1
|
Zhou Y, Wei Y, Tian X, Wei X. Cancer vaccines: current status and future directions. J Hematol Oncol 2025; 18:18. [PMID: 39962549 PMCID: PMC11834487 DOI: 10.1186/s13045-025-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer continues to be a major global health burden, with high morbidity and mortality. Building on the success of immune checkpoint inhibitors and adoptive cellular therapy, cancer vaccines have garnered significant interest, but their clinical success remains modest. Benefiting from advancements in technology, many meticulously designed cancer vaccines have shown promise, warranting further investigations to reach their full potential. Cancer vaccines hold unique benefits, particularly for patients resistant to other therapies, and they offer the ability to initiate broad and durable T cell responses. In this review, we highlight the antigen selection for cancer vaccines, introduce the immune responses induced by vaccines, and propose strategies to enhance vaccine immunogenicity. Furthermore, we summarize key features and notable clinical advances of various vaccine platforms. Lastly, we delve into the mechanisms of tumor resistance and explore the potential benefits of combining cancer vaccines with standard treatments and other immunomodulatory approaches to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yingqiong Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025:10.1007/s10620-024-08774-2. [PMID: 39869166 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Li Y, Cheng Z, Li S, Zhang J. Immunotherapy in colorectal cancer: Statuses and strategies. Heliyon 2025; 11:e41354. [PMID: 39811287 PMCID: PMC11731577 DOI: 10.1016/j.heliyon.2024.e41354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is widely recognized as the third most prevalent malignancy globally and the second leading cause of cancer-related mortality. Traditional treatment modalities for CRC, including surgery, chemotherapy, and radiotherapy, can be utilized either individually or in combination. However, these treatments frequently result in significant side effects due to their non-specificity and cytotoxicity affecting all cells. Moreover, a considerable number of patients face relapses following these treatments. Consequently, it is imperative to explore more efficacious treatment interventions for CRC patients. Immunotherapy, an emerging frontier in oncology, represents a novel therapeutic approach that leverages the body's immune system to target cancer cells. The principal advantage of immunotherapy is its capacity to selectively target cancer cells while minimizing damage to healthy cells. Its recent adoption as a neoadjuvant therapy presents significant potential to transform the treatment landscape for both primary resectable and metastatic CRC. This review endeavors to offer a comprehensive overview of current strategies in CRC immunotherapy, critically analyze existing literature, underscore anticipated outcomes from ongoing clinical trials, and deliberate on the challenges and impediments encountered within the field of immunotherapy.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
4
|
Suzuki N, Shindo Y, Nakajima M, Tsunedomi R, Nagano H. Current status of vaccine immunotherapy for gastrointestinal cancers. Surg Today 2024; 54:1279-1291. [PMID: 38043066 DOI: 10.1007/s00595-023-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/14/2023] [Indexed: 12/05/2023]
Abstract
Recent advances in tumor immunology and molecular drug development have ushered in a new era of cancer immunotherapy. Immunotherapy has shown promising results for several types of tumors, such as advanced melanoma, non-small cell lung cancer, renal cell carcinoma, bladder cancers, and refractory Hodgkin's lymphoma. Similarly, efforts have been made to develop immunotherapies such as adoptive T-cell transplantation, peptide vaccines, and dendritic cell vaccines, specifically for gastrointestinal tumors. However, before the advent of immune checkpoint inhibitors, immunotherapy did not work as well as expected. In this article, we review immunotherapy, focusing on cancer vaccines for gastrointestinal tumors, which generally target eliciting tumor-specific CD8 + cytotoxic T lymphocytes (CTLs). We also review various vaccine therapies and describe the relationship between vaccines and adjuvants. Finally, we discuss prospects for the combination of immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
5
|
Makino T, Miyata H, Yasuda T, Kitagawa Y, Muro K, Park JH, Hikichi T, Hasegawa T, Igarashi K, Iguchi M, Masaoka Y, Yano M, Doki Y. A phase 3, randomized, double-blind, multicenter, placebo-controlled study of S-588410, a five-peptide cancer vaccine as an adjuvant therapy after curative resection in patients with esophageal squamous cell carcinoma. Esophagus 2024; 21:447-455. [PMID: 38990441 PMCID: PMC11405444 DOI: 10.1007/s10388-024-01072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND S-588410, a cancer peptide vaccine (CPV), comprises five HLA-A*24:02-restricted peptides from five cancer-testis antigens. In a phase 2 study, S-588410 was well-tolerated and exhibited antitumor efficacy in patients with urothelial cancer. Therefore, we aimed to evaluate the efficacy, immune response, and safety of S-588410 in patients with completely resected esophageal squamous cell carcinoma (ESCC). METHODS This phase 3 study involved patients with HLA-A*24:02-positive and lymph node metastasis-positive ESCC who received neoadjuvant therapy followed by curative resection. After randomization, patients were administered S-588410 and placebo (both emulsified with Montanide™ ISA 51VG) subcutaneously. The primary endpoint was relapse-free survival (RFS). The secondary endpoints were overall survival (OS), cytotoxic T-lymphocyte (CTL) induction, and safety. Statistical significance was tested using the one-sided weighted log-rank test with the Fleming-Harrington class of weights. RESULTS A total of 276 patients were randomized (N = 138/group). The median RFS was 84.3 and 84.1 weeks in the S-588410 and placebo groups, respectively (P = 0.8156), whereas the median OS was 236.3 weeks and not reached, respectively (P = 0.6533). CTL induction was observed in 132/134 (98.5%) patients who received S-588410 within 12 weeks. Injection site reactions (137/140 patients [97.9%]) were the most frequent treatment-emergent adverse events in the S-588410 group. Prolonged survival was observed in S-588410-treated patients with upper thoracic ESCC, grade 3 injection-site reactions, or high CTL intensity. CONCLUSIONS S-588410 induced immune response and had acceptable safety but failed to reach the primary endpoint. A high CTL induction rate and intensity may be critical for prolonging survival during future CPV development.
