1
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
2
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
4
|
Chen J, Sun S, Li H, Cai X, Wan C. IL-22 signaling promotes sorafenib resistance in hepatocellular carcinoma via STAT3/CD155 signaling axis. Front Immunol 2024; 15:1373321. [PMID: 38596684 PMCID: PMC11003268 DOI: 10.3389/fimmu.2024.1373321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.
Collapse
Affiliation(s)
- Junzhang Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
6
|
Mansur F, Arshad T, Liska V, Manzoor S. Interleukin-22 promotes the proliferation and migration of hepatocellular carcinoma cells via the phosphoinositide 3-kinase (PI3K/AKT) signaling pathway. Mol Biol Rep 2023:10.1007/s11033-023-08542-x. [PMID: 37264148 DOI: 10.1007/s11033-023-08542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Interleukin-22 (IL-22) is a pro-inflammatory cytokine released during the immune response in chronic liver injury. Although IL-22 mediates tissue regeneration, its uncontrolled production may generate a carcinogenic environment resulting in hepatocellular carcinoma (HCC). This study aims to identify the effect of IL-22 on anti-apoptotic and metastatic genes and the molecular pathways responsible for IL-22-mediated hepatic carcinogenesis. METHODS AND RESULTS Three cancerous liver lines, HepG2, SNU-387, Huh7, and one normal liver line, THLE2, were treated with IL-22. RT-qPCR analysis was conducted to study the role of IL-22 in altering the expression levels of anti-apoptotic genes, MCL-1 and BCL-2, and metastatic genes, MMP-7 and MMP-9. A significant increase in expression levels of these genes was observed after IL-22 treatment. Furthermore, to explore the major pathways involved in IL-22-mediated upregulation of anti-apoptotic and metastatic genes, cells were treated with inhibitors of JAK/STAT and PI3K/AKT pathways along with IL-22. Resultantly, a significant decrease in expression levels of target genes was observed, indicating the involvement of JAK/STAT and PI3K/AKT signaling cascades in IL-22-mediated oncogenesis. Finally, Cell Scratch assay was performed to check the effect of IL-22 and inhibitors of JAK/STAT and PI3K/AKT on the metastatic potential of liver cells. While migration was observed in Huh7 and THLE2 cells treated with IL-22, no migration was observed in cells treated with IL-22 along with JAK/STAT and PI3K/AKT inhibitors. Results indicate that IL-22 encourages metastasis in HCC cells via the JAK/STAT and PI3K/AKT pathways. CONCLUSION Results showed that IL-22 upregulates anti-apoptotic and metastatic genes in HCC through JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia.
| |
Collapse
|
7
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
8
|
Cui G, Wang Z, Liu H, Pang Z. Cytokine-mediated crosstalk between cancer stem cells and their inflammatory niche from the colorectal precancerous adenoma stage to the cancerous stage: Mechanisms and clinical implications. Front Immunol 2022; 13:1057181. [PMID: 36466926 PMCID: PMC9714270 DOI: 10.3389/fimmu.2022.1057181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 10/15/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are thought to arise from precancerous adenomas. Upon exposure to diverse microenvironmental factors, precancerous stem cells (pCSCs) undergo complex genetic/molecular changes and gradually progress to form cancer stem cells (CSCs). Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory dominated milieu that contains different cytokines that function as the key communicators between pCSCs/CSCs and their niche and have a decisive role in promoting CRC development, progression, and metastasis. In view of the importance and increasing data about cytokines in modulating pCSCs/CSC stemness properties and their significance in CRC, this review summarizes current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A, IL-22, IL-23, IL-33 and interferon (IFN)-γ, involving in the modulation of pCSC/CSC properties and features in precancerous and cancerous lesions and discusses the possible mechanisms of adenoma progression to CRCs and their therapeutic potential.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Faculty of Health Science, Nord University, Levanger, Norway
| | - Ziqi Wang
- College of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Zhang Z, Zhu Q, Wang S, Shi C. Epigallocatechin-3-gallate inhibits the formation of neutrophil extracellular traps and suppresses the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 pathway. Mol Cell Biochem 2022; 478:887-898. [PMID: 36112238 DOI: 10.1007/s11010-022-04550-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1β, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1β and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.
Collapse
Affiliation(s)
- Zhuoxian Zhang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiuli Zhu
- Department of Genetics, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Siya Wang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
10
|
Guo XW, Li SQ, Lei RE, Ding Z, Hu BL, Lin R. Tumor-infiltrating immune cells based TMEscore and related gene signature is associated with the survival of CRC patients and response to fluoropyrimidine-based chemotherapy. Front Oncol 2022; 12:953321. [PMID: 36110947 PMCID: PMC9468757 DOI: 10.3389/fonc.2022.953321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor-infiltrating immune cells (TIICs) are associated with chemotherapy response. This study aimed to explore the prognostic value of a TIIC-related tumor microenvironment score (TMEscore) in patients with colorectal cancer (CRC) who underwent chemotherapy and construct a TMEscore-related gene signature to determine its predictive value.MethodsGene profiles of patients who underwent fluoropyrimidine-based chemotherapy were collected, and their TIIC fractions were calculated and clustered. Differentially expressed genes (DEGs) between clusters were used to calculate the TMEscore. The association between the TMEscore, chemotherapy response, and survival rate was analyzed. Machine learning methods were used to identify key TMEscore-related genes, and a gene signature was constructed to verify the predictive value.ResultsTwo clusters based on the TIIC fraction were identified, and the TMEscore was calculated based on the DEGs of the two clusters. The TMEscore was higher in patients who responded to chemotherapy than in those who did not, and was associated with the survival rate of patients who underwent chemotherapy. Three machine learning methods, support vector machine (SVM), decision tree (DT), and Extreme Gradient Boosting (XGBoost), identified three TMEscore-related genes (ADH1C, SLC26A2, and NANS) associated with the response to chemotherapy. A TMEscore-related gene signature was constructed, and three external cohorts validated that the gene signature could predict the response to chemotherapy. Five datasets and clinical samples showed that the expression of the three TMEscore-related genes was increased in tumor tissues compared to those in control tissues.ConclusionsThe TIIC-based TMEscore was associated with the survival of CRC patients who underwent fluoropyrimidine-based chemotherapy, and predicted the response to chemotherapy. The TMEscore-related gene signature had a better predictive value for response to chemotherapy than for survival.
