1
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Zhao S, Chen X, Chang B, Tian B. HMGA1 influence on iron-induced cell death in Tfh cells of SLE patients. Cell Biol Toxicol 2024; 41:6. [PMID: 39707065 DOI: 10.1007/s10565-024-09955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
The autoimmune disorder known as Systemic Lupus Erythematosus (SLE) exhibits intricate features with abnormal immune responses leading to tissue injury. The generation of antibodies and the disruption of immune regulation heavily depend on the pivotal function of T follicular helper (Tfh) cells. Iron dysregulation is significant in autoimmune diseases, impacting immune cell function and disease progression. Our study investigates the role of the HMGA1/EZH2/STAT3/GPX4 axis in modulating Tfh cells and iron homeostasis in SLE. Abnormal Tfh cell populations in SLE patients demonstrate reduced susceptibility to iron-induced cell death, with HMGA1 identified as a key player in Tfh cell proliferation and sensitivity to iron-induced death. Experimental interventions reveal the inhibitory role of the HMGA1 axis in Tfh cells' susceptibility to iron-induced death, suggesting therapeutic avenues for SLE and related autoimmune disorders. Our study underscores the importance of iron homeostasis in autoimmune conditions, providing novel insights and treatment strategies for further research in this field.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaotong Chen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Bohan Chang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Bailing Tian
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Tu S, Zou Y, Yang M, Zhou X, Zheng X, Jiang Y, Wang H, Chen B, Qian Q, Dou X, Bao J, Tian L. Ferroptosis in hepatocellular carcinoma: Mechanisms and therapeutic implications. Biomed Pharmacother 2024; 182:117769. [PMID: 39689515 DOI: 10.1016/j.biopha.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy. Ferroptosis regulators are beneficial in maintaining cellular homeostasis and tissue health, have shown efficacy in treating diseases of the hepatic system. However, the mechanisms of action and molecular regulatory pathways of ferroptosis in hepatocellular carcinoma (HCC) have not been fully elucidated. Therefore, deciphering the role of ferroptosis and its mechanisms in HCC progression is crucial for treating the disease. In this review, we introduce the morphological features and biochemical functions of ferroptosis, outline the molecular regulatory pathways of ferroptosis, and highlights the therapeutic potential of ferroptosis inhibitors and modulators to target it in HCC.
Collapse
Affiliation(s)
- Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Xinlei Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xu Zheng
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haoran Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Jianfeng Bao
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
4
|
Chang J, Wu Q, Wang G. Research advancements in the association between prevalent trace metals and connective tissue diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:16. [PMID: 39673598 DOI: 10.1007/s10653-024-02323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Connective tissue diseases (CTD) encompass a spectrum of autoimmune disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS), inflammatory myopathy (IIM), systemic sclerosis (SSc), among others. Recent research has highlighted the significant role of trace metals in the pathogenesis of connective tissue diseases. This article provides an overview of recent advancements in understanding the correlation between common trace metals such as iron, copper, zinc and CTD, aiming to offer novel insights for the diagnosis and treatment of these conditions. Iron is implicated in the pathogenesis of SLE through various mechanisms, including alterations in serum iron concentration, disturbances in iron metabolism and homeostasis, as well as involvement in ferroptosis. Disorders affecting iron metabolism, ferroptosis, and the expression and regulation of associated genes and proteins contribute to the development and progression of RA. Elevated serum copper levels are observed in patients with both SLE and RA compared to healthy controls. Cuproptosis, a novel form of cell death, is also considered to be linked to their pathogenesis. Decreased serum zinc concentration is evident in patients with SLE, RA, and SS. Zinc finger proteins play a crucial role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jie Chang
- Department of Rheumatology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qian Wu
- Department of Rheumatology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Gang Wang
- Department of Rheumatology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
5
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
6
|
Feng H, Lu Q, Liu Y, Shi M, Lian H, Ni L, Wu X. Risk factors of disease activity and renal damage in patients with systemic lupus erythematosus. Int Urol Nephrol 2024; 56:3845-3855. [PMID: 38937413 DOI: 10.1007/s11255-024-04105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To evaluate the clinical features of patients with Systemic Lupus Erythematosus (SLE) and explore the risk factors of disease activity and renal damage. METHODS A retrospective study involving 194 patients were performed. Patients were divided into lupus nephritis (LN) group (63.40%) and non-LN group (36.60%), different disease activity group, and different renal function group according to the clinical data. Multivariate logistic regression analysis showed that albumin (ALB), uric acid (UC), total cholesterol (TC), and anti-dsDNA antibodies were the influencing factors of LN in patients with SLE (P < 0.05); ALB, UC, and complement 3(C3) were the influencing factors of lupus disease activity (P < 0.05); UC, C3, and hemoglobin (HB) were the influencing factors of abnormal renal function in SLE patients. RESULTS The results of the ROC curve showed that ALB, UA, and TC had certain predictive value for combined LN in patients with SLE, and the predictive value of ALB was greater than that of TC (P < 0.05); ALB, UA, and C3 being predictors of the activity of patients with SLE; BUN, UA, and HB all had certain predictive value for the abnormal renal function in patients with LN. SLE patients have the high incidence of renal impairment. CONCLUSION The results of this study suggest that patients with SLE should regularly monitor the levels of ALB, UA, TC, C3, and HB, as well as pay attention to the intervention of hyperlipidemia and hyperuricemia in patients with SLE to better control disease progression.