Collapse
Affiliation(s)
- Tomoki Makino
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Jae-Hyun Park
- OncoTherapy Science, Inc., Kawasaki, Kanagawa, Japan
| | - Tetsuro Hikichi
- Laboratory Department, Cancer Precision Medicine, Inc., Kawasaki, Kanagawa, Japan
| | | | | | - Motofumi Iguchi
- Medical Affairs Department, Shionogi & Co., Ltd, Osaka, Japan
| | | | - Masahiko Yano
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
- Kyowakai Hospital, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
7
|
Alzeeb G, Tortorelli C, Taleb J, De Luca F, Berge B, Bardet C, Limagne E, Brun M, Chalus L, Pinteur B, Bravetti P, Gongora C, Apetoh L, Ghiringhelli F. Efficacy of novel allogeneic cancer cells vaccine to treat colorectal cancer. Front Oncol 2024; 14:1427428. [PMID: 39114302 PMCID: PMC11303197 DOI: 10.3389/fonc.2024.1427428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, emphasizing the need for innovative treatment strategies. 95% of the CRC population are microsatellite stable (MSS), insensitive to classical immunotherapies such as anti-PD-1; on the other hand, responders can become resistant and relapse. Recently, the use of cancer vaccines enhanced the immune response against tumor cells. In this context, we developed a therapeutic vaccine based on Stimulated Tumor Cells (STC) platform technology. This vaccine is composed of selected tumor cell lines stressed and haptenated in vitro to generate a factory of immunogenic cancer-related antigens validated by a proteomic cross analysis with patient's biopsies. This technology allows a multi-specific education of the immune system to target tumor cells harboring resistant clones. Here, we report safety and antitumor efficacy of the murine version of the STC vaccine on CT26 BALB/c CRC syngeneic murine models. We showed that one cell line (1CL)-based STC vaccine suppressed tumor growth and extended survival. In addition, three cell lines (3CL)-based STC vaccine significantly improves these parameters by presenting additional tumor-related antigens inducing a multi-specific anti-tumor immune response. Furthermore, proteomic analyses validated that the 3CL-based STC vaccine represents a wider quality range of tumor-related proteins than the 1CL-based STC vaccine covering key categories of tumor antigens related to tumor plasticity and treatment resistance. We also evaluated the efficacy of STC vaccine in an MC38 anti-PD-1 resistant syngeneic murine model. Vaccination with the 3CL-based STC vaccine significantly improved survival and showed a confirmed complete response with an antitumor activity carried by the increase of CD8+ lymphocyte T cells and M1 macrophage infiltration. These results demonstrate the potential of this technology to produce human vaccines for the treatment of patients with CRC.
Collapse
Affiliation(s)
| | | | - Jaqueline Taleb
- Imthernat, Université Claude Bernard Lyon 1, Therapies and Immune REsponse in Cancers (TIRECs), Lyon, France
| | | | | | | | - Emeric Limagne
- Transfer Platform for Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | | | | | | | | | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Francois Ghiringhelli
- Transfer Platform for Cancer Biology, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
8
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
9
|
Sabale P, Waghmare S, Potey L, Khedekar P, Sabale V, Rarokar N, Chikhale R, Palekar R. Novel targeting strategies on signaling pathways of colorectal cancer. COLORECTAL CANCER 2024:489-531. [DOI: 10.1016/b978-0-443-13870-6.00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
11
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
12
|
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals (Basel) 2023; 16:1054. [PMID: 37513965 PMCID: PMC10383774 DOI: 10.3390/ph16071054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Breast and gynecologic cancers are significant global threats to women's health and those living with the disease require lifelong physical, financial, and social support from their families, healthcare providers, and society as a whole. Cancer vaccines offer a promising means of inducing long-lasting immune response against the disease. Among various types of cancer vaccines available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses. Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are established to be involved in the pathogenesis of female-specific cancers and hence were exploited for the development of peptide vaccines against these diseases, most of which are in the latter stages of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and prophylactic approaches for various types of female-specific cancers such as breast cancer and gynecologic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.
Collapse
Affiliation(s)
- Manju Lekshmy
- Department of Botany and Biotechnology, St. Xavier’s College, Thumba, Thiruvananthapuram 695586, Kerala, India;
| | | | | | | | | | | | - Leelamma Anila
- Department of Biochemistry, NSS College, Nilamel, Kollam 691535, Kerala, India;
| | - Vishnu Sasidharan Lathakumari
- Department of Biochemistry and Industrial Microbiology, Sree Narayana College for Women, Kollam 691001, Kerala, India;
| | - Adhira M. Nayar
- Department of Zoology, Mahatma Gandhi College, Thiruvananthapuram 695004, Kerala, India;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
13
|
Zhang J, Du J, Jin Z, Qian J, Xu J. A novel immunogenic cell death signature for the prediction of prognosis and therapies in glioma. PeerJ 2023; 11:e15615. [PMID: 37456890 PMCID: PMC10348309 DOI: 10.7717/peerj.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Glioma is a primary cranial malignancy with high recurrence rate, poor prognosis and high mortality. However, the roles of immunogenic cell death (ICD) in glioma remain unclear. Twenty ICD genes were analyzed to be differentially expressed between glioma tissues and non-tumor tissues in 371 glioma patients from The Cancer Genome Atlas (TCGA). Patients were classified into three subgroups via unsupervised clustering. Interestingly, the features of cell-infiltrating from three clusters were matched with three immune phenotypes. An applied scoring system was built depending on the expression of hub ICD-related genes. Notably, the ICD-related score was linked with immune checkpoints and the prognosis of glioma patients. In addition, the applied risk model could be used for the prediction of the effect of chemotherapy and immunotherapy for glioma patients. Furthermore, MYD88 was identified to play key roles in the risk model for glioma patients. MYD88 was specifically expressed in malignant cells and validated to correlate with cell proliferation and invasion. Ligand-receptor pairs are determined as novel communications indicating between immunocytes and malignant cells. Therefore, our research established an ICD-related score to investigate the potential effect to chemotherapy and immunotherapy for glioma patients and indicated that MYD88 was a key role in this risk model.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| | - Jin Du
- Department of Neurosurgery, People’s Hospital of Chizhou, Chizhou, China
| | - Zhihai Jin
- Department of Orthopedics, Handan First Hospital, Handan, China
| | - Jiang Qian
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| | - Jinfa Xu
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| |
Collapse
|
14
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
15
|
Jia W, Zhang T, Huang H, Feng H, Wang S, Guo Z, Luo Z, Ji X, Cheng X, Zhao R. Colorectal cancer vaccines: The current scenario and future prospects. Front Immunol 2022; 13:942235. [PMID: 35990683 PMCID: PMC9384853 DOI: 10.3389/fimmu.2022.942235] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Current therapies such as surgery, chemotherapy, and radiotherapy encounter obstacles in preventing metastasis of CRC even when applied in combination. Immune checkpoint inhibitors depict limited effects due to the limited cases of CRC patients with high microsatellite instability (MSI-H). Cancer vaccines are designed to trigger the elevation of tumor-infiltrated lymphocytes, resulting in the intense response of the immune system to tumor antigens. This review briefly summarizes different categories of CRC vaccines, demonstrates the current outcomes of relevant clinical trials, and provides particular focus on recent advances on nanovaccines and neoantigen vaccines, representing the trend and emphasis of CRC vaccine development.
