1
|
Fang SY, Chou YT, Hsu KC, Hsu SL, Yu KW, Tsai YS, Liao YC, Tsai PC, Lee YC. Clinical and genetic characterization of NIPA1 mutations in a Taiwanese cohort with hereditary spastic paraplegia. Ann Clin Transl Neurol 2023; 10:353-362. [PMID: 36607129 PMCID: PMC10014004 DOI: 10.1002/acn3.51724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE NIPA1 mutations have been implicated in hereditary spastic paraplegia (HSP) as the cause of spastic paraplegia type 6 (SPG6). The aim of this study was to investigate the clinical and genetic features of SPG6 in a Taiwanese HSP cohort. METHODS We screened 242 unrelated Taiwanese patients with HSP for NIPA1 mutations. The clinical features of patients with a NIPA1 mutation were analyzed. Minigene-based splicing assay, RT-PCR analysis on the patients' RNA, and cell-based protein expression study were utilized to assess the effects of the mutations on splicing and protein expression. RESULTS Two patients were identified to carry a different heterozygous NIPA1 mutation. The two mutations, c.316G>A and c.316G>C, are located in the 3' end of NIPA1 exon 3 near the exon-intron boundary and putatively lead to the same amino acid substitution, p.G106R. The patient harboring NIPA1 c.316G>A manifested spastic paraplegia, epilepsy and schizophrenia since age 17 years, whereas the individual carrying NIPA1 c.316G>C had pure HSP since age 12 years. We reviewed literature and found that epilepsy was present in multiple individuals with NIPA1 c.316G>A but none with NIPA1 c.316G>C. Functional studies demonstrated that both mutations did not affect splicing, but only the c.316G>A mutation was associated with a significantly reduced NIPA1 protein expression. INTERPRETATION SPG6 accounted for 0.8% of HSP cases in the Taiwanese cohort. The NIPA1 c.316G>A and c.316G>C mutations are associated with adolescent-onset complex and pure form HSP, respectively. The different effects on protein expression of the two mutations may be associated with their phenotypic discrepancy.
Collapse
Affiliation(s)
- Shih-Yu Fang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Ying-Tsen Chou
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Chou Hsu
- Department of Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yuanshan, Taiwan
| | - Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Kai-Wei Yu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Fink JK. The hereditary spastic paraplegias. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:59-88. [PMID: 37620092 DOI: 10.1016/b978-0-323-98817-9.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.
Collapse
Affiliation(s)
- John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Fu J, Ma M, Li G, Zhang J. Clinical and Genetic Features of Chinese Patients With NIPA1-Related Hereditary Spastic Paraplegia Type 6. Front Genet 2022; 13:859688. [PMID: 35464835 PMCID: PMC9024055 DOI: 10.3389/fgene.2022.859688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Mutations in the NIPA1 gene cause hereditary spastic paraplegia (HSP) type 6 (SPG6), which is a rare type of HSP with a frequency of less than 1% in Europe. To date, less than 30 SPG6 families and limited NIPA1 mutations have been reported in different ethnic regions. The clinical features are variable. Methods: We screened for NIPA1 mutations by whole exome sequencing or next generation sequencing in 35 unrelated Chinese families with HSP. The clinical manifestations were evaluated. Results: Two variants of NIPA1 were identified in three index patients (3/35, 8.6%), two of whom carried a previously reported common variant c.316G > A (p.G106R), and the third patient harbored a novel likely pathogenic variant c.126C > G (p.N42K). Both variants were de novo in the three index patients. The phenotype was pure HSP in two patients and complicated HSP with epilepsy in the third one. Conclusion:NIPA1-related HSP is more common in China than it in Europe. Both pure and complicated form of HSP can be found. The variant c.316G > A is a hotspot mutation, and the novel variant c.126C > G expands the mutational spectrum. The phenomenon of de novo mutations in NIPA1 emphasizes the need to consider autosomal dominant HSP-related genes in sporadic patients.