Collapse
Affiliation(s)
- HuiLing Feng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - QianYu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - MengMeng Shi
- Taikang Medical School, (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Huan Lian
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - LiHua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
8
|
Katikaneni D, Morel L, Scindia Y. Animal models of lupus nephritis: the past, present and a future outlook. Autoimmunity 2024; 57:2319203. [PMID: 38477884 PMCID: PMC10981450 DOI: 10.1080/08916934.2024.2319203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Lupus nephritis (LN) is the most severe end-organ pathology in Systemic Lupus Erythematosus (SLE). Research has enhanced our understanding of immune effectors and inflammatory pathways in LN. However, even with the best available therapy, the rate of complete remission for proliferative LN remains below 50%. A deeper understanding of the resistance or susceptibility of renal cells to injury during the progression of SLE is critical for identifying new targets and developing effective long-term therapies. The complex and heterogeneous nature of LN, combined with the limitations of clinical research, make it challenging to investigate the aetiology of this disease directly in patients. Hence, multiple murine models resembling SLE-driven nephritis are utilised to dissect LN's cellular and genetic mechanisms, identify therapeutic targets, and screen novel compounds. This review discusses commonly used spontaneous and inducible mouse models that have provided insights into pathogenic mechanisms and long-term maintenance therapies in LN.
Collapse
Affiliation(s)
- Divya Katikaneni
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health, San Antonio, Texas, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Liu C, Gan YH, Yong WJ, Xu HD, Li YC, Hu HM, Zhao ZZ, Qi YY. OTUB1 regulation of ferroptosis and the protective role of ferrostatin-1 in lupus nephritis. Cell Death Dis 2024; 15:791. [PMID: 39500879 PMCID: PMC11538433 DOI: 10.1038/s41419-024-07185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Lupus nephritis (LN) is a prevalent and severe manifestation of systemic lupus erythematosus (SLE), leading to significant morbidity and mortality. OTUB1, a deubiquitinating enzyme, has emerged as a potential therapeutic target due to its role in cellular protection and regulation of ferroptosis, a form of cell death linked to LN. Our study revealed significantly reduced OTUB1 expression in the glomeruli of LN patients and podocytes, correlated with disease severity. CRISPR/Cas9-mediated OTUB1 knockout in podocytes resulted in pronounced injury, indicated by decreased levels of nephrin and podocin. Ferrostatin-1 treatment effectively mitigated this injury, restoring SLC7A11 expression and significantly reducing MDA levels, Fe2+ levels, BODIPY C11 expression, and normalized cysteine and glutathione expression. In the MRL/lpr mouse model, Ferrostatin-1 significantly improved renal function decreased proteinuria, and ameliorated renal histopathological changes, including reduced glomerular endothelial swelling, mesangial cell proliferation, and leukocyte infiltration. These results underscore the protective role of Ferrostatin-1 in modulating the pathogenesis of LN. OTUB1 plays a crucial protective role against podocyte injury in LN by regulating ferroptosis. Ferrostatin-1 effectively mitigates podocyte damage induced by OTUB1 deficiency, suggesting that targeting ferroptosis could be a promising therapeutic strategy for LN.
Collapse
Affiliation(s)
- Chen Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yu-Hui Gan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan, 450001, China
| | - Wei-Jing Yong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan, 450001, China
| | - Hong-de Xu
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Ministry of Education of China, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yong-Chun Li
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Ministry of Education of China, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hui-Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zhan-Zheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
| | - Yuan-Yuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
| |
Collapse
|
10
|
Zhao G, Wang X, Lei H, Ruan N, Yuan B, Tang S, Ni N, Zuo Z, Xun L, Luo M, Zhao Q, Qi J, Fu P. Serum HMGB-1 released by ferroptosis and necroptosis as a novel potential biomarker for systemic lupus erythematosus. Int Immunopharmacol 2024; 140:112886. [PMID: 39128419 DOI: 10.1016/j.intimp.2024.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
High mobility group box proterin-1 (HMGB-1) is a multifunctional protein that can be released by various programmed cell deaths (PCDs), such as necroptosis and ferroptosis. PCDs play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). However, the role of HMGB-1 in the process of SLE remains unclear. This study aims to demonstrate the potential diagnosing role of serum HMGB-1 in SLE that released by necroptosis and ferroptosis. We found that the serum levels of HMGB-1, receptor-interacting protein kinase 3 (RIPK3) /mixed lineage kinase domain-like protein (MLKL) related with necroptosis, and metabolites associated with ferroptosis were significantly upregulated in SLE patients compared to HC individuals. These serum levels were positively correlated with SLE disease activity. Additionally, the serum level of HMGB-1 showed a strong positive correlated with the levels of RIPK3/MLKL and ferroptosis metabolites. Moreover, the serum level of HMGB-1 was correlated with renal involvement and high-antinuclear antibodies (ANA) titer. After SLE serum and interferon γ (IFN-γ) treatment in vitro, the level of necroptosis and ferroptosis markers were activated and HMGB1 was released both in HEK293 and HK2 cells. Clinically, HMGB-1 was considered as a significant independent risk factor in SLE serum by binary logistic assay. Notably, HMGB-1 exhibited outstanding diagnostic ability for SLE by the area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis. Taken together, our study indicates that the serum level of HMGB-1 is a promising biomarker for the diagnosis and monitoring of SLE.