Collapse
Affiliation(s)
- Wenqing Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaodong Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Guo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| |
Collapse
|
16
|
Malhotra J, Mehnert JM. Use of tumor cell lysate to develop peptide vaccine targeting cancer-testis antigens. Transl Lung Cancer Res 2022; 10:4049-4052. [PMID: 35004237 PMCID: PMC8674589 DOI: 10.21037/tlcr-21-762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Janice M Mehnert
- NYU Grossman School of Medicine and Perlmutter Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines (Basel) 2022; 10:vaccines10010070. [PMID: 35062731 PMCID: PMC8778374 DOI: 10.3390/vaccines10010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
The success of the immune checkpoint blockade has provided a proof of concept that immune cells are capable of attacking tumors in the clinic. However, clinical benefit is only observed in less than 20% of the patients due to the non-specific activation of immune cells by the immune checkpoint blockade. Developing tumor-specific immune responses is a challenging task that can be achieved by targeting tumor antigens to generate tumor-specific T-cell responses. The recent advancements in peptide-based immunotherapy have encouraged clinicians and patients who are struggling with cancer that is otherwise non-treatable with current therapeutics. By selecting appropriate epitopes from tumor antigens with suitable adjuvants, peptides can elicit robust antitumor responses in both mice and humans. Although recent experimental data and clinical trials suggest the potency of tumor reduction by peptide-based vaccines, earlier clinical trials based on the inadequate hypothesis have misled that peptide vaccines are not efficient in eliminating tumor cells. In this review, we highlighted the recent evidence that supports the rationale of peptide-based antitumor vaccines. We also discussed the strategies to select the optimal epitope for vaccines and the mechanism of how adjuvants increase the efficacy of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
- Correspondence: ; Tel.: +81-166-68-2554; Fax: +81-166-68-2559
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| |
Collapse
|
18
|
In Silico Model Estimates the Clinical Trial Outcome of Cancer Vaccines. Cells 2021; 10:cells10113048. [PMID: 34831269 PMCID: PMC8616443 DOI: 10.3390/cells10113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Over 30 years after the first cancer vaccine clinical trial (CT), scientists still search the missing link between immunogenicity and clinical responses. A predictor able to estimate the outcome of cancer vaccine CTs would greatly benefit vaccine development. Published results of 94 CTs with 64 therapeutic vaccines were collected. We found that preselection of CT subjects based on a single matching HLA allele does not increase immune response rates (IRR) compared with non-preselected CTs (median 60% vs. 57%, p = 0.4490). A representative in silico model population (MP) comprising HLA-genotyped subjects was used to retrospectively calculate in silico IRRs of CTs based on the percentage of MP-subjects having epitope(s) predicted to bind ≥ 1–4 autologous HLA allele(s). We found that in vitro measured IRRs correlated with the frequency of predicted multiple autologous allele-binding epitopes (AUC 0.63–0.79). Subgroup analysis of multi-antigen targeting vaccine CTs revealed correlation between clinical response rates (CRRs) and predicted multi-epitope IRRs when HLA threshold was ≥ 3 (r = 0.7463, p = 0.0004) but not for single HLA allele-binding epitopes (r = 0.2865, p = 0.2491). Our results suggest that CRR depends on the induction of broad T-cell responses and both IRR and CRR can be predicted when epitopes binding to multiple autologous HLAs are considered.
Collapse
|
19
|
Li Y, Tian Y, Zhong W, Wang N, Wang Y, Zhang Y, Zhang Z, Li J, Ma F, Zhao Z, Peng Y. Artemisia argyi Essential Oil Inhibits Hepatocellular Carcinoma Metastasis via Suppression of DEPDC1 Dependent Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:664791. [PMID: 34268303 PMCID: PMC8276134 DOI: 10.3389/fcell.2021.664791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
The tumor metastasis is the major hurdle for the treatment of advanced hepatocellular carcinoma (HCC), due in part to the lack of effective systemic treatments. DEPDC1, a novel oncoantigen upregulated in HCC, is thought to be a molecular-target for novel therapeutic drugs. Artemisia argyi is a traditional Chinese medicine with anti-inflammatory and anti-tumor activities. This study investigated the potential therapeutic benefits of Artemisia argyi essential oil (AAEO) in suppressing metastasis of HCC by targeting DEPDC1. Assessment of AAEO cytotoxicity was performed by MTT assay. Anti-metastatic effects of AAEO were investigated in vitro using wound healing and transwell assays. The HepG2 cells were transduced with lentiviral vector containing luciferase (Luc). A metastasis model of nude mice was established by tail vein injection of HepG2-Luc cells. The nude mice were treated with AAEO (57.5, 115, and 230 mg/kg) or sorafenib (40 mg/kg). Metastasis of HCC cells was monitored via in vivo bioluminescence imaging. After treatment for 21 days, tissues were collected for histological examination and immunohistochemistry analysis. Gene and protein levels were determined by real-time quantitative PCR and western blotting. The results revealed that AAEO significantly inhibits the migration and invasion in vitro in a concentration-dependent manner. In vivo assays further confirmed that AAEO markedly inhibits HCC metastasis into lung, brain, and femur tissues and exhibits low toxicity. Our results suggested that AAEO significantly downregulates the mRNA and protein expression of DEPDC1. Also, AAEO attenuated Wnt/β-catenin signaling through reduction of Wnt1 and β-catenin production. Moreover, AAEO prevented epithelial-mesenchymal transition (EMT) by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that DEPDC1 promoted HCC migration and invasion via Wnt/β-catenin signaling pathway and EMT. These results demonstrate that AAEO effectively inhibits HCC metastasis via attenuating Wnt/β-catenin signaling and inhibiting EMT by suppressing DEPDC1 expression. Thus, AAEO likely acts as a novel inhibitor of the DEPDC1 dependent Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanli Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Tian
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Zhong
- Department of Stomatology, People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Ning Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhuangli Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianbo Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Ma
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhao
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Dai Y, Zhao W, Yue L, Dai X, Rong D, Wu F, Gu J, Qian X. Perspectives on Immunotherapy of Metastatic Colorectal Cancer. Front Oncol 2021; 11:659964. [PMID: 34178645 PMCID: PMC8219967 DOI: 10.3389/fonc.2021.659964] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer, especially liver metastasis, is still a challenge worldwide. Traditional treatment such as surgery, chemotherapy and radiotherapy have been difficult to be further advanced. We need to develop new treatment methods to further improve the poor prognosis of these patients. The emergence of immunotherapy has brought light to mCRC patients, especially those with dMMR. Based on several large trials, some drugs (pembrolizumab, nivolumab) have been approved by US Food and Drug Administration to treat the patients diagnosed with dMMR tumors. However, immunotherapy has reached a bottleneck for other MSS tumors, with low response rate and poor PFS and OS. Therefore, more clinical trials are underway toward mCRC patients, especially those with MSS. This review is intended to summarize the existing clinical trials to illustrate the development of immunotherapy in mCRC patients, and to provide a new thinking for the direction and experimental design of immunotherapy in the future.
Collapse
Affiliation(s)
- Yongjiu Dai
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wenhu Zhao
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Yue
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinzheng Dai
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Qian
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Lampis A, Ratti M, Ghidini M, Mirchev MB, Okuducu AF, Valeri N, Hahne JC. Challenges and perspectives for immunotherapy in oesophageal cancer: A look to the future (Review). Int J Mol Med 2021; 47:97. [PMID: 33846775 PMCID: PMC8041478 DOI: 10.3892/ijmm.2021.4930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Oesophageal cancer is one of the most aggressive malignancies with limited treatment options, thus resulting in a high morbidity and mortality. With 5‑year survival rates of only 5‑10%, oesophageal cancer holds a dismal prognosis for patients. In order to improve overall survival, the early diagnosis and tools for patient stratification for personalized treatment are urgent needs. A minority of oesophageal cancers belong to the spectrum of Lynch syndrome‑associated cancers and are characterized by microsatellite instability (MSI). Microsatellite instability is a consequence of defective mismatch repair protein functions and it has been well characterized in other gastrointestinal tumours, such as colorectal and gastric cancer. In the latter, high levels of MSI are associated with a better prognosis and with an increased benefit to immune‑based therapies. Therefore, similar therapeutic approaches could offer an opportunity of treatment for oesophageal cancer patients with MSI. Apart from immune checkpoint inhibitors, other immunotherapies such as adoptive T‑cell transfer, peptide vaccine and oncolytic viruses are under investigation in oesophageal cancer patients. In the present review, the rationale and current knowledge about immunotherapies in oesophageal cancer are summarised.
