1
|
Li Z, Lao Y, Yan R, Li F, Guan X, Dong Z. N6-methyladenosine in inflammatory diseases: Important actors and regulatory targets. Gene 2025; 936:149125. [PMID: 39613051 DOI: 10.1016/j.gene.2024.149125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications in eukaryotic cells. It regulates RNA function and stability by modifying RNA methylation through writers, erasers, and readers. As a result, m6A plays a critical role in a wide range of biological processes. Inflammation is a common and fundamental pathological process. Numerous studies have investigated the role of m6A modifications in inflammatory diseases. This review highlights the mechanisms by which m6A contributes to inflammation, focusing on pathogen-induced infectious diseases, autoimmune disorders, allergic conditions, and metabolic disorder-related inflammatory diseases.
Collapse
Affiliation(s)
- Zewen Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Yan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fuhan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Zhang W, Lang R. Association between autoimmune liver diseases and chronic hepatitis B: A multivariable Mendelian randomization study in European population. Prev Med 2024; 184:107984. [PMID: 38705484 DOI: 10.1016/j.ypmed.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Observational studies have indicated a link between autoimmune liver diseases (AILD) and chronic hepatitis B (CHB) through observational studies. The association between AILD and CHB remains indeterminate. METHODS A two-sample Mendelian randomization (MR) analysis was conducted to scrutinize the causal nexus between AILD and CHB utilizing summary statistics derived from extensive genome-wide association studies (GWASs) in European populations. The primary statistical methodology employed was the inverse variance-weighted (IVW) method to deduce the causal connection of AILD on CHB. This study incorporated primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and autoimmune hepatitis (AIH) as subtypes of AILD. Additionally, we conducted a multivariable MR (MVMR) analysis to account for the potential confounding effects of smoking, alcohol consumption, body mass index (BMI), and some autoimmune diseases. RESULTS Our MR investigation encompassed a cohort of 725,816 individuals. The MR analysis revealed that genetically predicted PSC significantly correlated with a reduced risk of CHB (IVW OR = 0.857; 95%CI: 0.770-0.953, P = 0.005). Conversely, the reverse MR analysis suggested that genetic susceptibility to PSC might not modify the risk of CHB (IVW OR = 1.004; 95% CI: 0.958-1.053, P = 0.866). Genetically proxied PBC and AIH exhibited no discernible causal association with CHB in the MR analysis using the IVW method (P = 0.583; P = 0.425). The MVMR analysis still indicated a decreased risk of CHB associated with PSC (OR = 0.853, P = 0.003). CONCLUSION Our study elucidates a causal relationship between PSC and a diminished risk of CHB.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
van Vorstenbosch R, van Munster K, Pachen D, Mommers A, Stavropoulos G, van Schooten FJ, Ponsioen C, Smolinska A. The Detection of Primary Sclerosing Cholangitis Using Volatile Metabolites in Fecal Headspace and Exhaled Breath. Metabolites 2023; 14:23. [PMID: 38248826 PMCID: PMC10819709 DOI: 10.3390/metabo14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Kim van Munster
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Danielle Pachen
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Alex Mommers
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Georgios Stavropoulos
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Frederik-Jan van Schooten
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Agnieszka Smolinska
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| |
Collapse
|
4
|
Chen N, Xia X, Hanif Q, Zhang F, Dang R, Huang B, Lyu Y, Luo X, Zhang H, Yan H, Wang S, Wang F, Chen J, Guan X, Liu Y, Li S, Jin L, Wang P, Sun L, Zhang J, Liu J, Qu K, Cao Y, Sun J, Liao Y, Xiao Z, Cai M, Mu L, Siddiki AZ, Asif M, Mansoor S, Babar ME, Hussain T, Silva GLLP, Gorkhali NA, Terefe E, Belay G, Tijjani A, Zegeye T, Gebre MG, Ma Y, Wang Y, Huang Y, Lan X, Chen H, Migliore NR, Colombo G, Semino O, Achilli A, Sinding MHS, Lenstra JA, Cheng H, Lu W, Hanotte O, Han J, Jiang Y, Lei C. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat Commun 2023; 14:7803. [PMID: 38016956 PMCID: PMC10684552 DOI: 10.1038/s41467-023-43626-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle.