Collapse
Affiliation(s)
- Guowang Zhao
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Xingzi Wang
- Department of Nephrology, Yueyang Central Hospital, Hunan Province, Yueyang 414000, China
| | - Hongtao Lei
- School of Public Health, Kunming Medical University, Yunnan Province, Kunmin 650500, China
| | - Ni Ruan
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Bo Yuan
- Department of organ transplantation department, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunmin 650033, China
| | - Songbiao Tang
- Department of Rheumatology, Yueyang Central Hospital, Hunan Province, Yueyang 414000, China
| | - Nan Ni
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Zan Zuo
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Linting Xun
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Mei Luo
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Qiuyan Zhao
- Department of Gastroenterology, First People's Hospital of Qujing, Yunnan Province, Qujing, China.
| | - Jialong Qi
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China; Yunnan Provincial Key Laboratory of Clinical Virology, The First People's Hospital of Yunnan Province, Kunming, Yunnan,650032, China; Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Geriatric Disorders, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| | - Ping Fu
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China.
| |
Collapse
|
11
|
Eggenhofer E, Proneth B. Ferroptosis Inhibition: A Key Opportunity for the Treatment of Ischemia/Reperfusion Injury in Liver Transplantation. Transplantation 2024:00007890-990000000-00874. [PMID: 39294870 DOI: 10.1097/tp.0000000000005199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The outcome after liver transplantation has improved in recent years, which can be attributed to superior storage and transportation conditions of the organs, as well as better peri- and postoperative management and advancements in surgical techniques. Nevertheless, there is an increasing discrepancy between the need for organs and their availability. Consequently, the mortality rate on the waiting list is high and continues to rise. One way of counteracting this trend is to increase the use of "expanded criteria donors." This means that more and more donors will be included, especially those who are older and having additional comorbidities (eg, steatosis). A major complication of any transplantation is the occurrence of ischemia/reperfusion injury (IRI), which often leads to liver dysfunction and failure. However, there have been various promising approaches to minimize IRI in recent years, but an effective and clinically applicable method to achieve a better outcome for patients after liver transplantation is still missing. Thereby, the so-called marginal organs are predominantly affected by IRI; thus, it is crucial to develop suitable and effective treatment options for patients. Recently, regulated cell death mechanisms, particularly ferroptosis, have been implicated to play a major role in IRI, including the liver. Therefore, inhibiting this kind of cell death modality presents a promising therapeutic approach for the management of this yet untreatable condition. Thus, this review provides an overview of the role of ferroptosis in liver IRI and transplantation and discusses possible therapeutic solutions based on ferroptosis inhibition to restrain IRI in marginal organs (especially steatosis and donation after circulatory death organs).
Collapse
Affiliation(s)
- Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
12
|
Xing Z, Gao S, Zheng A, Tong C, Fang Y, Xiang Z, Chen S, Wang W, Hua C. Promising roles of combined therapy based on immune response and iron metabolism in systemic lupus erythematosus. Int Immunopharmacol 2024; 138:112481. [PMID: 38917527 DOI: 10.1016/j.intimp.2024.112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Systemic lupus erythematosus (SLE) is an intricate autoimmune disease with diverse manifestations. Immunometabolism reprogramming contributes to the progression of SLE by regulating the phenotype and function of immune cells. Dysregulated iron metabolism is implicated in SLE pathogenesis, affecting both systemic and immune cell-specific iron homeostasis. This review explores the systemic and cellular iron handling and regulation. Additionally, the advancements regarding iron metabolism in SLE with a focus on the distinct subsets of immune cells are highlighted. By gaining insight into the interplay between iron dysregulation and immune dysfunction, the potential therapeutic avenues may be unveiled. However, challenges remain in elucidating cell-specific iron metabolic reprogramming and its contribution to SLE pathogenesis needs further research for personalized therapeutic interventions and biomarker discovery. This review provides an in-depth understanding of immune cell-specific regulatory mechanisms of iron metabolism and new insights in current challenges as well as possible clinical applications.
Collapse
Affiliation(s)
- Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Anzhe Zheng
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Chuyan Tong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yuan Fang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zheng Xiang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
13
|
Santos M, Melo T, Maurício T, Ferreira H, Domingues P, Domingues R. The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases. FEBS Lett 2024; 598:2174-2189. [PMID: 39097985 DOI: 10.1002/1873-3468.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
Collapse
Affiliation(s)
- Matilde Santos
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tatiana Maurício
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Helena Ferreira
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
14
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
15
|
Le J, Meng Y, Wang Y, Li D, Zeng F, Xiong Y, Chen X, Deng G. Molecular and therapeutic landscape of ferroptosis in skin diseases. Chin Med J (Engl) 2024; 137:1777-1789. [PMID: 38973265 DOI: 10.1097/cm9.0000000000003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Regulated cell death (RCD) is a critical physiological process essential in maintaining skin homeostasis. Among the various forms of RCD, ferroptosis stands out due to its distinct features of iron accumulation, lipid peroxidation, and involvement of various inhibitory antioxidant systems. In recent years, an expanding body of research has solidly linked ferroptosis to the emergence of skin disorders. Therefore, understanding the mechanisms underlying ferroptosis in skin diseases is crucial for advancing therapy and prevention strategies. This review commences with a succinct elucidation of the mechanisms that underpin ferroptosis, embarks on a thorough exploration of ferroptosis's role across a spectrum of skin conditions, encompassing melanoma, psoriasis, systemic lupus erythematosus (SLE), vitiligo, and dermatological ailments precipitated by ultraviolet (UV) exposure, and scrutinizes the potential therapeutic benefits of pharmacological interventions aimed at modulating ferroptosis for the amelioration of skin diseases.