Collapse
Affiliation(s)
- Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
| | - Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
- Medical Department, Division of Oncology, Hospital Trust of Cremona, I-26100 Cremona, Italy
| | - Michele Ghidini
- Division of Medical Oncology, Hospital Policlinic 'Fondazione IRCCS Ca' Granda Ospedale Maggiore', I-20122 Milan, Italy
| | - Milko B. Mirchev
- Clinic of Gastroenterology, Medical University, 9002 Varna, Bulgaria
| | | | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, Sutton SM25NG, UK
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
| |
Collapse
|
22
|
Huang C, Chen J, Ding F, Yang L, Zhang S, Wang X, Shi Y, Zhu Y. Related parameters of affinity and stability prediction of HLA-A*2402 restricted antigen peptides based on molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:673. [PMID: 33987371 PMCID: PMC8106073 DOI: 10.21037/atm-21-630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Major histocompatibility complex class I (MHC-I) plays an important role in cell immune response, and stable interaction between polypeptides and MHC-I ensures efficient presentation of polypeptide-MHC-I (pMHC-I) molecular complexes to T cells. The aim of this study was to explore ways to improve the affinity and stability of the p-Human Leukocyte Antigen (HLA)-A*2402 complex. Methods The peptide sequences of the restricted antigen peptides for HLA-A*2402 and the results of the in vitro competitive binding test were retrieved from the literature. The affinity values were predicted using NetMHCpan v4.1 server, and the stability values were predicted using the NetMHCstab v1.0 server. Auto Vina was used to dock peptides to HLA-A*2402 protein in a flexible docking manner, while Flexpepdock was employed to optimize the docking morphology. Maestro was used to analyze the intermolecular forces and the binding affinity of the complex, while MM-GBSA was used to calculate the binding free energy values. Results The intermolecular interactions that maintained the affinity and stability of peptide-HLA-A*2402 complex relied mainly on HB, followed by pi stack. The binding affinity values of molecular docking were associated with the predicted values of affinity and stability, the binding affinity and the binding free energy, as well as the intermolecular force pi-stack. The pi stack had a significant negative correlation with binding affinity and binding free energy. The replacement of the residues of the polypeptides that did not form pi-stack interactions with HLA-A*2402 improved the affinity and/or stability compared to before replacement. Conclusions The generation and increase in the number of pi-stacks between peptides and HLA-A*2402 molecules may help improve the affinity and stability of p-HLA-A*2402 complexes. The prediction of intermolecular forces and binding affinity of peptide-HLA by means of molecular docking is a supplement to the current commonly used prediction databases.
Collapse
Affiliation(s)
- Changxin Huang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianfeng Chen
- Department of Proctology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Fei Ding
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lili Yang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Siyu Zhang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xuechun Wang
- Zhejiang Chinese Medical University 4th School of Clinical Medicine, Hangzhou, China
| | - Yanfei Shi
- Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Ying Zhu
- Department of Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021; 54:e13025. [PMID: 33754407 PMCID: PMC8088465 DOI: 10.1111/cpr.13025] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The peptide‐based therapeutic cancer vaccines have attracted enormous attention in recent years as one of the effective treatments of tumour immunotherapy. Most of peptide‐based vaccines are based on epitope peptides stimulating CD8+ T cells or CD4+ T helper cells to target tumour‐associated antigens (TAAs) or tumour‐specific antigens (TSAs). Some adjuvants and nanomaterials have been exploited to optimize the efficiency of immune response of the epitope peptide to improve its clinical application. At present, numerous peptide‐based therapeutic cancer vaccines have been developed and achieved significant clinical benefits. Similarly, the combination of peptide‐based vaccines and other therapies has demonstrated a superior efficacy in improving anti‐cancer activity. We delve deeper into the choices of targets, design and screening of epitope peptides, clinical efficacy and adverse events of peptide‐based vaccines, and strategies combination of peptide‐based therapeutic cancer vaccines and other therapies. The review will provide a detailed overview and basis for future clinical application of peptide‐based therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Transfusion Medicine Institute, Liaoning Blood Center, Shenyang, China.,Transfusion Medicine Institute, Harbin Blood Center, Harbin, China
| |
Collapse
|
24
|
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol 2021; 11:615240. [PMID: 33679703 PMCID: PMC7927599 DOI: 10.3389/fimmu.2020.615240] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation—inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015, Paris, France.,Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala University, Uppsala, Sweden
| | - Kinana Habra
- The School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
25
|
Tham MJR, Babak MV, Ang WH. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Jing Rui Tham
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
| | - Maria V. Babak
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
26
|
Tham MJR, Babak MV, Ang WH. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew Chem Int Ed Engl 2020; 59:19070-19078. [DOI: 10.1002/anie.202008604] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Max Jing Rui Tham
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
| | - Maria V. Babak
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
27
|
Gupta A, Rosato AJ, Cui F. Vaccine candidate designed against carcinoembryonic antigen-related cell adhesion molecules using immunoinformatics tools. J Biomol Struct Dyn 2020; 39:6084-6098. [PMID: 32720576 DOI: 10.1080/07391102.2020.1797539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion (CEACAM) molecules belong to a family of membrane glycoproteins that mediate intercellular interactions influencing cellular growth, immune cell activation, apoptosis, and tumor suppression. Several family members (CEACAM1, CEACAM5, and CEACAM6) are highly expressed in cancers, and they share a conserved N-terminal domain that serves as an attractive target for cancer immunotherapy. A multi-epitope vaccine candidate against this conserved domain has been developed using immunoinformatics tools. Specifically, several epitopes predicted to interact with MHC class I and II molecules were linked together with appropriate linkers. The tertiary structure of the vaccine is generated by homology and ab initio modeling. Molecular docking of epitopes to MHC structures have revealed that the lowest energy conformations are the epitopes bound to the antigen-binding groove of the MHC molecules. Subsequent molecular dynamics simulation has confirmed the stability of the binding conformations in solution. The predicted vaccine has relatively high antigenicity and low allergenicity, suggesting that it is an ideal candidate for further refinement and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Gupta
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Andrew J Rosato
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
28
|
Daiko H, Marafioti T, Fujiwara T, Shirakawa Y, Nakatsura T, Kato K, Puccio I, Hikichi T, Yoshimura S, Nakagawa T, Furukawa M, Stoeber K, Nagira M, Ide N, Kojima T. Exploratory open-label clinical study to determine the S-588410 cancer peptide vaccine-induced tumor-infiltrating lymphocytes and changes in the tumor microenvironment in esophageal cancer patients. Cancer Immunol Immunother 2020; 69:2247-2257. [PMID: 32500232 PMCID: PMC7568713 DOI: 10.1007/s00262-020-02619-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Cancer vaccines induce cancer-specific T-cells capable of eradicating cancer cells. The impact of cancer peptide vaccines (CPV) on the tumor microenvironment (TME) remains unclear. S-588410 is a CPV comprising five human leukocyte antigen (HLA)-A*24:02-restricted peptides derived from five cancer testis antigens, DEPDC1, MPHOSPH1, URLC10, CDCA1 and KOC1, which are overexpressed in esophageal cancer. This exploratory study investigated the immunologic mechanism of action of subcutaneous S-588410 emulsified with MONTANIDE ISA51VG adjuvant (median: 5 doses) by analyzing the expression of immune-related molecules, cytotoxic T-lymphocyte (CTL) response and T-lymphocytes bearing peptide-specific T-cell receptor (TCR) sequencing in tumor tissue or blood samples from 15 participants with HLA-A*24:02-positive esophageal cancer. Densities of CD8+, CD8+ Granzyme B+, CD8+ programmed death-1-positive (PD-1+) and programmed death-ligand 1-positive (PD-L1+) cells were higher in post- versus pre-vaccination tumor tissue. CTL response was induced in all patients for at least one of five peptides. The same sequences of peptide-specific TCRs were identified in post-vaccination T-lymphocytes derived from both tumor tissue and blood, suggesting that functional peptide-specific CTLs infiltrate tumor tissue after vaccination. Twelve (80%) participants had treatment-related adverse events (AEs). Injection site reaction was the most frequently reported AE (grade 1, n = 1; grade 2, n = 11). In conclusion, S-588410 induces a tumor immune response in esophageal cancer. Induction of CD8+ PD-1+ tumor-infiltrating lymphocytes and PD-L1 expression in the TME by vaccination suggests S-588410 in combination with anti-PD-(L)1 antibodies may offer a clinically useful therapy.Trial registration UMIN-CTR registration identifier: UMIN000023324.
