverse side effects. As such, there is a need to develop better therapies that specifically target myelin-specific aberrant immune cells involved in CNS inflammation without compromising the general immune system. In the present study, we developed a new bifunctional peptide inhibitor (BPI) that is effective and specific. Our BPI (PLP-B7AP) is composed of an antigenic peptide from myelin proteolipid protein (PLP139-151) and a B7 antisense peptide (B7AP) derived from CD28 receptor. The main hypothesis is that PLP-B7AP simultaneously targets MHC-II and B7-costimulatory molecules on the surface of antigen presenting cells (APC) and possibly alters the differentiation of naïve T cells from inflammatory to regulatory phenotypes. Results showed that PLP-B7AP was very effective in suppressing experimental autoimmune encephalomyelitis (EAE) compared to various controls in a mouse model. PLP-B7AP was effective when administered both before and after disease induction. Secreted cytokines from splenocytes isolated during periods of high disease severity and remission indicated that PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and inhibited the production of pro-inflammatory cytokines. Further, analysis of cortical brain tissue sections showed that PLP-B7AP treated mice had significantly lower demyelination compared to the control group. All these taken together indicate that the T cell receptor (TCR) and the CD28 receptor can be targeted simultaneously to improve efficacy and specificity of potential MS therapeutics.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
- KU Medical Center, The University of Kansas, Kansas City, KS 66160, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
18
|
Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 2015; 6:755-74. [PMID: 25186605 DOI: 10.2217/imt.14.37] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically.
Collapse
Affiliation(s)
- Ameya S Gokhale
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | |
Collapse
|
19
|
Northrup L, Sestak JO, Sullivan BP, Thati S, Hartwell BL, Siahaan TJ, Vines CM, Berkland C. Co-delivery of autoantigen and b7 pathway modulators suppresses experimental autoimmune encephalomyelitis. AAPS JOURNAL 2014; 16:1204-13. [PMID: 25297853 DOI: 10.1208/s12248-014-9671-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022]
Abstract
Autoimmune diseases such as multiple sclerosis (MS) are characterized by the breakdown of immune tolerance to autoantigens. Targeting surface receptors on immune cells offers a unique strategy for reprogramming immune responses in autoimmune diseases. The B7 signaling pathway was targeted using adaptations of soluble antigen array (SAgA) technology achieved by covalently linking B7-binding peptides and disease causing autoantigen (proteolipid peptide (PLP)) to hyaluronic acid (HA). We hypothesized that co-delivery of a B7-binding peptide and autoantigen would suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Three independent B7-targeted SAgAs were created containing peptides to either inhibit or potentially stimulate the B7 signaling pathway. Surprisingly, all SAgAs were found to suppress EAE disease symptoms. Altered cytokine expression was observed in primary splenocytes isolated from SAgA-treated mice, indicating that SAgAs with different B7-binding peptides may suppress EAE through different immunological mechanisms. This antigen-specific immunotherapy using SAgAs can successfully suppress EAE through co-delivery of autoantigen and peptides targeting with the B7 signaling pathway.
Collapse
Affiliation(s)
- Laura Northrup
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, 320E, Lawrence, Kansas, 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cappellano G, Woldetsadik AD, Orilieri E, Shivakumar Y, Rizzi M, Carniato F, Gigliotti CL, Boggio E, Clemente N, Comi C, Dianzani C, Boldorini R, Chiocchetti A, Renò F, Dianzani U. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine 2014; 32:5681-9. [DOI: 10.1016/j.vaccine.2014.08.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/19/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022]
|
21
|
Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, Piccio L, Schmidt RE, Cross AH, Crosby SD, Klein RS. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest 2014; 124:2571-84. [PMID: 24812668 DOI: 10.1172/jci73408] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/20/2014] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS that is characterized by BBB dysfunction and has a much higher incidence in females. Compared with other strains of mice, EAE in the SJL mouse strain models multiple features of MS, including an enhanced sensitivity of female mice to disease; however, the molecular mechanisms that underlie the sex- and strain-dependent differences in disease susceptibility have not been described. We identified sphingosine-1-phosphate receptor 2 (S1PR2) as a sex- and strain-specific, disease-modifying molecule that regulates BBB permeability by destabilizing adherens junctions. S1PR2 expression was increased in disease-susceptible regions of the CNS of both female SJL EAE mice and female patients with MS compared with their male counterparts. Pharmacological blockade or lack of S1PR2 signaling decreased EAE disease severity as the result of enhanced endothelial barrier function. Enhanced S1PR2 signaling in an in vitro BBB model altered adherens junction formation via activation of Rho/ROCK, CDC42, and caveolin endocytosis-dependent pathways, resulting in loss of apicobasal polarity and relocation of abluminal CXCL12 to vessel lumina. Furthermore, S1PR2-dependent BBB disruption and CXCL12 relocation were observed in vivo. These results identify a link between S1PR2 signaling and BBB polarity and implicate S1PR2 in sex-specific patterns of disease during CNS autoimmunity.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Case-Control Studies