Collapse
Affiliation(s)
- Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yixiao Xiong
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
16
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Packer M. Iron homeostasis, recycling and vulnerability in the stressed kidney: A neglected dimension of iron-deficient heart failure. Eur J Heart Fail 2024; 26:1631-1641. [PMID: 38727795 DOI: 10.1002/ejhf.3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 07/26/2024] Open
Abstract
The available evidence suggests that the kidney may contribute importantly to the development of an iron deficiency state in patients with heart failure and may be injured by therapeutic efforts to achieve iron repletion. The exceptional workload of the proximal renal tubule requires substantial quantities of iron for ATP synthesis, which it derives from Fe3+ bound to transferrin in the bloodstream. Following ferrireduction, Fe2+ is conveyed by divalent transporters (e.g. DMT1) out of the endosome of the proximal renal tubule, and highly reactive Fe2+ can be directed to the mitochondria, sequestered safely in a ferritin nanocage or exported through the actions of hepcidin-inhibitable ferroportin. The actions of ferroportin, together with transferrin endocytosis and DMT1-mediated transport, play a key role in the recycling of iron from the tubular fluid into the bloodstream and preventing the loss of filtered iron in the urine. Activation of endogenous neurohormonal systems and proinflammatory signalling in heart failure decrease megalin-mediated uptake and DMT1 expression, and increase hepcidin-mediated suppression of ferroportin, promoting the loss of iron in the urine and contributing to the development of an iron deficiency state. Furthermore, the failure of ferroportin-mediated efflux at the basolateral membrane heightens the susceptibility of the renal tubules to cytosolic excesses of Fe2+, causing lipid peroxidation and synchronized cell death (ferroptosis) through the iron-dependent free radical theft of electrons from lipids in the cell membrane. Ferroptosis is a central mechanism to most disorders that can cause acute and chronic kidney disease. Short-term bolus administration of intravenous iron can cause oxidative stress and is accompanied by markers of renal injury. Experimentally, long-term maintenance of an iron-replete state is accompanied by accelerated loss of nephrons, oxidative stress, inflammation and fibrosis. Intravenous iron therapy increases glomerular filtration rate rapidly in patients with heart failure (perhaps because of a haemodynamic effect) but not in patients with chronic kidney disease, and the effects of intravenous iron on the progression of renal dysfunction in the long-term trials - AFFIRM-AHF, IRONMAN and HEART-FID - have not yet been reported. Given the potential role of dysregulated renal iron homeostasis in the pathogenesis of iron deficiency and the known vulnerability of the kidney to intravenous iron, the appropriate level of iron repletion with respect to the risk of acute and chronic kidney injury in patients with heart failure requires further study.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
18
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
19
|
Packer M, Anker SD, Butler J, Cleland JGF, Kalra PR, Mentz RJ, Ponikowski P, Talha KM. Critical re-evaluation of the identification of iron deficiency states and effective iron repletion strategies in patients with chronic heart failure. Eur J Heart Fail 2024; 26:1298-1312. [PMID: 38727791 DOI: 10.1002/ejhf.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 06/28/2024] Open
Abstract
According to current guidelines, iron deficiency is defined by a serum ferritin level <100 ng/ml or a transferrin saturation (TSAT) <20% if the serum ferritin level is 100-299 μg/L. These criteria were developed to encourage the use of intravenous iron as an adjunct to erythropoiesis-stimulating agents in the treatment of renal anaemia. However, in patients with heart failure, these criteria are not supported by any pathophysiological or clinical evidence that they identify an absolute or functional iron deficiency state. A low baseline TSAT-but not serum ferritin level-appears to be a reliable indicator of the effect of intravenous iron to reduce major heart failure events. In randomized controlled trials, intravenous iron decreased the risk of cardiovascular death or total heart failure hospitalization in patients with a TSAT <20% (risk ratio 0.67 [0.49-0.92]) but not in patients with a TSAT ≥20% (risk ratio 0.99 [0.74-1.30]), with the magnitude of the risk reduction being proportional to the severity of hypoferraemia. Patients who were enrolled in clinical trials solely because they had a serum ferritin level <100 μg/L showed no significant benefit on heart failure outcomes, and it is noteworthy that serum ferritin levels of 20-300 μg/L lie entirely within the range of normal values for healthy adults. Current guidelines reflect the eligibility criteria of clinical trials, which inadvertently adopted unvalidated criteria to define iron deficiency. Reliance on these guidelines would lead to the treatment of many patients who are not iron deficient (serum ferritin level <100 μg/L but normal TSAT) and ignores the possibility of iron deficiency in patients with a low TSAT but with serum ferritin level of >300 μg/L. Importantly, analyses of benefit based on trial eligibility-driven guidelines substantially underestimate the magnitude of heart-failure-event risk reduction with intravenous iron in patients who are truly iron deficient. Based on all available data, we recommend a new mechanism-based and trial-tested approach that reflects the totality of evidence more faithfully than the historical process adopted by clinical investigators and by the guidelines. Until additional evidence is forthcoming, an iron deficiency state in patients with heart failure should be defined by a TSAT <20% (as long as the serum ferritin level is <400 μg/L), and furthermore, the use of a serum ferritin level <100 μg/L alone as a diagnostic criterion should be discarded.