Collapse
Affiliation(s)
- Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment Science, Yunnan University, Kunming, 650500, China
| | - Huixuan Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shikang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangkai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, China
| | - Yanhong Cao
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Junli Sun
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, 530001, China
| | - Zhengzhong Xiao
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Lan Mu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, 650224, China
| | - Amam Zonaed Siddiki
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, 4225, Bangladesh
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Masroor Ellahi Babar
- The University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, 29050, Pakistan
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Islamabad, 44100, Pakistan
| | | | - Neena Amatya Gorkhali
- National Animal Breeding and Genetics Centre, National Animal Science Research Institute, Nepal Agriculture Research Council, Khumaltar, Lalitpur, 45200, Nepal
| | - Endashaw Terefe
- College of Agriculture and Environmental Science, Department of Animal Science, Arsi University, Asella, Ethiopia
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia
| | - Gurja Belay
- College of Natural and Computational Sciences, The School of Graduate Studies, Addis Ababa University, 1000, Addis Ababa, Ethiopia
| | - Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Tsadkan Zegeye
- Mekelle Agricultural Research Center, P.O. Box 258, 7000, Mekelle, Tigray, Ethiopia
| | - Mebrate Genet Gebre
- School of Animal and Rangeland Science, College of Agriculture, Haramaya University, 2040, Haramaya, Oromia, Ethiopia
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-1350, Copenhagen, Denmark
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China.
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100, Nairobi, Kenya.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Wang Q, Lu Q, Jia S, Zhao M. Gut immune microenvironment and autoimmunity. Int Immunopharmacol 2023; 124:110842. [PMID: 37643491 DOI: 10.1016/j.intimp.2023.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
A variety of immune cells or tissues are present in the gut to form the gut immune microenvironment by interacting with gut microbiota, and to maintain the gut immune homeostasis. Accumulating evidence indicated that gut microbiota dysbiosis might break the homeostasis of the gut immune microenvironment, which was associated with many health problems including autoimmune diseases. Moreover, disturbance of the gut immune microenvironment can also induce extra-intestinal autoimmune disorders through the migration of intestinal pro-inflammatory effector cells from the intestine to peripheral inflamed sites. This review discussed the composition of the gut immune microenvironment and its association with autoimmunity. These findings are expected to provide new insights into the pathogenesis of various autoimmune disorders, as well as novel strategies for the prevention and treatment against related diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
6
|
Milligan G. GPR35: from enigma to therapeutic target. Trends Pharmacol Sci 2023; 44:263-273. [PMID: 37002007 DOI: 10.1016/j.tips.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
The orphan G-protein-coupled receptor 35 (GPR35), although poorly characterised, is attracting considerable interest as a therapeutic target. Marked differences in pharmacology between human and rodent orthologues of the receptor and a dearth of antagonists with affinity for mouse and rat GPR35 have previously restricted the use of preclinical disease models. The development of improved ligands, novel transgenic knock-in mouse lines, and detailed analysis of the disease relevance of single-nucleotide polymorphisms (SNPs) have greatly enhanced understanding of the key roles of GPR35 and have stimulated efforts towards disease-targeted proof-of-concept studies. In this opinion article, new information on the biology of the receptor is considered, whilst insight into how GPR35 is currently being assessed for therapeutic utility - in areas ranging from inflammatory bowel diseases to nonalcoholic steatohepatitis and various cancers - is also provided.