Collapse
Affiliation(s)
- Xian-Wen Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong-E Lei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ding
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bang-li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Bang-li Hu, ; Rong Lin,
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bang-li Hu, ; Rong Lin,
| |
Collapse
|
11
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
12
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Yoshimoto S, Mitsuyama E, Yoshida K, Odamaki T, Xiao JZ. Enriched metabolites that potentially promote age-associated diseases in subjects with an elderly-type gut microbiota. Gut Microbes 2022; 13:1-11. [PMID: 33430687 PMCID: PMC7808425 DOI: 10.1080/19490976.2020.1865705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously investigated the gut microbiota of 453 healthy Japanese subjects aged 0 to 104 years and found that the composition of the gut microbiota could be classified into some age-related clusters. In this study, we compared fecal metabolites between age-matched and age-mismatched elderly subjects to examine the roles of the gut microbiota in the health of the elderly. Fecal metabolites in 16 elderly subjects who fell into an age-matched cluster (elderly-type gut microbiota group, E-GM) and another 16 elderly subjects who fell into an age-mismatched cluster (adult-type gut microbiota group, A-GM) were measured by CE-TOF-MS. A total of eight metabolites were significantly different between the groups: cholic acid and taurocholic acid were enriched in the A-GM group, whereas choline, trimethylamine (TMA), N8-acetylspermidine, propionic acid, 2-hydroxy-4-methylvaleric acid, and 5-methylcytosine were enriched in the E-GM group. Some metabolites (choline, TMA, N8-acetylspermidine) elevated in the E-GM group were metabolites or precursors reported as risk factors for age-associated diseases such as arteriosclerosis and colorectal cancer. The abundance of some species belongs to Proteobacteria, which were known as TMA-producing bacteria, was increased in the E-GM group and correlated with fecal TMA levels. In vitro assays showed that these elderly-type fecal metabolites suppressed the expression of genes related to tight junctions in normal colonic epithelial cells and induced the expression of inflammatory cytokines in colon cancer cells. These findings suggest that metabolites produced by the aged gut microbiota could contribute to intestinal and systemic homeostasis and could be targeted for preventing aging-associated diseases.
Collapse
Affiliation(s)
- Shin Yoshimoto
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan,CONTACT Shin Yoshimoto Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Eri Mitsuyama
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| |
Collapse
|
14
|
Lücke J, Shiri AM, Zhang T, Kempski J, Giannou AD, Huber S. Rationalizing heptadecaphobia: T H 17 cells and associated cytokines in cancer and metastasis. FEBS J 2021; 288:6942-6971. [PMID: 33448148 DOI: 10.1111/febs.15711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system´s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH 17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH 17- and non-TH 17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
15
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 Signaling Pathway in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9081016. [PMID: 34440220 PMCID: PMC8392110 DOI: 10.3390/biomedicines9081016] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor that has been firmly associated with colorectal cancer (CRC) initiation and development. STAT3 mediates key inflammatory mechanisms in colitis-associated cancer, becomes excessively activated in CRC, and enhances cancer cell proliferation, tumor growth, angiogenesis, invasion, and migration. STAT3 hyperactivation in malignant cells, surrounding immune cells and cancer-associated fibroblasts, mediates inhibition of the innate and adaptive immunity of the tumor microenvironment, and, therefore, tumor evasion from the immune system. These features highlight STAT3 as a promising therapeutic target; however, the mechanisms underlying these features have not been fully elucidated yet and STAT3 inhibitors have not reached the clinic in everyday practice. In the present article, we review the STAT3 signaling network in CRC and highlight the current notion for the design of STAT3-focused treatment approaches. We also discuss recent breakthroughs in combination immunotherapy regimens containing STAT3 inhibitors, therefore providing a new perception for the clinical application of STAT3 in CRC.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
- Correspondence: ; Tel.: +30-210-746-2508; Fax: +30-210-746-2703
| |
Collapse
|
16
|
Yang H, Chen Y, Jiang Y, Wang D, Yan J, Zhou Z. TP53 mutation influences the efficacy of treatment of colorectal cancer cell lines with a combination of sirtuin inhibitors and chemotherapeutic agents. Exp Ther Med 2020; 20:1415-1422. [PMID: 32742376 PMCID: PMC7388297 DOI: 10.3892/etm.2020.8818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance of colorectal cancer (CRC) leads to tumor recurrence and metastasis and new strategies are urgently needed to improve the outcomes of conventional chemotherapy. Sirtuin (SIRT) inhibitors prevent tumor cell growth by increasing the levels of acetylated histones and non-histones, as well as disrupting survival-related pathways. The aim of the present study was to determine the effect of SIRT inhibitors on CRC chemotherapy. The CompuSyn software program was used to evaluate the synergistic or antagonistic effects of various drugs, and the status of the protein deacetylation regulatory genes in microarray datasets were analyzed using bioinformatics. In HCT116 cells expressing wild-type (wt) TP53, SIRT inhibitors were found to act antagonistically with multiple chemotherapeutic agents (cisplatin, 5-fluorouracil, oxaliplatin, gefitinib, LY294002 and metformin), and decreased the anti-tumor effects of these agents. By contrast, SIRT inhibitors sensitized TP53-mutant (mut) SW620 cells to various chemotherapeutic drugs. Bioinformatics analysis indicated that SIRT1 and protein deacetylation related genes were highly expressed in TP53wt CRC cells when compared to TP53mut cells. Therefore, it was hypothesized that the likely mechanism underlying the antagonistic effect of SIRT inhibitors on TP53wt CRC cells was a reduction in the level of stable p53 protein. The present results indicated that divergent TP53 status may translate to a different chemosensitivity profile, and suggested that a combination therapy of SIRT inhibitors and first-line chemotherapeutic drugs may be beneficial for the treatment of patients with TP53mut CRC.