Collapse
Affiliation(s)
- Milton Packer
- Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| | - Stefan D Anker
- Department of Cardiology of German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX, USA
- University of Mississippi Medical Center, Jackson, MS, USA
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul R Kalra
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, and Duke Clinical Research Institute, Durham, NC, USA
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | | |
Collapse
|
20
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
21
|
Bell HN, Stockwell BR, Zou W. Ironing out the role of ferroptosis in immunity. Immunity 2024; 57:941-956. [PMID: 38749397 PMCID: PMC11101142 DOI: 10.1016/j.immuni.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 05/19/2024]
Abstract
Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Schramm WC, Bala N, Arekar T, Malik Z, Chacko KM, Lewis RL, Denslow ND, Scindia Y, Alli AA. Enrichment of Bioactive Lipids in Urinary Extracellular Vesicles and Evidence of Apoptosis in Kidneys of Hypertensive Diabetic Cathepsin B Knockout Mice after Streptozotocin Treatment. Biomedicines 2024; 12:1038. [PMID: 38791000 PMCID: PMC11117475 DOI: 10.3390/biomedicines12051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Cathepsin B (CtsB) is a ubiquitously expressed cysteine protease that plays important roles in health and disease. Urinary extracellular vesicles (uEVs) are released from cells associated with urinary organs. The antibiotic streptozotocin (STZ) is known to induce pancreatic islet beta cell destruction, diabetic nephropathy, and hypertension. We hypothesized that streptozotocin-induced diabetic kidney disease and hypertension result in the release of bioactive lipids from kidney cells that induce oxidative stress and renal cell death. Lipidomics was performed on uEVs isolated from CtsB knockout mice treated with or without STZ, and their kidneys were used to investigate changes in proteins associated with cell death. Lysophosphatidylethanolamine (LPE) (18:1), lysophosphatidylserine (LPS) (22:6), and lysophosphatidylglycerol (LPG) (22:5) were among the bioactive lipids enriched in uEVs from CtsB knockout mice treated with STZ compared to untreated CtsB mice (n = 3 uEV preparations per group). Anti-oxidant programming was activated in the kidneys of the CtsB knockout mice treated with STZ, as indicated by increased expression of glutathione peroxidase 4 (GPX4) and the cystine/glutamate antiporter SLC7A11 (XCT) (n = 4 mice per group), which was supported by a higher reactivity to 4-hydroxy-2-nonenal (4-HNE), a marker for oxidative stress (n = 3 mice per group). Apoptosis but not ferroptosis was the ongoing form of cell death in these kidneys as cleaved caspase-3 levels were significantly elevated in the STZ-treated CtsB knockout mice (n = 4 mice per group). There were no appreciable differences in the pro-ferroptosis enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) or the inflammatory marker CD93 in the kidneys (n = 3 mice per group), which further supports apoptosis as the prevalent mechanism of pathology. These data suggest that STZ treatment leads to oxidative stress, inducing apoptotic injury in the kidneys during the development of diabetic kidney disease and hypertension.
Collapse
Affiliation(s)
- Whitney C. Schramm
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tanmay Arekar
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
| | - Zeeshan Malik
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin M. Chacko
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Russell L. Lewis
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA; (R.L.L.); (N.D.D.)
| | - Nancy D. Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA; (R.L.L.); (N.D.D.)
| | - Yogesh Scindia
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Abdel A. Alli
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Tsokos GC, Boulougoura A, Kasinath V, Endo Y, Abdi R, Li H. The immunoregulatory roles of non-haematopoietic cells in the kidney. Nat Rev Nephrol 2024; 20:206-217. [PMID: 37985868 PMCID: PMC11005998 DOI: 10.1038/s41581-023-00786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
The deposition of immune complexes, activation of complement and infiltration of the kidney by cells of the adaptive and innate immune systems have long been considered responsible for the induction of kidney damage in autoimmune, alloimmune and other inflammatory kidney diseases. However, emerging findings have highlighted the contribution of resident immune cells and of immune molecules expressed by kidney-resident parenchymal cells to disease processes. Several types of kidney parenchymal cells seem to express a variety of immune molecules with a distinct topographic distribution, which may reflect the exposure of these cells to different pathogenic threats or microenvironments. A growing body of literature suggests that these cells can stimulate the infiltration of immune cells that provide protection against infections or contribute to inflammation - a process that is also regulated by draining kidney lymph nodes. Moreover, components of the immune system, such as autoantibodies, cytokines and immune cells, can influence the metabolic profile of kidney parenchymal cells in the kidney, highlighting the importance of crosstalk in pathogenic processes. The development of targeted nanomedicine approaches that modulate the immune response or control inflammation and damage directly within the kidney has the potential to eliminate the need for systemically acting drugs.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | - Vivek Kasinath
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
25
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z, Li S. Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res 2024; 202:107139. [PMID: 38484857 DOI: 10.1016/j.phrs.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Chronic kidney disease (CKD) has become a global public health problem with high morbidity and mortality. Renal fibrosis can lead to end-stage renal disease (ESRD). However, there is still no effective treatment to prevent or delay the progression of CKD into ESRD. Therefore, exploring the pathogenesis of CKD is essential for preventing and treating CKD. There are a variety of trace elements in the human body that interact with each other within a complex regulatory network. Iron and copper are both vital trace elements in the body. They are critical for maintaining bodily functions, and the dysregulation of their metabolism can cause many diseases, including kidney disease. Ferroptosis is a new form of cell death characterized by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is closely related to kidney disease. However, the role of abnormal copper metabolism in kidney disease and its relationship with ferroptosis remains unclear. Here, our current knowledge regarding copper metabolism, its regulatory mechanism, and the role of abnormal copper metabolism in kidney diseases is summarized. In addition, we discuss the relationship between abnormal copper metabolism and ferroptosis to explore the possible pathogenesis and provide a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Huang Jiayi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Tong Ziyuan
- China Medical University, Shenyang 110122, People's Republic of China
| | - Xu Tianhua
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhang Mingyu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ma Yutong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Wang Jingyu
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhou Hongli
- Department of Nephrology, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 110004, People's Republic of China
| | - Sun Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
26
|
Zhang Y, Yang L. Ferroptosis and secondary nephrosis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:377-384. [PMID: 38970511 PMCID: PMC11208398 DOI: 10.11817/j.issn.1672-7347.2024.230377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 07/08/2024]
Abstract
Secondary nephrosis is a series of chronic kidney diseases secondary to other underlying diseases, mainly manifesting as structural and functional abnormalities of the kidneys and metabolic disorders. It is one of the important causes of end-stage renal disease, with high morbidity and significant harm. Iron is an essential metal element in human cells, and ferroptosis is a non-traditional form of iron-dependent cell death, and its main mechanisms include iron accumulation, lipid metabolism disorders, abnormal amino acid metabolism, and damage to the antioxidant system. Recently studies have found that ferroptosis is involved in the occurrence and progression of secondary nephrosis, and the mechanism of ferroptosis in different secondary nephrosis vary. Therefore, an in-depth and systematic understanding of the association between ferroptosis and secondary nephrosis, as well as their specific regulatory mechanisms, can provide a theoretical basis for the diagnosis, prevention, treatment, and prognosis assessment of secondary nephrosis, laying the foundation for exploring new clinical therapeutic targets for secondary nephrosis.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410013, China.