Collapse
Affiliation(s)
- Graeme Milligan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Abstract
In recent years, it has become clear that gut microbiota plays a major role in the human body, both in health and disease. Because of that, the gut microbiome and its impact on human well-being are getting wider and wider attention. Studies focused on the liver are not an exception. However, the majority of the analyses are concentrated on the bacterial part of the gut microbiota, while the fungi living in the human intestines are often omitted or underappreciated. This review is focused on the gut mycobiome as an important factor that should be taken into consideration regarding liver homeostasis and its perturbations. We have collected the findings in this field and we discuss their importance. We aim to emphasize the fungal compositional changes related to liver diseases and, by that, provide novel insights into the directions of liver research and gut microbiota as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
8
|
Huang Y, Zhang S, Weng JF, Huang D, Gu WL. Recent discoveries in microbiota dysbiosis, cholangiocytic factors, and models for studying the pathogenesis of primary sclerosing cholangitis. Open Med (Wars) 2022; 17:915-929. [PMID: 35647306 PMCID: PMC9106112 DOI: 10.1515/med-2022-0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a cholangiopathy caused by genetic and microenvironmental changes, such as bile homeostasis disorders and microbiota dysbiosis. Therapeutic options are limited, and proven surveillance strategies are currently lacking. Clinically, PSC presents as alternating strictures and dilatations of biliary ducts, resulting in the typical “beaded” appearance seen on cholangiography. The pathogenesis of PSC is still unclear, but cholangiocytes play an essential role in disease development, wherein a reactive phenotype is caused by the secretion of neuroendocrine factors. The liver–gut axis is implicated in the pathogenesis of PSC owing to the dysbiosis of microbiota, but the underlying mechanism is still poorly understood. Alterations in cholangiocyte responses and related signalling pathways during PSC progression were elucidated by recent research, providing novel therapeutic targets. In this review, we summarise the currently known underlying mechanisms of PSC pathogenesis caused by the dysbiosis of microbiota and newly reported information regarding cholangiocytes in PSC. We also summarise recently reported in vitro and in vivo models for studying the pathogenesis of PSC.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
9
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Lemoinne S, Kemgang A, Ben Belkacem K, Straube M, Jegou S, Corpechot C, Chazouillères O, Housset C, Sokol H. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut 2020; 69:92-102. [PMID: 31003979 DOI: 10.1136/gutjnl-2018-317791] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Patients with primary sclerosing cholangitis (PSC) were previously shown to display a bacterial gut dysbiosis but fungal microbiota has never been examined in these patients. The aim of this study was to assess the fungal gut microbiota in patients with PSC. DESIGN We analysed the faecal microbiota of patients with PSC and concomitant IBD (n=27), patients with PSC and no IBD (n=22), patients with IBD and no PSC (n=33) and healthy subjects (n=30). Bacterial and fungal composition of the faecal microbiota was determined using 16S and ITS2 sequencing, respectively. RESULTS We found that patients with PSC harboured bacterial dysbiosis characterised by a decreased biodiversity, an altered composition and a decreased correlation network density. These alterations of the microbiota were associated with PSC, independently of IBD status. For the first time, we showed that patients with PSC displayed a fungal gut dysbiosis, characterised by a relative increase in biodiversity and an altered composition. Notably, we observed an increased proportion of Exophiala and a decreased proportion of Saccharomyces cerevisiae. Compared with patients with IBD and healthy subjects, the gut microbiota of patients with PSC exhibited a strong disruption in bacteria-fungi correlation network, suggesting an alteration in the interkingdom crosstalk. CONCLUSION This study demonstrates that bacteria and fungi contribute to gut dysbiosis in PSC.
Collapse
Affiliation(s)
- Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Astrid Kemgang
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Karima Ben Belkacem
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marjolène Straube
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sarah Jegou
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Corpechot
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Olivier Chazouillères
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Harry Sokol
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,UMR1319 Micalis, AgroParisTech, INRA, Jouy-en-Josas, France
| |
Collapse
|
11
|
The Critical Role of Bach2 in Shaping the Balance between CD4 + T Cell Subsets in Immune-Mediated Diseases. Mediators Inflamm 2019; 2019:2609737. [PMID: 32082072 PMCID: PMC7012215 DOI: 10.1155/2019/2609737] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 01/12/2023] Open
Abstract
The transcription factor Bach2 which is predominantly expressed in B and T lymphocytes represses the expression of genes by forming heterodimers with small Maf and Batf proteins and binding to the corresponding sequence on the DNA. In this way, Bach2 serves as a highly conserved repressor which controls the terminal differentiation and maturation of both B and T lymphocytes. It is required for class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes in activated B cells, and its function in B cell differentiation has been well-described. Furthermore, emerging data show that Bach2 regulates transcriptional activity in T cells at super enhancers or regions of high transcriptional activity, thus stabilizing immunoregulatory capacity and maintaining T cell homeostasis. Bach2 is also critical for the formation and function of CD4+ T cell lineages (Th1, Th2, Th9, Th17, T follicular helper (Tfh), and regulatory T (Treg) cells). Genetic variations within Bach2 locus are associated with numerous immune-mediated diseases including multiple sclerosis (MS), rheumatoid arthritis (RA), chronic pancreatitis (CP), type 2 chronic airway inflammation, inflammatory bowel disease (IBD), and type 1 diabetes. Here, we reveal a critical role of Bach2 in regulating T cell biology and the correlation with these immune-mediated diseases.