Collapse
Affiliation(s)
- Hao Yang
- Department of Oncology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Ya Chen
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yuan Jiang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Dongliang Wang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
17
|
Najdaghi S, Razi S, Rezaei N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine 2020; 135:155205. [PMID: 32721849 DOI: 10.1016/j.cyto.2020.155205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal Cancer (CRC), a common malignancy, is developing globally among people. Mutagenic insults activate peripheral nucleated cells to secrete chemokines in order to cause an inflammatory state. Despite the presence of multi-retrieving factors, elevated production of minor cytokines may speed-up the sever stages of the baseline inflammation targeting normal compensatory mechanism. IL-8 is a pro-inflammatory cytokine that is believed to be up-regulated in CRC to proceed primary condition into tumor behavior via induction of proliferation, angiogenesis and metastasis. Here, we assess the role of IL-8 in every step of CRC from signaling pathway and formation to invasion and discuss around new perspective therapy that targets IL-8 to manage CRC worldwide incidence and survival rate, more precisely.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
18
|
Zeng H, Liu Z, Wang Z, Zhou Q, Qi Y, Chen Y, Chen L, Zhang P, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Liu L, Zhu Y, Dai B, Guo J, Xu L, Zhang W, Xu J. Intratumoral IL22-producing cells define immunoevasive subtype muscle-invasive bladder cancer with poor prognosis and superior nivolumab responses. Int J Cancer 2020; 146:542-552. [PMID: 31584197 DOI: 10.1002/ijc.32715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023]
Abstract
Our previous researches have identified immunoevasive subtype muscle-invasive bladder cancer (MIBC) characterized with immune cells infiltration patterns. Our study explored the clinical significance, immunoregulatory role and therapeutic value of intratumoral IL22-producing cells in MIBC. Two hundred and fifty-nine formalin-fixed paraffin-embedded MIBC samples and 83 freshly resected MIBC tissues and 391 TCGA MIBC samples were retrospectively evaluated. Immunohistochemistry and flow cytometry were applied to identify immune cell infiltration and functional status. In vitro intervention studies were to test the therapeutic and predictive potential of IL22+ cells. Our data revealed patients with high IL22+ cells infiltration suffered poor overall survival and recurrence-free survival in both training and validation cohorts. Only pT2 patients of combined cohort with low IL22+ cells infiltration gained survival benefits from adjuvant chemotherapy (ACT) significantly. Besides, immune contexture featured with increased pro-tumor cells and immunosuppressive cytokines was identified in patients with high IL22+ cells density. The expression pattern of exhausted and effector markers in CD8+ T cells from high IL22+ cells subgroup indicated their dysfunctional status. Importantly, nivolumab showed tumor-killing efficacy in tumors with high IL22+ cells infiltration, and immunosuppressive contexture with CD8+ T cells exhaustion was abrogated in tumors treated with anti-IL22 antibody. In summary, IL22+ cells infiltration determined immunosuppressive contexture with CD8+ T cell dysfunction. Tumor-infiltrating IL22+ cells could be used as an independent marker to predict prognosis and ACT responses. IL22+ cells infiltration possessed the potential to be a favorable predictor for nivolumab application and IL22 blockade could be a novel therapeutic strategy in MIBC.
Collapse
Affiliation(s)
- Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yangyang Qi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peipei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Yuan K, Ye J, Liu Z, Ren Y, He W, Xu J, He Y, Yuan Y. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:9. [PMID: 31928530 PMCID: PMC6956509 DOI: 10.1186/s13046-019-1514-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022]
Abstract
Background Localized C3 deposition is a well-known factor of inflammation. However, its role in oncoprogression of gastric cancer (GC) remains obscured. This study aims to explore the prognostic value of C3 deposition and to elucidate the mechanism of C3-related oncoprogression for GC. Methods From August to December 2013, 106 GC patients were prospectively included. The regional expression of C3 and other effectors in gastric tissues were detected by WB, IHC, qRT-PCR and other tests. The correlation of localized C3 deposition and oncologic outcomes was determined by 5-year survival significance. Human GC and normal epithelial cell lines were employed to detect a relationship between C3 and STAT3 signaling pathway in vitro experiments. Results C3 and C3a expression were markedly enhanced in GC tissues at both mRNA and protein levels compared with those in paired nontumorous tissues. According to IHC C3 score, 65 (61.3%) and 41 (38.7%) patients had high and low C3 deposition, respectively. C3 deposition was negatively correlated with plasma levels of C3 and C3a (both P < 0.001) and positively correlated with pathological T and TNM stages (both P < 0.001). High C3 deposition was identified as an independent prognostic factor of poor 5-year overall survival (P = 0.045). In vitro C3 administration remarkably enhanced p-JAK2/p-STAT3 expression in GC cell lines but caused a reduction of such activation when pre-incubated with a C3 blocker. Importantly, C3 failed to activate such signaling in cells pre-treated with a JAK2 inhibitor. Conclusions Localized C3 deposition in the tumor microenvironment is a relevant immune signature for predicting prognosis of GC. It may aberrantly activate JAK2/STAT3 pathway allowing oncoprogression. Trial registration ClinicalTrials.gov, NCT02425930, Registered 1st August 2013.