| | - Lina Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410013, China.
| |
Collapse
|
27
|
Yang H, Sun C, Wang X, Wang T, Xie C, Li Z. Identification of ferroptosis-related diagnostic markers in primary Sjögren's syndrome based on machine learning. Med Oral Patol Oral Cir Bucal 2024; 29:e203-e210. [PMID: 37823298 PMCID: PMC10945879 DOI: 10.4317/medoral.26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Primary Sjogren's syndrome (pSS) is a common autoimmune disorder that affects up to 0.3-3% of the global population. Ferroptosis has recently been identified to play a significant role in autoimmune diseases. However, the molecular mechanisms of ferroptosis in the initiation and progression of pSS remains unclear. MATERIAL AND METHODS To investigate the molecular mechanisms underlying the occurrence and progression of pSS, we utilized a comprehensive approach by integrating data obtained from the Gene Expression Omnibus (GEO) database with data from the FerrDb database to identify the ferroptosis-related differentially expressed genes (DEGs). Furthermore, we implemented an innovative transcriptomic analysis method utilizing a computer-aided algorithm to establish a network between hub genes associated with ferroptosis and the immune microenvironment in pSS patients. RESULTS Our results revealed significant differences in the gene expression profiles of pSS samples compared to normal tissues, with 1,830 significantly up-regulated genes and 1,310 significantly down-regulated genes. In addition, our results showed a significant increase in the proportions of B cells and CD4+ T cells in pSS samples compared to normal tissues. AND then, our analysis revealed that a combination of six ferroptosis-related genes, including TBK1, SLC1A4, PIK3CA, ENO3, EGR1, and ATG5, could serve as optimal markers for the diagnosis of pSS. The combined analysis of these six genes accurately diagnosed the occurrence of pSS. CONCLUSIONS This study offers valuable insights into the pathogenesis of pSS and highlights the importance of targeting ferroptosis-related DEGs, which suggests a novel treatment strategy for pSS.
Collapse
Affiliation(s)
- H Yang
- Department of Rheumatology and Immunology the First Affiliated Hospital of Bengbu Medical College No. 287 Changhuai Road, Bengbu, 233004, China
| | | | | | | | | | | |
Collapse
|
28
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
29
|
Lou L, Guo H, Shao M. Systemic lupus erythematosus complicated with Fanconi syndrome: a case report and literature review. Front Pediatr 2024; 11:1230366. [PMID: 38250590 PMCID: PMC10796690 DOI: 10.3389/fped.2023.1230366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Background Systemic lupus erythematosus is an autoimmune disease with diverse clinical manifestations. The symptoms of SLE in children are more atypical than adults. Childhood SLE complicated with Fanconi syndrome is extremely rare and even more difficult to diagnose. Case presentation This article reports a preschool boy with SLE who presented with renal tubular acidosis, accompanied by weakness in both lower limbs, delayed growth, and malnutrition. It was later found that the patient had the complication of Fanconi syndrome with renal tubular acidosis. Ultimately, renal biopsy confirmed lupus nephritis. The patient was treated with corticosteroid combined with mycophenolate mofetil, hydroxychloroquine, and belimumab. The symptoms of the child were relieved. Conclusion Here we report an extremely rare case of childhood SLE complicated with Fanconi syndrome. There has been no similar clinical report. It is necessary to be alert to the possibility of atypical SLE in children to avoid missed diagnosis and misdiagnosis.
Collapse
Affiliation(s)
- Lili Lou
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol 2023; 33:1077-1087. [PMID: 37407304 PMCID: PMC10733748 DOI: 10.1016/j.tcb.2023.05.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023]
Abstract
Ferroptosis is an iron-dependent lethal mechanism that can be activated in disease and is a proposed target for cancer therapy. Ferroptosis is defined by the overwhelming accumulation of membrane lipid peroxides. Ferroptotic lipid peroxidation is initiated on internal membranes and then appears at the plasma membrane, triggering lethal ion imbalances and membrane permeabilization. Sensitivity to ferroptosis is governed by the levels of peroxidizable polyunsaturated lipids and associated lipid metabolic enzymes. A different network of enzymes and endogenous metabolites restrains lipid peroxidation by interfering with the initiation or propagation of this process. This emerging understanding is informing new approaches to treat disease by modulating lipid metabolism to enhance or inhibit ferroptosis.