Collapse
Affiliation(s)
- H Daiko
- Esophageal Surgery Division, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - T Marafioti
- Department of Cellular Pathology, University College London Hospital, London, UK
| | - T Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Y Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - T Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - K Kato
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - I Puccio
- Department of Cellular Pathology, University College London Hospital, London, UK
| | - T Hikichi
- R&D Department, Cancer Precision Medicine, Inc., Kawasaki, Japan
| | - S Yoshimura
- R&D Department, Cancer Precision Medicine, Inc., Kawasaki, Japan
| | - T Nakagawa
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Japan
| | - M Furukawa
- Biostatistics Department, Shionogi & Co., Ltd., Osaka, Japan
| | - K Stoeber
- Business Development, Shionogi & Co., Ltd., London, UK
| | - M Nagira
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Japan
| | - N Ide
- Project Management Department, Shionogi & Co., Ltd., Osaka, Japan
| | - T Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
29
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Rezaei-Kalat A, Parizadeh SMR, Javanbakht A, Hassanian SM, Ferns GA, Khazaei M, Avan A. Personalized Peptide-based Vaccination for Treatment of Colorectal Cancer: Rational and Progress. Curr Drug Targets 2019; 20:1486-1495. [DOI: 10.2174/1389450120666190619121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with
a high rate of morbidity and mortality. A large proportion of patients with early stage CRC, who undergo
conventional treatments develop local recurrence or distant metastasis and in this group of advanced
disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated
with chemotherapy and chemo-resistance may limit continuing conventional treatment alone.
Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features
of tumors in combination with conventional therapeutic approach could be used to eradicate residual
micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-
based vaccination therapy is one class of cancer treatment that could be used to induce tumorspecific
immune responses, through the recognition of specific antigen-derived peptides in tumor
cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was
to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy
in CRC patients as a novel therapeutic approach in the treatment of CRC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Javanbakht
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J Control Release 2019; 307:108-138. [DOI: 10.1016/j.jconrel.2019.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022]
|
31
|
Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, Liu Q. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Transl Oncol 2019; 12:733-738. [PMID: 30877975 PMCID: PMC6423365 DOI: 10.1016/j.tranon.2019.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer vaccines, including peptide-based vaccines, have been considered a key tool of effective and protective cancer immunotherapy because of their capacity to provide long-term clinical benefit for tumors. Among a large number of explorations of peptide antigen-based vaccines, cancer-testis antigens (CTAs), which are activated in cancers but silenced in normal tissues (except testis tissue), are considered as ideal targets. Currently, personalized treatment for cancer has become a trend due to its superior clinical efficacy. Thus, we envisage rational selection of CTA peptides to design "personalized" CTA peptide vaccines. This review summarizes the advances in CTA peptide vaccine research and discusses the feasibility of establishing "personalized" CTA peptide vaccines.
Collapse
Affiliation(s)
- Xiao Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Kai Xin
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University; The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University.
| |
Collapse
|
32
|
Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. JOURNAL OF ONCOLOGY 2019; 2019:5245034. [PMID: 30853982 PMCID: PMC6377965 DOI: 10.1155/2019/5245034] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy, including immune checkpoint blockade and adoptive CAR T-cell therapy, has clearly established itself as an important modality to treat melanoma and other malignancies. Despite the tremendous clinical success of immunotherapy over other cancer treatments, this approach has shown substantial benefit to only some of the patients while the rest of the patients have not responded due to immune evasion. In recent years, a combination of cancer immunotherapy together with existing anticancer treatments has gained significant attention and has been extensively investigated in preclinical or clinical studies. In this review, we discuss the therapeutic potential of novel regimens combining immune checkpoint inhibitors with therapeutic interventions that (1) increase tumor immunogenicity such as chemotherapy, radiotherapy, and epigenetic therapy; (2) reverse tumor immunosuppression such as TAMs, MDSCs, and Tregs targeted therapy; and (3) reduce tumor burden and increase the immune effector response with rationally designed dual or triple inhibitory chemotypes.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Donald L. Durden
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
- SignalRx Pharmaceuticals, Inc., San Diego, CA, USA
| |
Collapse
|
33
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
34
|
Phung CD, Nguyen HT, Tran TH, Choi HG, Yong CS, Kim JO. Rational combination immunotherapeutic approaches for effective cancer treatment. J Control Release 2018; 294:114-130. [PMID: 30553850 DOI: 10.1016/j.jconrel.2018.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Immunotherapy is an important mode of cancer treatment. Over the past decades, immunotherapy has improved the clinical outcome for cancer patients. However, in many cases, mutations in cancer cells, lack of selectivity, insufficiency of tumor-reactive T cells, and host immunosuppression limit the clinical benefit of immunotherapy. Combination approaches in immunotherapy may overcome these obstacles. Accumulating evidence demonstrates that combination immunotherapy is the future of cancer treatment. However, designing safe and rational combinations of immunotherapy with other treatment modalities is critical. This review will discuss the optimal immunotherapy-based combinations mainly with respect to the mechanisms of action of individual therapeutic agents that target multiple steps in evasion and progression of tumor.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
35
|
Abe T, Kohashi K, Takemoto J, Kinoshita F, Eto M, Oda Y. Clinicopathological Significance and Antitumor Effect of MPHOSPH1 in Testicular Germ Cell Tumor. J Cancer 2018; 9:4440-4448. [PMID: 30519350 PMCID: PMC6277652 DOI: 10.7150/jca.25279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/18/2018] [Indexed: 11/26/2022] Open
Abstract
MPHOSPH1, which is one of the kinesin superfamily proteins, has been reported to play an essential role in the carcinogenesis and progression of several kinds of cancers. MPHOSPH1 has also been suggested to be involved in STAT3 phosphorylation in hepatocellular carcinoma. However, the biological behavior of MPHOSPH1 in testicular germ cell tumors (TGCTs) is unclear at present. The purposes of this study were to investigate the correlation between the expression of MPHOSPH1 and clinicopathological factors and to examine the efficacy of MPHOSPH1 target therapy in TGCTs. We investigated 75 formalin-fixed paraffin-embedded TGCT samples, containing a total of 86 germ cell tumor components, by immunohistochemistry and 12 frozen samples by Western blotting. Moreover, we carried out in vitro studies to clarify the antitumor effect of MPHOSPH1 knockdown in embryonal carcinoma cell lines, NEC8 and NEC14, using small interference RNA (siRNA). A significantly high expression of MPHOSPH1 was recognized in embryonal carcinoma and yolk sac tumor components compared to the seminoma component (p<0.001, respectively). Clinically, non-seminoma cases are known to have worse prognosis than pure-seminoma cases. Interestingly, high MPHOSPH1 expression was associated with distant metastasis (p=0.001), and thus with advanced-stage disease in this study. High expression of MPHOSPH1 interacted with high expression of phosphorylated STAT3 (p=0.01). The in vitro experiments demonstrated that MPHOSPH1 interruption by siRNA resulted in a significant reduction of cell migration, invasion, proliferation and colony formation in both embryonal carcinoma cell lines (p<0.001, respectively). In conclusion, MPHOSPH1 may be a potential treatment option for TGCTs, and its expression may be a novel biomarker of poor prognosis.