Collapse
Affiliation(s)
- Kaitao Yuan
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinning Ye
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weiling He
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Jianbo Xu
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yulong He
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yujie Yuan
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
Tunicamycin-induced endoplasmic reticulum stress up-regulates tumour-promoting cytokines in oral squamous cell carcinoma. Cytokine 2019; 120:130-143. [DOI: 10.1016/j.cyto.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
|
21
|
Fung KY, Nguyen PM, Putoczki T. The expanding role of innate lymphoid cells and their T-cell counterparts in gastrointestinal cancers. Mol Immunol 2019; 110:48-56. [DOI: 10.1016/j.molimm.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023]
|
22
|
Poggi A, Benelli R, Venè R, Costa D, Ferrari N, Tosetti F, Zocchi MR. Human Gut-Associated Natural Killer Cells in Health and Disease. Front Immunol 2019; 10:961. [PMID: 31130953 PMCID: PMC6509241 DOI: 10.3389/fimmu.2019.00961] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
It is well established that natural killer (NK) cells are involved in both innate and adaptive immunity. Indeed, they can recognize molecules induced at the cell surface by stress signals and virus infections. The functions of NK cells in the gut are much more complex. Gut NK cells are not precisely organized in lymphoid aggregates but rather scattered in the epithelium or in the stroma, where they come in contact with a multitude of antigens derived from commensal or pathogenic microorganisms in addition to components of microbiota. Furthermore, NK cells in the bowel interact with several cell types, including epithelial cells, fibroblasts, macrophages, dendritic cells, and T lymphocytes, and contribute to the maintenance of immune homeostasis and development of efficient immune responses. NK cells have a key role in the response to intestinal bacterial infections, primarily through production of IFNγ, which can stimulate recruitment of additional NK cells from peripheral blood leading to amplification of the anti-bacterial immune response. Additionally, NK cells can have a role in the pathogenesis of gut autoimmune inflammatory bowel diseases (IBDs), such as Crohn's Disease and Ulcerative Colitis. These diseases are considered relevant to the generation of gastrointestinal malignancies. Indeed, the role of gut-associated NK cells in the immune response to bowel cancers is known. Thus, in the gut immune system, NK cells play a dual role, participating in both physiological and pathogenic processes. In this review, we will analyze the known functions of NK cells in the gut mucosa both in health and disease, focusing on the cross-talk among bowel microenvironment, epithelial barrier integrity, microbiota, and NK cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Benelli
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Yi H, Li S, Li H, Wang P, Zheng H, Cheng X. Gefitinib induces non-small cell lung cancer H1650 cell apoptosis through downregulating tumor necrosis factor-related apoptosis-inducing ligand expression levels. Oncol Lett 2018; 16:4768-4772. [PMID: 30214609 DOI: 10.3892/ol.2018.9162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) presents severe threats to the lives of patients. Gefitinib is one of the first-line drugs available for the treatment of NSCLC in the clinical setting. The present study investigated the effects of gefitinib on NSCLC H1650 cell viability and apoptosis via MTT assays and flow cytometry. Western blot analysis was employed to detect tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression levels in H1650 cells. In the present study, H1650 cells were treated with TRAIL siRNA or an empty plasmid vector control, followed by gefitinib treatment to investigate apoptosis. Gefitinib treatment markedly inhibited H1650 cell viability, induced apoptosis and reduced TRAIL expression levels. TRAIL interference enhanced H1650 cell apoptosis induced by gefitinib. TRAIL overexpression suppressed gefitinib-induced H1650 cell apoptosis. In addition, gefitinib induced NSCLC H1650 cell apoptosis by downregulating TRAIL expression levels.
Collapse
Affiliation(s)
- Hanjie Yi
- Department of Radiation Oncology, Yinzhou Affiliated Hospital to Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Shanfeng Li
- Department of Central Laboratory, Yinzhou Affiliated Hospital to Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Hui Li
- Department of Radiation Oncology, Yinzhou Affiliated Hospital to Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Peng Wang
- Department of Radiation Oncology, Yinzhou Affiliated Hospital to Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Hongyu Zheng
- Department of Radiation Oncology, Yinzhou Affiliated Hospital to Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaochun Cheng
- Department of Radiation Oncology, Yinzhou Affiliated Hospital to Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
24
|
Wu J, Gu J, Zhou S, Lu H, Lu Y, Lu L, Wang X. Anti-IL-22 Antibody Attenuates Acute Graft-versus-Host Disease via Increasing Foxp3 + T Cell through Modulation of CD11b + Cell Function. J Immunol Res 2018; 2018:1605341. [PMID: 30159338 PMCID: PMC6109487 DOI: 10.1155/2018/1605341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Transfer of splenocytes isolated from B6 mice into normal B6D2F1 mice induces acute graft-versus-host disease (aGVHD), resulting in the expansion of donor cytotoxic T lymphocytes that eliminate recipient B cells. The cytokine IL-22, secreted by Th1 cells, Th17 cells, and innate immune cells, is structurally related to IL-10. To investigate the association between IL-22 and aGVHD, an anti-mouse IL-22 antibody (IL-22Ab) was used to ablate IL-22 activity in a mouse aGVHD model. Administration of IL-22Ab significantly reduced the progression of aGVHD in B6D2F1 recipients of B6 grafts. IL-22Ab treatment also decreased the percentage of interferon-γ+ and tumor necrosis factor-α+ T cells but increased the number of forkhead box p3+ regulatory T cells (Tregs). In the presence of Tregs and donor CD11b+ cells, IL-22Ab protected against aGVHD. In vitro Treg induction was more efficient when CD4+CD25- T cells differentiated in the presence of CD11b+ cells obtained from IL-22Ab-treated GVHD mice, compared with cocultured untreated control cells. Finally, IL-22Ab modulated the expression of cytokines and costimulatory molecules in CD11b+ cells in aGVHD mice. We therefore conclude that IL-22Ab administration represents a viable approach for treating aGVHD.