Collapse
Affiliation(s)
- Lauren E Pope
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
32
|
Shi X, Zhang Q, Chang M, Zhang Y, Zhao M, Yang B, Li P, Zhang Y. Ferroptosis is involved in passive Heymann nephritis in rats. Heliyon 2023; 9:e21050. [PMID: 37886789 PMCID: PMC10597846 DOI: 10.1016/j.heliyon.2023.e21050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Ferroptosis is found to be involved in some experimental models of kidney diseases, but its role in membrane nephropathy (MN) is still unclear. The purpose of this study is to explore whether ferroptosis occurred in MN, and the role of ferritinophagy. In this study, passive Heymann nephritis (PHN) rats were induced by single tail vein injection of anti-Fx1A serum, and normal rats were used as control. The changes of 24 h urinary protein, serum biochemical parameters, renal pathological damage, iron content, lipid peroxidation parameters, ferroptosis markers, and ferritinophagy markers were evaluated in the two groups. Compared with the control group, PHN rats showed obvious proteinuria, hypoproteinemia, and hyperlipidemia. Besides, more severe renal pathological damage and higher Fe2+ levels were observed in PHN rats, and the levels of malondialdehyde (MDA) increased significantly, while the levels of superoxide Dismutase (SOD) and glutathione (GSH) decreased. In addition, the expression of glutathione peroxidase 4 (GPX4) in renal tissues of PHN rats decreased significantly, while the expression of transferrin receptor (TFR) and acyl-CoA synthetase long-chain family member 4 (ACSL4) increased. The expression of microtubule associated protein 1 light chain 3 (LC3) II/LC3I and nuclear receptor coactivator 4 (NCOA4) increased significantly. Therefore, our study shows that ferroptosis is involved in the pathological damage of MN, and companied by activation of ferritinophagy.
Collapse
Affiliation(s)
- Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qi Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yifan Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - MingMing Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Peng Li
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, 510535, China
| |
Collapse
|
33
|
Kim JW, Lee JY, Oh M, Lee EW. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med 2023; 55:1620-1631. [PMID: 37612411 PMCID: PMC10474074 DOI: 10.1038/s12276-023-01077-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation. This process contributes to cellular and tissue damage in various human diseases, such as cardiovascular diseases, neurodegeneration, liver disease, and cancer. Although polyunsaturated fatty acids (PUFAs) in membrane phospholipids are preferentially oxidized, saturated/monounsaturated fatty acids (SFAs/MUFAs) also influence lipid peroxidation and ferroptosis. In this review, we first explain how cells differentially synthesize SFA/MUFAs and PUFAs and how they control fatty acid pools via fatty acid uptake and β-oxidation, impacting ferroptosis. Furthermore, we discuss how fatty acids are stored in different lipids, such as diacyl or ether phospholipids with different head groups; triglycerides; and cholesterols. Moreover, we explain how these fatty acids are released from these molecules. In summary, we provide an integrated view of the diverse and dynamic metabolic processes in the context of ferroptosis by revisiting lipidomic studies. Thus, this review contributes to the development of therapeutic strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
34
|
Cheng Q, Mou L, Su W, Chen X, Zhang T, Xie Y, Xue J, Lee PY, Wu H, Du Y. Ferroptosis of CD163 + tissue-infiltrating macrophages and CD10 + PC + epithelial cells in lupus nephritis. Front Immunol 2023; 14:1171318. [PMID: 37583695 PMCID: PMC10423811 DOI: 10.3389/fimmu.2023.1171318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Dysregulation of cell death and defective clearance of dying cells are closely related to the pathogenesis of lupus nephritis (LN). However, the contribution of a recently discovered form of programmed cell death (PCD) called ferroptosis to LN has not been explored in detail. The purpose of this study was to investigate the role of ferroptosis and its associated metabolic pathways in the pathogenesis of LN. Methods The composite gene expression scores were calculated by averaging the z-scored transformed log2 expressed genes within each form of PCD and pathway. Immunohistochemistry and immunofluorescence assays were used to verify the bioinformatics results. Results We determined that ferroptosis is prominently and specifically elevated in the glomerular compartment of LN patients compared to other forms of PCD and kidney disease. This finding was then verified by immunohistochemical staining of 4-HNE (a key indicator for ferroptosis) expression in our own cohort (P < 0.0001). Intercorrelation networks were observed between 4-HNE and blood urea nitrogen, SLE disease activity index, serum creatinine, and complement 4, and negatively correlated with glomerular filtration rate in our own LN cohort (P < 0.05). Furthermore, enhanced iron metabolism and reduced fatty acid synthesis may be the most important factors for ferroptosis within the glomerulus. Through analysis of a single cell sequencing dataset and verification of immunohistochemical and immunofluorescence staining, aberrantly activated lipid peroxidation in CD163+ macrophages and CD10+ PC+ (pyruvate carboxylase) epithelial cells indicated that they may be undergoing ferroptosis in the glomerular compartment. Conclusions Two dysregulated genes, CD163 and PC, were identified and verified that were significantly associated with lipid peroxidation. Targeting ferroptosis in CD163+ macrophages and CD10+ PC+ epithelial cells may provide novel therapeutic approaches in LN.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Mou
- Department of Nephrology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Su
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D, Liu Z. The Road from AKI to CKD: Molecular Mechanisms and Therapeutic Targets of Ferroptosis. Cell Death Dis 2023; 14:426. [PMID: 37443140 PMCID: PMC10344918 DOI: 10.1038/s41419-023-05969-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Acute kidney injury (AKI) is a prevalent pathological condition that is characterized by a precipitous decline in renal function. In recent years, a growing body of studies have demonstrated that renal maladaptation following AKI results in chronic kidney disease (CKD). Therefore, targeting the transition of AKI to CKD displays excellent therapeutic potential. However, the mechanism of AKI to CKD is mediated by multifactor, and there is still a lack of effective treatments. Ferroptosis, a novel nonapoptotic form of cell death, is believed to have a role in the AKI to CKD progression. In this study, we retrospectively examined the history and characteristics of ferroptosis, summarized ferroptosis's research progress in AKI and CKD, and discussed how ferroptosis participates in regulating the pathological mechanism in the progression of AKI to CKD. Furthermore, we highlighted the limitations of present research and projected the future evolution of ferroptosis. We hope this work will provide clues for further studies of ferroptosis in AKI to CKD and contribute to the study of effective therapeutic targets to prevent the progression of kidney diseases.