Collapse
Affiliation(s)
- Jun Fu
- Department of Neurological Diseases, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingming Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Gang Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurological Diseases, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Center of Neurological Rare Diseases of Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Spagnoli C, Schiavoni S, Rizzi S, Salerno GG, Frattini D, Koskenvuo J, Fusco C. SPG6 (NIPA1 variant): A report of a case with early-onset complex hereditary spastic paraplegia and brief literature review. J Clin Neurosci 2021; 94:281-285. [PMID: 34863451 DOI: 10.1016/j.jocn.2021.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
SPG6, caused by NIPA1 (nonimprinted in Prader-Willi/Angelman syndrome) gene pathogenic variants, is mainly considered as a pure autosomal dominant hereditary spastic paraplegia (AD-HSP), even if descriptions of complex cases have also been reported. We detected the common c.316G > A, p.(Gly106Arg) pathogenic de novo substitution in a 10-year-old patient with HSP and drug-resistant eyelid myoclonia with absences. In order to assess the significance of this association, we reviewed the literature to find that 25/110 (23%) SPG6 cases are complex, including a heterogeneous spectrum of comorbidities, in which epilepsy is most represented (10%), but also featuring peripheral neuropathy (5.5%), amyotrophic lateral sclerosis (3.6%), memory deficits (3.6%) or cognitive impairment (2.7%), tremor (2.7%) and dystonia (0.9%). From this literature review and our single case experience, two main conclusions can be drawn. First, SPG6 is an AD-HSP with both pure and complex presentation, and frequent occurrence of epilepsy within the spectrum of genetic generalized epilepsies (absences, bilateral tonic-clonic, bilateral tonic-clonic with upper limbs myoclonic seizures and eyelid myoclonia with absences). Second, opposed to previous descriptions, seizures might not always be drug responsive.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Silvia Schiavoni
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Susanna Rizzi
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Grazia Gabriella Salerno
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Carlo Fusco
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Pediatrics, Pediatric Neurophysiology Laboratory, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
5
|
Rudenskaya GE, Kadnikova VA, Bessonova LA, Sparber PA, Kurbatov SA, Mironovich OL, Konovalov FA, Ryzhkova OP. [Autosomal dominant spastic paraplegias]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:75-87. [PMID: 34184482 DOI: 10.17116/jnevro202112105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To estimate the proportion and spectrum of infrequent autosomal dominant spastic paraplegias in a group of families with DNA-confirmed diagnosis and to investigate their molecular and clinical characteristics. MATERIAL AND METHODS Ten families with 6 AD-SPG: SPG6 (n=1), SPG8 (n=2), SPG9A (n=1), SPG12 (n=1), SPG17 (n=3), SPG31 (n=2) were studied using clinical, genealogical, molecular-genetic (massive parallel sequencing, spastic paraplegia panel, whole-exome sequencing, multiplex ligation-dependent amplification, Sanger sequencing) and bioinformatic methods. RESULTS AND CONCLUSION Nine heterozygous mutations were detected in 6 genes, including the common de novo mutation p.Gly106Arg in NIPA1 (SPG6), the earlier reported mutation p.Val626Phe in WASHC5 (SPG8) in isolated case and the novel p.Val695Ala in WASHC5 (SPG8) in a family with 4 patients, the novel mutation p.Thr301Arg in RTN2 (SPG12) in a family with 2 patients, the novel mutation c.105+4A>G in REEP1 (SPG31) in a family with 4 patients and the reported earlier p.Lys101Lys in REEP1 (SPG31) in a family with 3 patients, the known de novo mutation p.Arg252Gln in ALDH18A1 (SPG9A) in two monozygous twins; the common mutation p.Ser90Leu in BSCL2 (SPG17) in a family with 3 patients and in isolated case, reported mutation p.Leu363Pro in a family with 2 patients. SPG6, SPG8, SPG12 and SPG31 presented 'pure' phenotypes, SPG31 had most benign course. Age of onset varied in SPG31 family and was atypically early in SPG6 case. Patients with SPG9A and SPG17 had 'complicated' paraplegias; amyotrophy of hands typical for SPG17 was absent in a child and in an adolescent from 2 families, but may develop later.
Collapse
Affiliation(s)
- G E Rudenskaya
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - V A Kadnikova
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - L A Bessonova
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - P A Sparber
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - S A Kurbatov
- Voronezh Regional Clinical Consultative and Diagnostic Center, Vodonezh, Russia
| | - O L Mironovich
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - F A Konovalov
- Genomed LLC, Laboratory of Clinical Bioinformatics, Moscow, Russia
| | - O P Ryzhkova
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Tanti M, Cairns D, Mirza N, McCann E, Young C. Is NIPA1-associated hereditary spastic paraplegia always ‘pure’? Further evidence of motor neurone disease and epilepsy as rare manifestations. Neurogenetics 2020; 21:305-308. [DOI: 10.1007/s10048-020-00619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
|
7
|
Ma Y, Chen C, Wang Y, Wu L, He F, Chen C, Zhang C, Deng X, Yang L, Chen Y, Wu L, Yin F, Peng J. Analysis copy number variation of Chinese children in early-onset epileptic encephalopathies with unknown cause. Clin Genet 2016; 90:428-436. [PMID: 26925868 DOI: 10.1111/cge.12768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Y. Ma
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - C. Chen
- State Key Laboratory of Medical Genetics; Central South University; Changsha China
| | - Y. Wang
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - L. Wu
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - F. He
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - C. Chen
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - C. Zhang
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - X. Deng
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - L. Yang
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - Y. Chen
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - L. Wu
- Hunan Intellectual and Developmental Disabilities Research Center; Changsha China
| | - F. Yin
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
- Hunan Intellectual and Developmental Disabilities Research Center; Changsha China
| | - J. Peng
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|
8
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
9
|
Caenorhabditis elegans Models of Hereditary Spastic Paraplegia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Luo Y, Chen C, Zhan Z, Wang Y, Du J, Hu Z, Liao X, Zhao G, Wang J, Yan X, Jiang H, Pan Q, Xia K, