1
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
2
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Marrero YT, Suárez VM, Abraham CMM, Hernández IC, Ramos EH, Domínguez GD, Pérez YD, Zamora MCR, Pita AMS, Guerra LFH. Peripheral double negative T: A look at senescent Cubans. Exp Gerontol 2023; 171:112006. [PMID: 36334893 DOI: 10.1016/j.exger.2022.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Age-related changes in the immune system are called immunosenescence. Within the T lymphocytes is the subpopulation of double negative (DNT) peripheral lymphocytes that are immunomodulators of the immune response, based on their ability to suppress the functions of simple positive T cells and their cytotoxicity for tumor cells and those infected by viruses. OBJECTIVE To determine the frequency of peripheral DNT lymphocytes in older Cuban adults. METHODS A cross-sectional study was carried out in 30 older adults, residents in Cuba. DNT lymphocytes in peripheral blood were quantified by flow cytometry. A Beckman Coulter Gallios flow cytometer was used for data reading and analysis. Percentage values mean and standard deviation were used. The Chi-square was used to relate the percentage values of DNT and comorbidities. It was considered statistically significant if p ≤ 0.05. RESULTS There was a predominance of women who represented 70 %. No older adult with low values of DNT lymphocytes was reported. Women with high percentage and absolute values of DNT lymphocytes prevailed in relation to men. In the group ≥80 years, high values in % and absolute values of DNT lymphocytes predominated. The high percentage values of DNT cells were mainly related to cardiovascular disease, and predominated in the elderly of ≥80 years old; who presented respiratory and skin infections, fundamentally. The percentage normal value in the group < 80 years was significant (p = 0.0198). The Chi-square value was 0,5995. CONCLUSIONS Most older adults who exhibited high percentage and absolute values of DNT lymphocytes, or a tendency to them, had some associated comorbidity, an idea that suggests that DNT cells participate in immune surveillance, defense and homeostasis based on their double identity, that is, its pathogenic or immunosuppressive phenotype according to the specific immunological microenvironment.
Collapse
Affiliation(s)
- Yenisey Triana Marrero
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Vianed Marsán Suárez
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Consuelo Milagros Macías Abraham
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Imilla Casado Hernández
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Elizabeth Hernández Ramos
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Gabriela Díaz Domínguez
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Yaneisy Duarte Pérez
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | | | - Ana María Simón Pita
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | | |
Collapse
|
4
|
Wu J, Zhu R, Wang Z, Chen X, Xu T, Liu Y, Song M, Jiang J, Ma Q, Chen Z, Liu Y, Wang X, Zhang M, Huang M, Ji N. Exosomes in malignant pleural effusion from lung cancer patients impaired the cytotoxicity of double-negative T cells. Transl Oncol 2022; 27:101564. [PMID: 36252282 PMCID: PMC9579705 DOI: 10.1016/j.tranon.2022.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/10/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
CD3+CD4-CD8- double-negative T (DNT) cells are new weapons in cancer immunotherapy. Here, we explored DNT cells in malignant pleural effusions (MPEs) from lung cancer patients. DNT cells, especially TCRαβ+CD56- DNT cells, were increased in MPE from lung cancer patients. DNT cells highly expressed PD-1, TRAIL, NKG2D and DNAM-1. In contrast, FasL was barely detected in DNT cells. Compared with non-MPE cells, MPE-derived DNT cells expressed much higher levels of PD-1 and TRAIL. DNT cells from healthy peripheral blood donors potentially killed lung cancers, which was decreased by MPE supernatant. Exosomes from MPE supernatant expressed PD-1 and CEACAM1 and impaired the cytotoxicity of DNT cells. Blocking PD-1 and TIM3 rescued the cytotoxicity of DNT cells treated with MPE-derived exosomes. Overall, we demonstrated that the frequency of DNT cells in MPE from lung cancer patients was increased and that MPE-derived exosomes impaired the cytotoxicity of DNT cells via the PD-1/PD-L1 and CEACAM1/TIM3 pathways.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Department of Respiratory Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueqin Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Liu
- Department of Infectious Disease, Nanjing Hospital Affiliated to Nanjing University of traditional Chinese Medicine, Nanjing, China
| | - Xiaoyue Wang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Mingshun Zhang
- Department of Immunology, NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, China,Corresponding authors.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Corresponding authors.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Corresponding authors.
| |
Collapse
|
5
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
6
|
ALTIOK D, SAVCI EZ, ÖZKARA B, ALKAN K, NAMDAR DS, TUNÇER G, KILINÇ BR, SUİÇMEZ E, ÇETİN G, ÜNAL S, DÖNMÜŞ B, KARAGÜLLEOĞLU ZY, UNCUOĞLU DB, TEKELİ C, MENDİ HA, BENGİ VU, CENGİZ SEVAL G, KILIÇ P, GÜNEŞ ALTUNTAŞ E, DEMİR-DORA D. Host variations in SARS-CoV-2 infection. Turk J Biol 2021; 45:404-424. [PMID: 34803443 PMCID: PMC8573834 DOI: 10.3906/biy-2104-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the zoonotic pathogen that causes the "Coronavirus Disease of 2019 (COVID-19)", and COVID-19 itself is yet to be thoroughly understood. Both the disease as well as the mechanisms by which the host interacts with the SARS-CoV-2 have not been fully enlightened. The epidemiological factors -e.g. age, sex, race-, the polymorphisms of the host proteins, the blood types and individual differences have all been in discussions about affecting the progression and the course of COVID-19 both individually and collectively, as their effects are mostly interwoven. We focused mainly on the effect of polymorphic variants of the host proteins that have been shown to take part in and/or affect the pathogenesis of COVID-19. Additionally, how the procedures of diagnosing and treating COVID-19 are affected by these variants and what possible changes can be implemented are the other questions, which are sought to be answered.
Collapse
Affiliation(s)
- Doruk ALTIOK
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | - Büşra ÖZKARA
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Kamil ALKAN
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | - Gizem TUNÇER
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | - Evren SUİÇMEZ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Güneysu ÇETİN
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Sinan ÜNAL
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Beyza DÖNMÜŞ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | | | - Cansu TEKELİ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | | | | | - Pelin KILIÇ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW TCRαβ+CD4-CD8- double-negative T (DNT) cells, a principal subset of mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. However, controversy persists regarding their ontogeny and function. Here, we present an overview on DNT cells in different autoimmune diseases to advance a deeper understanding of the contribution of this population to disease pathogenesis. RECENT FINDINGS DNT cells have been characterized in various chronic inflammatory diseases and they have been proposed to display pathogenic or regulatory function. The tissue location of DNT cells and the effector cytokines they produce bespeak to their active involvement in chronic inflammatory diseases. SUMMARY By producing various cytokines, expanded DNT cells in inflamed tissues contribute to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear whether this population represents a stable lineage consisting of different subsets similar to CD4+ T helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is needed to reveal interventional therapeutic opportunities.
Collapse
Affiliation(s)
- Hao Li
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol 2020; 215:108410. [PMID: 32276140 PMCID: PMC7139239 DOI: 10.1016/j.clim.2020.108410] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022]
Abstract
Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specifically, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- CD11a Antigen/genetics
- CD11a Antigen/immunology
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/epidemiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Cytokines/genetics
- Cytokines/immunology
- DNA Methylation
- Disease Progression
- Epigenesis, Genetic
- Genetic Predisposition to Disease
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- NF-kappa B/genetics
- NF-kappa B/immunology
- Oxidative Stress/genetics
- Oxidative Stress/immunology
- Pandemics
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Pneumonia, Viral/complications
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Protein Binding
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- SARS-CoV-2
- Signal Transduction
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viremia/complications
- Viremia/epidemiology
- Viremia/genetics
- Viremia/immunology
Collapse
Affiliation(s)
- Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Patrick Coit
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Graduate Immunology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.03.30.20047852. [PMID: 32511654 PMCID: PMC7277010 DOI: 10.1101/2020.03.30.20047852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specially, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.