Collapse
Affiliation(s)
- Runzhi Guo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Fei Cheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
36
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
37
|
Kawakibi T, Bala N, Liu LP, Searcy LA, Denslow ND, Alli AA. Decreased MARCKS Protein Expression in Kidney Cortex Membrane Fractions of Cathepsin B Knockout Mice Is Associated with Reduced Lysophosphatidylcholine and Protein Kinase C Activity. Biomedicines 2023; 11:1489. [PMID: 37239160 PMCID: PMC10216610 DOI: 10.3390/biomedicines11051489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Cathpesin B is a multi-functional protease that plays numerous roles in physiology and pathophysiology. We hypothesized that actin cytoskeleton proteins that are substrates of cathepsin B, various lipids, and kinases that are regulated by lipids would be down-regulated in the kidney of cathepsin B knockout mice. Here, we show by Western blot and densitometric analysis that the expression and proteolysis of the actin cytoskeleton proteins myristoylated alanine-rich C-kinase substrate (MARCKS) and spectrin are significantly reduced in kidney cortex membrane fractions of cathepsin B knockout mice compared to C57B6 wild-type control mice. Lipidomic results show that specific lipids are increased while other lipids, including lysophosphatidylcholine (LPC) species LPC (16:0), LPC (18:0), LPC (18:1), and LPC (18:2), are significantly decreased in membrane fractions of the kidney cortex from Cathepsin B null mice. Protein Kinase C (PKC) activity is significantly lower in the kidney cortex of cathepsin B knockout mice compared to wild-type mice, while calcium/calmodulin-dependent protein kinase II (CaMKII) activity and phospholipase D (PLD) activity are comparable between the two groups. Together, these results provide the first evidence of altered actin cytoskeleton organization, membrane lipid composition, and PKC activity in the kidneys of mice lacking cathepsin B.
Collapse
Affiliation(s)
- Tamim Kawakibi
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Louis A. Searcy
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, Liu Z. Novel Insight into Ferroptosis in Kidney Diseases. Am J Nephrol 2023; 54:184-199. [PMID: 37231767 DOI: 10.1159/000530882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Various kidney diseases such as acute kidney injury, chronic kidney disease, polycystic kidney disease, renal cancer, and kidney stones, are an important part of the global burden, bringing a huge economic burden to people around the world. Ferroptosis is a type of nonapoptotic iron-dependent cell death caused by the excess of iron-dependent lipid peroxides and accompanied by abnormal iron metabolism and oxidative stress. Over the past few decades, several studies have shown that ferroptosis is associated with many types of kidney diseases. Studying the mechanism of ferroptosis and related agonists and inhibitors may provide new ideas and directions for the treatment of various kidney diseases. SUMMARY In this review, we discuss the differences between ferroptosis and other types of cell death such as apoptosis, necroptosis, pyroptosis, cuprotosis, pathophysiological features of the kidney, and ferroptosis-induced kidney injury. We also provide an overview of the molecular mechanisms involved in ferroptosis and events that lead to ferroptosis. Furthermore, we summarize the possible clinical applications of this mechanism among various kidney diseases. KEY MESSAGE The current research suggests that future therapeutic efforts to treat kidney ailments would benefit from a focus on ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China,
- Henan Province Research Center for Kidney Disease, Zhengzhou, China,
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
39
|
Xie M, Zhu C, Ye Y. Ferroptosis-Related Molecular Clusters and Diagnostic Model in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087342. [PMID: 37108505 PMCID: PMC10138921 DOI: 10.3390/ijms24087342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis, joint damage and deformity. A newly described type of cell death, ferroptosis, has an important role in the pathogenesis of RA. However, the heterogeneity of ferroptosis and its association with the immune microenvironment in RA remain unknown. Synovial tissue samples from 154 RA patients and 32 healthy controls (HCs) were obtained from the Gene Expression Omnibus database. Twelve of twenty-six ferroptosis-related genes (FRGs) were differentially expressed between RA patients and HCs. Furthermore, the patterns of correlation among the FRGs were significantly different between the RA and HC groups. RA patients were classified into two distinct ferroptosis-related clusters, of which cluster 1 had a higher abundance of activated immune cells and a corresponding lower ferroptosis score. Enrichment analysis suggested that tumor necrosis factor-α signaling via nuclear factor-κB was upregulated in cluster 1. RA patients in cluster 1 responded better to anti-tumor necrosis factor (anti-TNF) therapy, which was verified by the GSE 198520 dataset. A diagnostic model to identify RA subtypes and immunity was constructed and verified, in which the area under the curve values in the training (70%) and validation (30%) cohorts were 0.849 and 0.810, respectively. This study demonstrated that there were two ferroptosis clusters in RA synovium that exhibited distinct immune profiles and ferroptosis sensitivity. Additionally, a gene scoring system was constructed to classify individual RA patients.
Collapse
Affiliation(s)
- Maosheng Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujin Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|