Collapse
Affiliation(s)
- Tatsuro Abe
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junkichi Takemoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fumio Kinoshita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Høland M, Kolberg M, Danielsen SA, Bjerkehagen B, Eilertsen IA, Hektoen M, Mandahl N, van den Berg E, Smeland S, Mertens F, Sundby Hall K, Picci P, Sveen A, Lothe RA. Inferior survival for patients with malignant peripheral nerve sheath tumors defined by aberrant TP53. Mod Pathol 2018; 31:1694-1707. [PMID: 29946184 DOI: 10.1038/s41379-018-0074-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/22/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
Malignant peripheral nerve sheath tumor is a rare and aggressive disease with poor treatment response, mainly affecting adolescents and young adults. Few molecular biomarkers are used in the management of this cancer type, and although TP53 is one of few recurrently mutated genes in malignant peripheral nerve sheath tumor, the mutation prevalence and the corresponding clinical value of the TP53 network remains unsettled. We present a multi-level molecular study focused on aberrations in the TP53 network in relation to patient outcome in a series of malignant peripheral nerve sheath tumors from 100 patients and 38 neurofibromas, including TP53 sequencing, high-resolution copy number analyses of TP53 and MDM2, and gene expression profiling. Point mutations in TP53 were accompanied by loss of heterozygosity, resulting in complete loss of protein function in 8.2% of the malignant peripheral nerve sheath tumors. Another 5.5% had MDM2 amplification. TP53 mutation and MDM2 amplification were mutually exclusive and patients with either type of aberration in their tumor had a worse prognosis, compared to those without (hazard ratio for 5-year disease-specific survival 3.5, 95% confidence interval 1.78-6.98). Both aberrations had similar consequences on the gene expression level, as analyzed by a TP53-associated gene signature, a property also shared with the copy number aberrations and/or loss of heterozygosity at the TP53 locus, suggesting a common "TP53-mutated phenotype" in as many as 60% of the tumors. This was a poor prognostic phenotype (hazard ratio = 4.1, confidence interval:1.7-9.8), thus revealing a TP53-non-aberrant patient subgroup with a favorable outcome. The frequency of the "TP53-mutated phenotype" warrants explorative studies of stratified treatment strategies in malignant peripheral nerve sheath tumor.
Collapse
Affiliation(s)
- Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Matthias Kolberg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Stine Aske Danielsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Oral Biology, University of Oslo, Oslo, Norway.,Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Merete Hektoen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nils Mandahl
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Eva van den Berg
- Department of Genetics, The University Medical Center Groningen, Groningen, The Netherlands
| | - Sigbjørn Smeland
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Kirsten Sundby Hall
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Piero Picci
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
37
|
Wang Q, Ju X, Wang J, Fan Y, Ren M, Zhang H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett 2018; 438:17-23. [PMID: 30217563 DOI: 10.1016/j.canlet.2018.08.028] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023]
Abstract
The traditional view holds that apoptosis is non-immunogenic and does not induce an inflammatory response. However, recent studies have suggested that certain chemotherapeutic drugs that induce tumor cell apoptosis can induce immunogenic cell death (ICD) in cancer cells. This process is characterized by not only up-regulation of a series of signaling molecules in cancer cells, including expose of calreticulin (CRT), secretion of adenosine triphosphate (ATP) and release of high mobility group box 1 (HMGB1). In this review, we summarize recent progress in identifying and classifying ICD inducers; concepts and molecular mechanisms of ICD; and the impact and potential applications of ICD in clinical studies. We also discuss the contributions of ICD inducers in combination with other anticancer drugs in clinical applications.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yu Fan
- Department of Molecular Biology and Translational Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Meijia Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| |
Collapse
|
38
|
Martínez-Usatorre A, Donda A, Zehn D, Romero P. PD-1 Blockade Unleashes Effector Potential of Both High- and Low-Affinity Tumor-Infiltrating T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:792-803. [PMID: 29875150 DOI: 10.4049/jimmunol.1701644] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Antitumor T cell responses involve CD8+ T cells with high affinity for mutated self-antigen and low affinity for nonmutated tumor-associated Ag. Because of the highly individual nature of nonsynonymous somatic mutations in tumors, however, immunotherapy relies often on an effective engagement of low-affinity T cells. In this study, we studied the role of T cell affinity during peripheral priming with single-peptide vaccines and during the effector phase in the tumor. To that end, we compared the antitumor responses after OVA257-264 (N4) peptide vaccination of CD8+ T cells carrying TCRs with high (OT-1) and low (OT-3) avidity for the N4 peptide in B16.N4 tumor-bearing C57BL/6 mice. Additionally, we assessed the response of OT-1 cells to either high-affinity (B16.N4) or low-affinity (B16.T4) Ag-expressing tumors after high-affinity (N4) or low-affinity (T4) peptide vaccination. We noticed that although low-affinity tumor-specific T cells expand less than high-affinity T cells, they express lower levels of inhibitory receptors and produce more cytokines. Interestingly, tumor-infiltrating CD8+ T cells show similar in vivo re-expansion capacity to their counterparts in secondary lymphoid organs when transferred to tumor-free hosts, suggesting that T cells in tumors may be rekindled upon relief of tumor immunosuppression. Moreover, our results show that αPD-1 treatment enhances tumor control of high- and low-affinity ligand-expressing tumors, suggesting that combination of high-affinity peripheral priming by altered peptide ligands and checkpoint blockade may enable tumor control upon low-affinity Ag recognition in the tumor.