Collapse
Affiliation(s)
- Jianbo Wu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
- Department of General Surgery, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Jian Gu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
| | - Shun Zhou
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
| | - Hao Lu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
| | - Yunjie Lu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
| | - Ling Lu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Hernandez P, Gronke K, Diefenbach A. A catch-22: Interleukin-22 and cancer. Eur J Immunol 2018; 48:15-31. [PMID: 29178520 DOI: 10.1002/eji.201747183] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022]
Abstract
Barrier surfaces of multicellular organisms are in constant contact with the environment and infractions to the integrity of epithelial surfaces is likely a frequent event. Interestingly, components of the immune system, that can be activated by environmental compounds such as the microbiota or nutrients, are interspersed among epithelial cells or directly underlie the epithelium. It is now appreciated that immune cells continuously receive and integrate signals from the environment. Curiously, such continuous reception of stimulation does not normally trigger an inflammatory response but mediators produced by immune cells in response to such signals seem to rather promote barrier integrity and repair. The molecular mediators involved in this process are poorly understood. In recent years, the cytokine interleukin-22, produced mainly by group 3 innate lymphoid cells (ILCs), has been studied as a paradigm for how immune cells can control various aspects of epithelial cell function because expression of its receptor is restricted to non-hematopoietic cells. We will summarize here the diverse roles of IL-22 for the malignant transformation of epithelial cells, for tumor growth, wound healing and tissue repair. Furthermore, we will discuss IL-22 as a potential therapeutic target.
Collapse
Affiliation(s)
- Pedro Hernandez
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Macrophages et Développement de l'Immunité, Institut Pasteur, Paris Cedex 15, France
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
| | - Konrad Gronke
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
- Institute of Medical Microbiology and Hygiene and Research Centre Immunology, University of Mainz Medical Centre, Mainz, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
26
|
Li HL, Lu L, Wang XS, Qin LY, Wang P, Qiu SP, Wu H, Huang F, Zhang BB, Shi HL, Wu XJ. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Front Cell Infect Microbiol 2017; 7:455. [PMID: 29124041 PMCID: PMC5662589 DOI: 10.3389/fcimb.2017.00455] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Lu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Shuang Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Yue Qin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Ping Qiu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Cui G, Yuan A, Zhu L, Florholmen J, Goll R. Increased expression of interleukin-21 along colorectal adenoma-carcinoma sequence and its predicating significance in patients with sporadic colorectal cancer. Clin Immunol 2017; 183:266-272. [DOI: 10.1016/j.clim.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/07/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
28
|
Lin L, Xu W, Zhang G, Ren P, Zhao J, Yan Q. Association of interleukin-22 polymorphisms with the colon cancer: A case-control study. Immunol Lett 2017; 188:59-63. [PMID: 28624523 DOI: 10.1016/j.imlet.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Interleukin-22 (IL-22), an IL-10 family cytokine produced by T cells and innate lymphoid cells, is implicated in inflammation and tumorigenesis. In this study, we aimed to investigate the association of IL-22 polymorphisms with the colon cancer in a Chinese population. MATERIALS AND METHODS Five hundred forty colon cancer cases and 540 healthy controls were recruited in the case-control study. The fluorogenic 5' exonuclease assays were used for genotype analysis of three common polymorphisms (-429C/T, +1046T/A and +1995A/C) of the IL-22 gene. RESULTS Colon cancer cases had a significantly higher frequency of IL-22-429 TT genotype [odds ratio (OR)=1.69, 95% confidence interval (CI)=1.24, 2.30; P=0.001] and -429T allele (OR=1.35, 95% CI=1.14, 1.60; P=0.001) than healthy controls. The findings are still emphatic by the Bonferroni correction (P<0.017). When stratifying by the differentiation of colon cancer, we found that colon cancer cases with poor differentiation had a significantly higher frequency of IL-22-429 TT genotype (OR=1.45, 95% CI=1.02, 2.07; P=0.04). When stratifying by the tumor location, tumor size, growth pattern and TNM stage of colon cancer, we found no statistical association. The IL-22 +1046T/A and IL-22 +1995A/C gene polymorphisms were not associated with colon cancer. CONCLUSION Our findings suggested that the IL-22 -429C/T gene polymorphisms might be associated with colon cancer.