Collapse
|
12
|
Meng Y, Xu H, Zhang S, Zhang J, Wang L, Tang H, Wu Y. Genetic polymorphisms near IL-21 gene associated with Th17 cytokines confer risk for systemic lupus erythematosus in Chinese Han population. Lupus 2019; 28:406-413. [PMID: 30774014 DOI: 10.1177/0961203319829821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Interleukin-21 (IL-21) contributes to expansion, differentiation, and modulation of various immunocompetent cells. Deregulated production of IL-21 plays a role of cardinal significance in the pathogenesis of systemic lupus erythematosus (SLE). We aimed to determine whether single nucleotide polymorphisms (SNP) near the IL-21 gene have significant association with SLE susceptibility and the T helper-related inflammatory cytokine profile of SLE patients. METHODS We enrolled 460 SLE patients and 460 healthy controls. Whole genome analysis was used to investigate different genes including IL-21. Loci rs11725913, rs11937669, rs7676539, rs111438679, rs115935829, rs373549, rs4487356, and rs79923870 were further genotyped using an improved multiplex ligation detection reaction technique. Susceptibility, levels of Th-related inflammatory cytokines, and some clinical indexes of SLE patients were analyzed. RESULTS rs11725913 and rs11937669 were identified for association with SLE in Chinese Han Population. The allelic frequency of rs11725913 approached significance (odds ratio (OR) (95% Confidence Interval (CI)) = 1.431 (1.122-1.825), P = 0.004). GT genotype at rs11725913 and GA genotype at rs11937669 were associated with SLE susceptibility (OR (95% CI) = 1.448 (1.074-1.952), P = 0.015; OR (95%CI) = 1.356 (1.013-1.815), P = 0.040, respectively). Dominant model analysis provided us with further validation (rs11725913: OR (95%CI) = 1.502 (1.126-2.004), P = 0.006; rs11937669: OR (95%CI) = 1.356 (1.025-1.793), P = 0.033). Cases with rs11937669 risk GA-genotype had higher serum IL-6 concentration than others ( P = 0.022). Dominant model analysis showed that patients with the wild type (AA-genotype) at rs11937669 had significantly lower soluble CD40 ligand ( P = 0.029) but higher IL-17A ( P = 0.040) compared with others. Cases carrying rs11725913 T allele had higher gamma glutamyl transpeptidase level ( P = 0.045) than those without. CONCLUSIONS We identified two new loci, rs11725913 and rs11937669, associated with SLE risk in Chinese Han population. This research provided a new insight into the significant relationship between polymorphisms upstream IL-21 and Th17 inflammatory response, which suggest that the sequence upstream of the IL-21 gene is an important region involved in the Th17-related pathway.