Collapse
Affiliation(s)
- Amaia Martínez-Usatorre
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Alena Donda
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Pedro Romero
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
39
|
Sundar R, Rha SY, Yamaue H, Katsuda M, Kono K, Kim HS, Kim C, Mimura K, Kua LF, Yong WP. A phase I/Ib study of OTSGC-A24 combined peptide vaccine in advanced gastric cancer. BMC Cancer 2018; 18:332. [PMID: 29587677 PMCID: PMC5870101 DOI: 10.1186/s12885-018-4234-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background We conducted a phase I/Ib, open-label, single-arm trial to assess the safety, tolerability and optimal scheduling regimen of OTSGC-A24 cancer vaccine in patients with advanced gastric cancer. Methods Patients with advanced gastric cancer with HLA-A*24:02 haplotype were included in this study. OTSGC-A24 was administered at 1 mg in 3-weekly (3w), 2-weekly (2w), and weekly (1w) cohorts to evaluate the safety, immunological response and schedule. Based on the highest specific cytotoxic T lymphocyte (CTL) induction rate at 4 weeks, using the ELISPOT test, cohorts were expanded to define the optimal dosing schedule for OTSGC-A24. Results In this study, 24 advanced gastric cancer patients with HLA-A*24:02 haplotype were enrolled and treated in 3 cohorts (3w cohort: 3; 2w cohort: 11 and 1w cohort: 10 patients). The most common adverse events were decreased appetite (29%), diarrhea (21%), myalgia (25%). The most common treatment-related adverse event was injection site erythema (25%). No dose-limiting toxicities were observed in any cohort and OTSGC-A24 was well tolerated. Positive CTL responses after vaccination were observed in 15 patients (75%) at 4 weeks: 3w cohort (33%), 2w cohort (88%), 1w cohort (78%). At 12 weeks, 18 patients had responded (90%); 3w cohort (100%), 2w cohort (100%), 1w cohort (78%). The best radiological was stable disease (40%). Median progression free survival was 1.7 months (95% CI: 1.4 to 3.5) and median overall survival was 5.7 months (95% CI 3.8 to 8.6). Conclusions OTSGC-A24 combined peptide cancer vaccine was well tolerated. Significant responses in CTL were observed and the recommended phase 2 dose is 1 mg OTSGC-A24 sub-cutaneous, every 2 weeks. Although no radiological response was observed, a respectable overall survival was achieved, consistent with other immunotherapy agents being investigated in gastric cancer. Trial registration ClinicalTrials.gov Identifier: NCT01227772, Date registered: 21 Oct 2010.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Health System, 5 Lower Kent Ridge Road, Main Building Level 2, Singapore, S119074, Singapore
| | | | - Hiroki Yamaue
- Wakayama Medical University Hospital, Wakayama, Japan
| | | | - Koji Kono
- Cancer Science Institute, National University of Singapore, Singapore, Singapore.,Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | | | - Chan Kim
- Yonsei Cancer Center, Seoul, South Korea
| | - Kousaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan.,Department of Advanced Cancer Immunotherapy, Fukushima Medical University, Fukushima, Japan.,Department of Progressive DOHaD Research, Fukushima Medical University, Fukushima, Japan
| | - Ley-Fang Kua
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Health System, 5 Lower Kent Ridge Road, Main Building Level 2, Singapore, S119074, Singapore. .,Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Hijikata Y, Okazaki T, Tanaka Y, Murahashi M, Yamada Y, Yamada K, Takahashi A, Inoue H, Kishimoto J, Nakanishi Y, Oda Y, Nakamura Y, Tani K. A phase I clinical trial of RNF43 peptide-related immune cell therapy combined with low-dose cyclophosphamide in patients with advanced solid tumors. PLoS One 2018; 13:e0187878. [PMID: 29293510 PMCID: PMC5749706 DOI: 10.1371/journal.pone.0187878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to investigate the safety and the tolerability of combined cellular immunotherapy with low-dose cyclophosphamide (CPA) in patients with advanced solid tumors. This study targeted a novel tumor-associated antigen, ring finger protein 43 (RNF43). Eligible patients were resistant to standard therapy, HLA-A*24:02- or A*02:01-positive and exhibiting high RNF43 expression in their tumor cells. They were administered 300 mg/m2 CPA followed by autologous lymphocytes, preliminarily cultured with autologous RNF43 peptide-pulsed dendritic cells (DCs), RNF43 peptide-pulsed DCs and systemic low dose interleukin-2. The primary endpoint was safety whereas the secondary endpoint was immunological and clinical response to treatment. Ten patients, in total, were enrolled in this trial. Primarily, no adverse events greater than Grade 3 were observed. Six out of 10 patients showed stable disease (SD) on day 49, while 4 other patients showed progressive disease. In addition, one patient with SD exhibited a partial response after the second trial. The frequency of regulatory T cells (Tregs) in patients with SD significantly decreased after CPA administration. The ratio of interferon-γ-producing, tumor-reactive CD8+ T cells increased with time in patients with SD. We successfully showed that the combination of immune cell therapy and CPA was safe, might induce tumor-specific immune responses and clinical efficacy, and was accompanied by a decreased ratio of Tregs in patients with RNF43-positive advanced solid tumors.
Collapse
Affiliation(s)
- Yasuki Hijikata
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiko Okazaki
- ARO Advanced Medical Center, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshihiro Tanaka
- ARO Advanced Medical Center, Kyushu University Hospital, Fukuoka, Japan
| | - Mutsunori Murahashi
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Pathological Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunari Yamada
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Atsushi Takahashi
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroyuki Inoue
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Junji Kishimoto
- ARO Advanced Medical Center, Kyushu University Hospital, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute of Diseases of Chest, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakamura
- Human genome center, Institute of medical science, University of Tokyo, Tokyo, Japan
| | - Kenzaburo Tani
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
- Project Division of ALA Advanced Medical Research, Advanced Medical Science of Internal Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
42
|
Donaldson B, Al-Barwani F, Pelham SJ, Young K, Ward VK, Young SL. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer 2017; 5:69. [PMID: 28806910 PMCID: PMC5556368 DOI: 10.1186/s40425-017-0270-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer is responsible for almost 700,000 deaths annually worldwide. Therapeutic vaccination is a promising alternative to conventional treatment for colorectal cancer, using vaccines to induce targeted immune responses against tumour-associated antigens. In this study, we have developed chimaeric virus-like particles (VLP), a form of non-infectious non-replicative subunit vaccine consisting of rabbit haemorrhagic disease virus (RHDV) VP60 capsid proteins containing recombinantly inserted epitopes from murine topoisomerase IIα and survivin. These vaccines were developed in mono- (T.VP60, S.VP60) and multi-target (TS.VP60) forms, aiming to elucidate the potential benefits from multi-target vaccination. Methods Chimaeric RHDV VLP were developed by recombinantly inserting immune epitopes at the N-terminus of VP60. Vaccines were tested against a murine model of colorectal cancer by establishing MC38-OVA tumours subcutaneously. Unmethylated CpG DNA oligonucleotides (CpGs) were used as a vaccine adjuvant. Statistical tests employed included the Mantel-Cox log-rank test, ANOVA and unpaired t-tests depending on the data analysed, with a post hoc Bonferroni adjustment for multiple measures. Results Chimaeric RHDV VLP were found to form a composite particle in the presence of CpGs. Overall survival was significantly improved amongst mice bearing MC38-OVA tumours following vaccination with T.VP60 (60%, 9/15), S.VP60 (60%, 9/15) or TS.VP60 (73%, 11/15). TS.VP60 significantly prolonged the vaccine-induced remission period in comparison to each mono-therapy. Conclusions Chimaeric VLP containing multiple epitopes were found to confer an advantage for therapeutic vaccination in a model of colorectal cancer based on the prolongation of remission prior to tumour escape. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0270-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Braeden Donaldson