Collapse
|
10
|
Miller S, Tsou PS, Coit P, Gensterblum-Miller E, Renauer P, Rohraff DM, Kilian NC, Schonfeld M, Sawalha AH. Hypomethylation of STAT1 and HLA-DRB1 is associated with type-I interferon-dependent HLA-DRB1 expression in lupus CD8+ T cells. Ann Rheum Dis 2019; 78:519-528. [PMID: 30674474 DOI: 10.1136/annrheumdis-2018-214323] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We examined genome-wide DNA methylation changes in CD8+ T cells from patients with lupus and controls and investigated the functional relevance of some of these changes in lupus. METHODS Genome-wide DNA methylation of lupus and age, sex and ethnicity-matched control CD8+ T cells was measured using the Infinium MethylationEPIC arrays. Measurement of relevant cell subsets was performed via flow cytometry. Gene expression was quantified by qPCR. Inhibiting STAT1 and CIITA was performed using fludarabine and CIITA siRNA, respectively. RESULTS Lupus CD8+ T cells had 188 hypomethylated CpG sites compared with healthy matched controls. Among the most hypomethylated were sites associated with HLA-DRB1. Genes involved in the type-I interferon response, including STAT1, were also found to be hypomethylated. IFNα upregulated HLA-DRB1 expression on lupus but not control CD8+ T cells. Lupus and control CD8+ T cells significantly increased STAT1 mRNA levels after treatment with IFNα. The expression of CIITA, a key interferon/STAT1 dependent MHC-class II regulator, is induced by IFNα in lupus CD8+ T cells, but not healthy controls. CIITA knockdown and STAT1 inhibition experiments revealed that HLA-DRB1 expression in lupus CD8+ T cells is dependent on CIITA and STAT1 signalling. Coincubation of naïve CD4+ T cells with IFNα-treated CD8+ T cells led to CD4+ T cell activation, determined by increased expression of CD69 and cytokine production, in patients with lupus but not in healthy controls. This can be blocked by neutralising antibodies targeting HLA-DR. CONCLUSIONS Lupus CD8+ T cells are epigenetically primed to respond to type-I interferon. We describe an HLA-DRB1+ CD8+ T cell subset that can be induced by IFNα in patients with lupus. A possible pathogenic role for CD8+ T cells in lupus that is dependent on a high type-I interferon environment and epigenetic priming warrants further characterisation.
Collapse
Affiliation(s)
- Shaylynn Miller
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick Coit
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Paul Renauer
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dallas M Rohraff
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan C Kilian
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark Schonfeld
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA .,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol 2018; 196:3-11. [DOI: 10.1016/j.clim.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
12
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
13
|
Brandt D, Hedrich CM. TCRαβ +CD3 +CD4 -CD8 - (double negative) T cells in autoimmunity. Autoimmun Rev 2018; 17:422-430. [PMID: 29428806 DOI: 10.1016/j.autrev.2018.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Abstract
TCRαβ+CD3+CD4-CD8- "double negative" (DN) T cells comprise a small subset of mature peripheral T cells. The origin and function of DN T cells are somewhat unclear and discussed controversially. While DN T cells resemble a rare and heterogeneous T cell subpopulation in healthy individuals, numbers of TCRαβ+ DN T cells are expanded in several inflammatory conditions, where they also exhibit distinct effector phenotypes and infiltrate inflamed tissues. Thus, DN T cells may be involved in systemic inflammation and tissue damage in autoimmune/inflammatory conditions, including SLE, Sjögren's syndrome, and psoriasis. Here, the current understanding of the origin and phenotype of DN T cells, and their role in the instruction of immune responses, autoimmunity and inflammation will be discussed in health and disease.
Collapse
Affiliation(s)
- D Brandt
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
14
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Shi L, Zhang Z, Song L, Leung YT, Petri MA, Sullivan KE. Monocyte enhancers are highly altered in systemic lupus erythematosus. Epigenomics 2015; 7:921-35. [PMID: 26442457 DOI: 10.2217/epi.15.47] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Histone modifications set transcriptional competency and can perpetuate pathologic expression patterns. We defined systemic lupus erythematosus (SLE)-specific changes in H3K4me3 and K3K27me3, histone marks of gene activation and repression, respectively. METHODS We used ChIP-seq to define histone modifications in monocytes from SLE patients and controls. RESULTS Both promoters and enhancers exhibited significant changes in histone methylation in SLE. Regions with differential H3K4me3 in SLE were significantly enriched in potential interferon-related transcription factor binding sites and pioneer transcription factor sites. CONCLUSION Enhancer activation defines the character of the cell and our data support extensive disease effects in monocytes, a particularly plastic lineage. Type I interferons not only drive altered gene expression but may also alter the character of the cell through chromatin modifications.
Collapse
Affiliation(s)
- Lihua Shi
- Division of Allergy & Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- The Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 1910, USA
| | - Li Song
- Division of Allergy & Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Yiu Tak Leung
- Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kathleen E Sullivan
- Division of Allergy & Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Renauer P, Coit P, Sawalha AH. Epigenetics and Vasculitis: a Comprehensive Review. Clin Rev Allergy Immunol 2015; 50:357-66. [DOI: 10.1007/s12016-015-8495-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|