Collapse
Affiliation(s)
- Lin Lin
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Weili Xu
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guojian Zhang
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Pengtao Ren
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Zhao
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Qinghui Yan
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
29
|
Brockmann L, Giannou AD, Gagliani N, Huber S. Regulation of T H17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. Int J Mol Sci 2017; 18:E1033. [PMID: 28492497 PMCID: PMC5454945 DOI: 10.3390/ijms18051033] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Wound healing is a crucial process which protects our body against permanent damage and invasive infectious agents. Upon tissue damage, inflammation is an early event which is orchestrated by a multitude of innate and adaptive immune cell subsets including TH17 cells. TH17 cells and TH17 cell associated cytokines can impact wound healing positively by clearing pathogens and modulating mucosal surfaces and epithelial cells. Injury of the gut mucosa can cause fast expansion of TH17 cells and their induction from naïve T cells through Interleukin (IL)-6, TGF-β, and IL-1β signaling. TH17 cells produce various cytokines, such as tumor necrosis factor (TNF)-α, IL-17, and IL-22, which can promote cell survival and proliferation and thus tissue regeneration in several organs including the skin, the intestine, and the liver. However, TH17 cells are also potentially pathogenic if not tightly controlled. Failure of these control mechanisms can result in chronic inflammatory conditions, such as Inflammatory Bowel Disease (IBD), and can ultimately promote carcinogenesis. Therefore, there are several mechanisms which control TH17 cells. One control mechanism is the regulation of TH17 cells via regulatory T cells and IL-10. This mechanism is especially important in the intestine to terminate immune responses and maintain homeostasis. Furthermore, TH17 cells have the potential to convert from a pro-inflammatory phenotype to an anti-inflammatory phenotype by changing their cytokine profile and acquiring IL-10 production, thereby limiting their own pathological potential. Finally, IL-22, a signature cytokine of TH17 cells, can be controlled by an endogenous soluble inhibitory receptor, Interleukin 22 binding protein (IL-22BP). During tissue injury, the production of IL-22 by TH17 cells is upregulated in order to promote tissue regeneration. To limit the regenerative program, which could promote carcinogenesis, IL-22BP is upregulated during the later phase of regeneration in order to terminate the effects of IL-22. This delicate balance secures the beneficial effects of IL-22 and prevents its potential pathogenicity. An important future goal is to understand the precise mechanisms underlying the regulation of TH17 cells during inflammation, wound healing, and carcinogenesis in order to design targeted therapies for a variety of diseases including infections, cancer, and immune mediated inflammatory disease.
Collapse
Affiliation(s)
- Leonie Brockmann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Anastasios D Giannou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of Medicine Solna (MedS), Karolinska Institute, 17177 Stochkolm, Sweeden.
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
30
|
Liu Y, Xiang F, Huang Y, Shi L, Hu C, Yang Y, Wang D, He N, Tao K, Wu K, Wang G. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells. Oncotarget 2017; 8:25372-25383. [PMID: 28445985 PMCID: PMC5421937 DOI: 10.18632/oncotarget.15913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Interleukin-22 has been explored extensively in human cancer, but its functions and underlying mechanisms are incompletely understood. Here, we show that aberrant interleukin-22 expression facilitates aerobic glycolysis in colon cancer cells. Elevated interleukin-22 mRNA expression was observed and positively correlated with hexokinase-2 in colon cancer tissues. In vitro, interleukin-22 enhanced glucose consumption and lactate production via targeting hexokinase-2 in colon cancer cells. Moreover, the transcriptional factor c-Myc and signal transducer and activator of transcription 3 were involved in interleukin-22-induced up-regulation of hexokinase-2. We further demonstrated that hexokinase-2 partly accounted for interleukin-22-mediated cellular proliferation in DLD-1 cells. In vivo, our data demonstrated that interleukin-22 significantly promoted tumor growth along with elevated expression of c-Myc and hexokinase-2 in mice. In summary, our findings provide a new perspective on the pro-inflammatory cytokine interleukin-22 in promoting aerobic glycolysis associated with tumor progression in human colon cancer cells.
Collapse
Affiliation(s)
- Yulin Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongming Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chaojie Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
31
|
Wu T, Chen W, Zhong Y, Hou X, Fang S, Liu CY, Wang G, Yu T, Huang YY, Ouyang X, Li HQX, Cui L, Yang Y. Nuclear Export of Ubiquitinated Proteins Determines the Sensitivity of Colorectal Cancer to Proteasome Inhibitor. Mol Cancer Ther 2016; 16:717-728. [PMID: 27903750 DOI: 10.1158/1535-7163.mct-16-0553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022]
Abstract
Although proteasome inhibitors such as bortezomib had significant therapeutic effects in multiple myeloma and mantel cell lymphoma, they exhibited minimal clinical activity as a monotherapy for solid tumors, including colorectal cancer. We found in this study that proteasome inhibition induced a remarkable nuclear exportation of ubiquitinated proteins. Inhibition of CRM1, the nuclear export carrier protein, hampered protein export and synergistically enhanced the cytotoxic action of bortezomib on colon cancer cells containing wild-type p53, which underwent G2-M cell-cycle block and apoptosis. Further analysis indicated that tumor suppressor p53 was one of the proteins exported from nuclei upon proteasome inhibition, and in the presence of CRM1 inhibitor KPT330, nuclear p53, and expression of its target genes were increased markedly. Moreover, knockdown of p53 significantly reduced the synergistic cytotoxic action of bortezomib and KPT330 on p53+/+ HCT116 cells. In mice, KPT330 markedly augmented the antitumor action of bortezomib against HCT116 xenografts as well as patient-derived xenografts that harbored functional p53. These results indicate that nuclear p53 is a major mediator in the synergistic antitumor effect of bortezomib and KPT330, and provides a rationale for the use of proteasome inhibitor together with nuclear export blocker in the treatment of colorectal cancer. It is conceivable that targeting nuclear exportation may serve as a novel strategy to overcome resistance and raise chemotherapeutic efficacy, especially for the drugs that activate the p53 system. Mol Cancer Ther; 16(4); 717-28. ©2016 AACR.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Wei Chen
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yongwang Zhong
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaodan Hou
- Suzhou Institute of Systems Medicine, Center for Systems Medicine Research, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P.R. China
| | - Shengyun Fang
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ying Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Guanghui Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Tong Yu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | - Long Cui
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China.