Collapse
Affiliation(s)
- Yanming Meng
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junlong Zhang
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Wang
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Honghu Tang
- 2 Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Chi ZC. Intestinal microbiome and autoimmune liver disease. Shijie Huaren Xiaohua Zazhi 2019; 27:50-62. [DOI: 10.11569/wcjd.v27.i1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, it has been proved that intestinal microbial-related disorders are involved in the development and progression of multi-organ system diseases. Intestinal microflora is the accumulation of microbial antigens and activated immune cells. Changes in the composition of intestinal microflora (biological disorders) can destroy the systemic immune tolerance of intestinal and symbiotic bacteria. Toll-like receptors in the intestine recognize microbial-related molecular patterns and T helper lymphocyte subpopulations that can cross-react with host antigens (molecular mimics). Activated enterogenous lymphocytes can migrate to lymph nodes, and enterogenous microbial antigens can migrate to extraintestinal sites. Inflammasomes can form in hepatocytes and hepatic stellate cells, which can drive inflammatory, immune-mediated and fibrotic responses. This article reviews and evaluates the role of intestinal microorganisms in the pathogenesis and treatment of autoimmune liver disease.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Affiliated Hospital of Shandong University Medical College, Qingdao 266011, Shandong Province, China
| |
Collapse
|
14
|
Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol 2018; 15:595-609. [PMID: 29706647 PMCID: PMC6079090 DOI: 10.1038/cmi.2018.7] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial cells significantly outnumber human cells in the body, and the microbial flora at mucosal sites are shaped by environmental factors and, less intuitively, act on host immune responses, as demonstrated by experimental data in germ-free and gnotobiotic studies. Our understanding of this link stems from the established connection between infectious bacteria and immune tolerance breakdown, as observed in rheumatic fever triggered by Streptococci via molecular mimicry, epitope spread and bystander effects. The availability of high-throughput techniques has significantly advanced our capacity to sequence the microbiome and demonstrated variable degrees of dysbiosis in numerous autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, multiple sclerosis and autoimmune liver disease. It remains unknown whether the observed differences are related to the disease pathogenesis or follow the therapeutic and inflammatory changes and are thus mere epiphenomena. In fact, there are only limited data on the molecular mechanisms linking the microbiota to autoimmunity, and microbial therapeutics is being investigated to prevent or halt autoimmune diseases. As a putative mechanism, it is of particular interest that the apoptosis of intestinal epithelial cells in response to microbial stimuli enables the presentation of self-antigens, giving rise to the differentiation of autoreactive Th17 cells and other T helper cells. This comprehensive review will illustrate the data demonstrating the crosstalk between intestinal microbiome and host innate and adaptive immunity, with an emphasis on how dysbiosis may influence systemic autoimmunity. In particular, a gut–liver axis involving the intestinal microbiome and hepatic autoimmunity is elucidated as a paradigm, considering its anatomic and physiological connections.
Collapse
Affiliation(s)
- Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - M E Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China.
| |
Collapse
|
15
|
Hu ED, Chen DZ, Wu JL, Lu FB, Chen L, Zheng MH, Li H, Huang Y, Li J, Jin XY, Gong YW, Lin Z, Wang XD, Xu LM, Chen YP. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cell Immunol 2018; 328:24-32. [PMID: 29627063 DOI: 10.1016/j.cellimm.2018.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
Abstract
Autoimmune hepatitis (AIH) is chronic autoimmune liver disease accompanied with the imbalance of Treg/Th17 and increased intestinal permeability. We investigated the effects of a high fiber diet and sodium butyrate on the Treg/Th17 and intestinal barrier function in an experimental autoimmune hepatitis. Intraperitoneal injection of hepatic antigen (S100) was used to induce experimental autoimmune hepatitis mice model and mice were divided into normal control, S100 model control, S100 plus high fiber diet and S100 plus sodium butyrate. Serum aminotransferases and liver histology were examined. Short chain fatty acids in feces were determined by HPLC. The ratio of CD4 + C25 + Foxp3+ Treg and CD4 + IL-17 + Th17 were evaluated by flow cytometry. Tight junction proteins Zonula ocluden, Occludin and Claudin-1 were used to assess intestinal barrier function, so does Escherichia coli protein in the liver. Mice fed with either high fiber diet or sodium butyrate showed significantly lower levers of serum aminotransferases and minor liver injury compared to that of model control. Moreover, the ratio of Treg/Th17 was significantly higher in high fiber diet and sodium butyrate fed mice than that in model control. Furthermore, high fiber diet and sodium butyrate significantly increased intestinal tight junction proteins and decreased Escherichia Coli protein in the liver. In conclusion, high fiber diet and sodium butyrate can attenuate development of autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier function.
Collapse
Affiliation(s)
- En-De Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Da-Zhi Chen
- State Key Laboratory of Infectious Diseases, Medicine School of Zhejiang University, Hangzhou 310003,China
| | - Jin-Lu Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Feng-Bin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Lu Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Ming-Hua Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Hui Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Yu Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Ji Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Xiao-Ya Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Yue-Wen Gong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Xiao-Dong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China
| | - Lan-Man Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China.
| | - Yong-Ping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|