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Farah Al-Barwani
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Simon J Pelham
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Katie Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah L Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
43
|
Tosi A, Dalla Santa S, Cappuzzello E, Marotta C, Walerych D, Del Sal G, Zanovello P, Sommaggio R, Rosato A. Identification of a HLA-A*0201-restricted immunogenic epitope from the universal tumor antigen DEPDC1. Oncoimmunology 2017; 6:e1313371. [PMID: 28919988 PMCID: PMC5593712 DOI: 10.1080/2162402x.2017.1313371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 11/21/2022] Open
Abstract
The identification of universal tumor-specific antigens shared between multiple patients and/or multiple tumors is of great importance to overcome the practical limitations of personalized cancer immunotherapy. Recent studies support the involvement of DEPDC1 in many aspects of cancer traits, such as cell proliferation, resistance to induction of apoptosis and cell invasion, suggesting that it may play key roles in the oncogenic process. In this study, we report that DEPDC1 expression is upregulated in most types of human tumors, and closely linked to a poorer prognosis; therefore, it might be regarded as a novel universal oncoantigen potentially suitable for targeting many different cancers. In this regard, we report the identification of a HLA-A*0201 allele-restricted immunogenic DEPDC1-derived epitope, which is able to induce cytotoxic T lymphocytes (CTL) exerting a strong and specific functional response in vitro toward not only peptide-loaded cells but also triple negative breast cancer (TNBC) cells endogenously expressing the DEPDC1 protein. Such CTL are also therapeutically active against human TNBC xenografts in vivo upon adoptive transfer in immunodeficient mice. Overall, these data provide evidence that this DEPDC1-derived antigenic epitope can be exploited as a new tool for developing immunotherapeutic strategies for HLA-A*0201 patients with TNBC, and potentially many other cancers.
Collapse
Affiliation(s)
- Anna Tosi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Giannino Del Sal
- National Laboratory CIB (LNCIB), Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| |
Collapse
|
44
|
Wada S, Yada E, Ohtake J, Fujimoto Y, Uchiyama H, Yoshida S, Sasada T. Current status and future prospects of peptide-based cancer vaccines. Immunotherapy 2016; 8:1321-1333. [PMID: 27993087 DOI: 10.2217/imt-2016-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy has attracted attention worldwide owing to the recent development of immune checkpoint inhibitors. However, these therapies have shown limited efficacy, and further advancements are needed before these modalities can progress to widespread use. Immune checkpoint inhibitors are a type of nonspecific cancer immunotherapy, and antitumor effects are only observed when cancer-specific T cells are found within the nonspecifically activated T-cell group. In order to facilitate the development of potent immunotherapies, selective enhancement of cancer-specific T cells is essential. In this report, we discuss current and future perspectives, including the latest clinical trials of cancer-specific immunotherapies, particularly cancer peptide vaccines.
Collapse
Affiliation(s)
- Satoshi Wada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Erika Yada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Junya Ohtake
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yuki Fujimoto
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hidemi Uchiyama
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Shintaro Yoshida
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
45
|
Beyranvand Nejad E, Welters MJP, Arens R, van der Burg SH. The importance of correctly timing cancer immunotherapy. Expert Opin Biol Ther 2016; 17:87-103. [PMID: 27802061 DOI: 10.1080/14712598.2017.1256388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The treatment options for cancer-surgery, radiotherapy and chemotherapy-are now supplemented with immunotherapy. Previously underappreciated but now gaining strong interest are the immune modulatory properties of the three conventional modalities. Moreover, there is a better understanding of the needs and potential of the different immune therapeutic platforms. Key to improved treatment will be the combinations of modalities that complete each other's shortcomings. Area covered: Tumor-specific T-cells are required for optimal immunotherapy. In this review, the authors focus on the correct timing of different types of chemotherapeutic agents or immune modulators and immunotherapeutic drugs, not only for the activation and expansion of tumor-specific T-cells but also to support and enhance their anti-tumor efficacy. Expert opinion: At an early phase of disease, clinical success can be obtained using single treatment modalities but at later disease stages, combinations of several modalities are required. The gain in success is determined by a thorough understanding of the direct and indirect immune effects of the modalities used. Profound knowledge of these effects requires optimal tuning of immunomonitoring. This will guide the appropriate combination of treatments and allow for correct sequencing the order and interval of the different therapeutic modalities.
Collapse
Affiliation(s)
- Elham Beyranvand Nejad
- a Department of Medical Oncology , Leiden University Medical Center , Leiden , The Netherlands.,b Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - Marij J P Welters
- a Department of Medical Oncology , Leiden University Medical Center , Leiden , The Netherlands
| | - Ramon Arens
- b Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - Sjoerd H van der Burg
- a Department of Medical Oncology , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
46
|
Li Y, Kobayashi K, Mona MM, Satomi C, Okano S, Inoue H, Tani K, Takahashi A. Immunogenic FEAT protein circulates in the bloodstream of cancer patients. J Transl Med 2016; 14:275. [PMID: 27659353 PMCID: PMC5034574 DOI: 10.1186/s12967-016-1034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND FEAT is an intracellular protein that potently drives tumorigenesis in vivo. It is only weakly expressed in normal human tissues, including the testis. In contrast, FEAT is aberrantly upregulated in most human cancers. The present study was designed to investigate whether FEAT is applicable to tumor immunotherapy and whether FEAT is discernible in the bloodstream as a molecular biomarker of human cancers. METHODS Two mouse FEAT peptides with predicted affinities for major histocompatibility complex H-2Kb and H-2Db were injected subcutaneously into C57BL/6 mice before subcutaneous transplantation of isogenic B16-F10 melanoma cells. Intracellular localization of FEAT was determined by immunogold electron microscopy. Immunoprecipitation was performed to determine whether FEAT was present in blood from cancer patients. A sandwich enzyme-linked immunosorbent assay was used to measure FEAT concentrations in plasma from 30 cancer patients and eight healthy volunteers. RESULTS The vaccination experiments demonstrated that FEAT was immunogenic, and that immune responses against FEAT were induced without deleterious side effects in mice. Electron microscopy revealed localization of FEAT in the cytoplasm, mitochondria, and nucleus. Immunoprecipitation identified FEAT in the blood plasma from cancer patients, while FEAT was not detected in plasma exosomes. Plasma FEAT levels were significantly higher in the presence of cancers. CONCLUSIONS These findings suggest that FEAT is a candidate for applications in early diagnosis and prevention of some cancers.
Collapse
Affiliation(s)
- Yan Li
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kyosuke Kobayashi
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
| | - Marwa M Mona
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan.,Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Chikako Satomi
- Division of Translational Cancer Research, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinji Okano
- Department of Innovative Applied Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan.,Division of ALA Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsushi Takahashi
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan. .,Division of Translational Cancer Research, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan. .,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|