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine Research, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P.R. China.
| |
Collapse
|
32
|
Luo J, Feng XX, Luo C, Wang Y, Li D, Shu Y, Wang SS, Qin J, Li YC, Zou JM, Tian DA, Zhang GM, Feng ZH. 14,15-EET induces the infiltration and tumor-promoting function of neutrophils to trigger the growth of minimal dormant metastases. Oncotarget 2016; 7:43324-43336. [PMID: 27270316 PMCID: PMC5190026 DOI: 10.18632/oncotarget.9709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022] Open
Abstract
Infiltrating neutrophils are known to promote in the development of tumor. However, it is unclear whether and how neutrophils are involved in triggering the growth of dormant metastases. Here we show that 14,15-epoxyeicosatrienoic acid (14,15-EET) can trigger the growth of dormant micrometastases by inducing neutrophilic infiltration and converting neutrophil function. 14,15-EET triggered neutrophil infiltration in metastatic lesions by activating STAT3 and JNK pathways to induce the expression of human IL-8 and murine CXCL15 in corresponding tumor cells. The continuous expression of hIL-8/mCXCL15 was maintained by the sustained and enhanced activation of JNK pathway. 14,15-EET up-regulated miR-155 expression by activating STAT3 and JNK pathways. miR-155 in turn down-regulated the expression of SHIP1 and DET1, thus augmenting the activation of JNK and c-Jun. Moreover, the function of neutrophils was converted from tumor-suppressing to tumor-promoting by 14,15-EET in vivo. By inducing the production of G-CSF/IL-6 in vivo, 14,15-EET induced the enhancement of STAT3 activation in neutrophils to increase MMP-9 expression and decrease TRAIL expression. Neutrophil-derived MMP-9 was required for 14,15-EET to induce angiogenesis during the growth of dormant micrometastases. Depleting neutrophils or inhibiting hIL-8/mCXCL15 up-regulation resulted in the failure of 14,15-EET to promote the development of micrometastases. These findings reveal a mechanism through which the infiltration and tumor-promoting function of neutrophils could be induced to trigger the growth of dormant metastases, which might be a driving force for the tumor recurrence based on dormant metastases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Down-Regulation
- Granulocyte Colony-Stimulating Factor/metabolism
- Hep G2 Cells
- Humans
- Interleukin-6/metabolism
- Interleukin-8/genetics
- Interleukin-8/metabolism
- MCF-7 Cells
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- MicroRNAs/metabolism
- Neoplasm Invasiveness/pathology
- Neoplasm Micrometastasis/pathology
- Neoplasm Recurrence, Local/pathology
- Neovascularization, Pathologic/pathology
- Neutrophil Infiltration/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- RNA Interference
- RNA, Small Interfering/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jing Luo
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Xin-Xia Feng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hongshan, Wuhan 430030, People's Republic of China
| | - Chao Luo
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Yu Shu
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Shan-Shan Wang
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Jian Qin
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Yong-Chao Li
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Jiu-Ming Zou
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - De-An Tian
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hongshan, Wuhan 430030, People's Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Wuhan University, School of Basic Medicine, Hubei, Wuhan 430030, People's Republic of China
| |
Collapse
|
33
|
Gimeno Brias S, Stack G, Stacey MA, Redwood AJ, Humphreys IR. The Role of IL-22 in Viral Infections: Paradigms and Paradoxes. Front Immunol 2016; 7:211. [PMID: 27303405 PMCID: PMC4885595 DOI: 10.3389/fimmu.2016.00211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor expressed by non-hematopoietic cells. A growing body of evidence points toward a role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 plays in antiviral immune responses has been examined in a number of infection models. Herein, we assess our current understanding of how IL-22 determines the outcome of viral infections and define common mechanisms that are evident from, sometimes paradoxical, findings derived from these studies. Finally, we discuss the potential therapeutic utility of IL-22 manipulation in the treatment and prevention of viral infections and associated pathologies.
Collapse
Affiliation(s)
- Silvia Gimeno Brias
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Gabrielle Stack
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Maria A Stacey
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Alec J Redwood
- The Institute for Immunology and Infectious Diseases, Murdoch University , Murdoch, WA , Australia
| | - Ian R Humphreys
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Mager LF, Wasmer MH, Rau TT, Krebs P. Cytokine-Induced Modulation of Colorectal Cancer. Front Oncol 2016; 6:96. [PMID: 27148488 DOI: 10.3389/fonc.2016.00096] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
The emergence of novel immunomodulatory cancer therapies over the last decade, above all immune checkpoint blockade, has significantly advanced tumor treatment. For colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration in tumors has greatly improved disease prognostic evaluation and guidance to more specific therapy. These findings underline the relevance of tumor immunology in the future handling and therapeutic approach of malignant disease. Inflammation can either promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, critically determine the pro- or anti-tumorigenic signals within the tumor environment. Here, we review the current knowledge on the cytokines known to be critically involved in CRC development and illustrate their mechanisms of action. We also highlight similarities and differences between CRC patients and murine models of CRC and point out cytokines with an ambivalent role for intestinal cancer. We also identify some of the future challenges in the field that should be addressed for the development of more effective immunomodulatory therapies.