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Humans
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sex Characteristics
- Species Specificity
- Sphingosine-1-Phosphate Receptors
Collapse
|
22
|
Ali M, Amon M, Bender V, Bolte A, Separovic F, Benson H, Manolios N. Cyclization enhances function of linear anti-arthritic peptides. Clin Immunol 2013; 150:121-33. [PMID: 24207019 DOI: 10.1016/j.clim.2013.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/19/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022]
Abstract
This study describes the biophysical and immunomodulatory features of a cyclic peptide termed C1 which consists of alternating d-, l-amino acids and is capable of inhibiting IL-2 production in vitro and reducing the induction and extent of T-cell mediated inflammation in animal models. Solid-state nuclear magnetic resonance demonstrates that the peptide orders the lipid bilayer, suggesting a transmembrane orientation, and this is supported by surface plasmon resonance indicating strong binding affinity of C1 to model membranes. In vitro cell viability and proliferation assays show that C1 does not disrupt the integrity of cell surface membranes. Permeation studies of C1 and analogs across human epidermis cells show that the stability and skin permeability are enhanced by cyclization. Treatment with C1 in an asthma and in an arthritis animal model resulted in a suppressed immune response. Cyclization may be a useful means of enhancing biological linear peptide activity and improving delivery.
Collapse
Affiliation(s)
- Marina Ali
- Rheumatology Department, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Amon
- Rheumatology Department, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vera Bender
- Rheumatology Department, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Andrea Bolte
- Rheumatology Department, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne VIC 3010, Australia
| | - Heather Benson
- School of Pharmacy, CHIRI, Curtin University, Perth, WA 6102, Australia
| | - Nicholas Manolios
- Rheumatology Department, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
23
|
Abstract
Although there has been unequivocal progress in the development of treatments for multiple sclerosis over the last 20 years, currently licensed treatments have demonstrated convincing effects on disease course only with reference to relapse frequency. This review summarises the progress made, highlights the indications for, and limitations of, current disease-modifying therapies and discusses some interventions currently in development.
Collapse
|
24
|
Kiptoo P, Büyüktimkin B, Badawi AH, Stewart J, Ridwan R, Siahaan TJ. Controlling immune response and demyelination using highly potent bifunctional peptide inhibitors in the suppression of experimental autoimmune encephalomyelitis. Clin Exp Immunol 2013; 172:23-36. [PMID: 23480182 DOI: 10.1111/cei.12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated the efficacy of new bifunctional peptide inhibitors (BPIs) in suppressing experimental autoimmune encephalomyelitis (EAE) in an animal model. BPI [e.g. proteolipid protein-cyclo(1,8)-CPRGGSVC-NH2 (PLP-cIBR)] is a conjugate between the PLP139-151 peptide derived from proteolipid protein (PLP) and the cIBR7 peptide derived from domain-1 (D1) of intercellular adhesion molecule-1 (ICAM-1). PLP-cIBR is designed to bind to major histocompatibility complex (MHC)-II and leucocyte function-associated antigen-1 (LFA-1) simultaneously to inhibit the formation of the immunological synapse and alter the differentiation and activation of a subpopulation of T cells, thus inducing immunotolerance. The results show that PLP-cIBR is highly potent in ameliorating EAE, even at low concentrations and less frequent injections. Mice treated with PLP-cIBR had a higher secretion of cytokines related to regulatory and/or suppressor cells compared to phosphate-buffered saline (PBS)-treated mice. In contrast, T helper type 1 (Th1) cytokines were higher in mice treated with PBS compared to PLP-cIBR, suggesting that it suppressed Th1 proliferation. Also, we observed significantly less demyelination in PLP-cIBR-treated mice compared to the control, further indicating that PLP-cIBR promoted protection against demyelination.
Collapse
Affiliation(s)
- P Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | | | | | |
Collapse
|
25
|
Büyüktimkin B, Manikwar P, Kiptoo PK, Badawi AH, Stewart JM, Siahaan TJ. Vaccinelike and prophylactic treatments of EAE with novel I-domain antigen conjugates (IDAC): targeting multiple antigenic peptides to APC. Mol Pharm 2012; 10:297-306. [PMID: 23148513 DOI: 10.1021/mp300440x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH(2) peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering iv or sc injections of IDAC in a prophylactic or a vaccinelike dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccinelike manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-3-treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-3-treated mice. In conclusion, the I-domain can effectively deliver antigenic peptides in a vaccinelike or prophylactic manner for inducing immunotolerance in the EAE mouse model.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | | | | | | | | | | |
Collapse
|
26
|
|