Collapse
Affiliation(s)
- Lukas F Mager
- Institute of Pathology, University of Bern , Bern , Switzerland
| | - Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tilman T Rau
- Institute of Pathology, University of Bern , Bern , Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
35
|
CXCR1 knockdown improves the sensitivity of osteosarcoma to cisplatin. Cancer Lett 2015; 369:405-15. [PMID: 26391645 DOI: 10.1016/j.canlet.2015.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/12/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
Chemotherapy resistance is a major cause of poor prognoses for osteosarcoma patients. This study aimed to determine whether CXCR1 gene knockdown improves the sensitivity of osteosarcomas to chemotherapy. Both CXCR1 expression and cisplatin sensitivity were investigated and compared in two osteosarcoma cell lines. Sensitivity to the chemotherapy drug cisplatin and apoptosis were investigated with or without stimulation via Interleukin-8 (IL-8), which is a ligand of CXCR1. Furthermore, activation of the Akt signaling pathway was determined. Finally, luciferase-labeled CXCR1-knockdown Saos2-lung cells were injected into the tibiae of nude mice that were treated with cisplatin thereafter. We found that CXCR1 expression and cisplatin sensitivity were negatively correlated in osteosarcoma cell lines. IL-8-induced reduction in sensitivity could be blocked by silencing CXCR1, and CXCR1 knockdown suppressed the Akt signaling pathway. Moreover, CXCR1-knockdown tumors were significantly smaller than control tumors, which was consistent with the luciferase intensity results. The expression levels of IL-8, CXCR1 and p-Akt were suppressed in CXCR1-knockdown cells. Taken together, these data indicate that CXCR1 gene knockdown in osteosarcoma cells improved the sensitivity to chemotherapy and that this process might be regulated in part by the IL-8/CXCR1/Akt signaling pathway.
Collapse
|
36
|
West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 2015; 15:615-29. [PMID: 26358393 DOI: 10.1038/nri3896] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokine networks are crucial aspects of tumour immunology, particularly for colorectal cancer (CRC), in which inflammation and antitumour immunity are key determinants of disease progression. In this Review, we highlight new insights into the functions of well-known cytokines in CRC, describe recently discovered roles for a growing number of novel players, and emphasize the complexity and therapeutic implications of the cytokine milieu. We also discuss how cancer mutations and epigenetic adaptations influence the oncogenic potential of cytokines, a relatively unexplored area that could yield crucial insights into tumour immunology and facilitate the effective application of cytokine-modulatory therapies for CRC.
Collapse
Affiliation(s)
- Nathan R West
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah McCuaig
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Fanny Franchini
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
37
|
Huang YH, Cao YF, Jiang ZY, Zhang S, Gao F. Th22 cell accumulation is associated with colorectal cancer development. World J Gastroenterol 2015; 21:4216-24. [PMID: 25892871 PMCID: PMC4394082 DOI: 10.3748/wjg.v21.i14.4216] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/27/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of Th22 cells and related cytokines in colorectal cancer (CRC) tissues, and the probably mechanism. METHODS CRC tumor and paratumor tissues were collected to detect the expression levels of Th22 cells and of related cytokines by immunohistochemistry, flow cytometry and real-time quantitative polymerase chain reaction (RT-qPCR). Interleukin (IL)-22 alone or with a STAT3 inhibitor was co-cultured with RKO cells in vitro to study the effects of IL-22 on colon cancer cells. IL-22 alone or with a STAT3 inhibitor was injected into a BALB/c nude mouse model with subcutaneously transplanted RKO cells to study the effects of IL-22 on colon cancer growth. RESULTS The percentage of Th22 cells in the CD4(+) T subset was significantly higher in tumor tissues compared with that in paratumor tissues (1.47% ± 0.083% vs 1.23% ± 0.077%, P < 0.05) as determined by flow cytometry. RT-qPCR analysis revealed that the mRNA expression levels of IL-22, aryl hydrocarbon receptor, CCL20 and CCL22 were significantly higher in tumor tissues compared with those in paratumor tissues. CCL27 mRNA also displayed a higher expression level in tumor tissues compared with that in paratumor tissues; however, these levels were not significantly different (2.58 ± 0.93 vs 2.30 ± 0.78, P > 0.05). IL-22 enhanced colon cancer cell proliferation in vitro and displayed anti-apoptotic effects; these effects were blocked by adding a STAT3 inhibitor. IL-22 promoted tumor growth in BALB/c nude mice; however, this effect was reversed by adding a STAT3 inhibitor. CONCLUSION Th22 cells that accumulate in CRC may be associated with the chemotactic effect of the tumor microenvironment. IL-22 is associated with CRC development, most likely via STAT3 activation.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Chemotaxis, Leukocyte
- Coculture Techniques
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Female
- Humans
- Interleukins/administration & dosage
- Interleukins/analysis
- Interleukins/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- Tumor Burden
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Interleukin-22
Collapse
|
38
|
YE XIAOLEI, ZHAO YARONG, WENG GUOBIN, CHEN YICHEN, WEI XUENI, SHAO JINGPING, JI HUI. IL-33-induced JNK pathway activation confers gastric cancer chemotherapy resistance. Oncol Rep 2015; 33:2746-52. [DOI: 10.3892/or.2015.3898] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023] Open
|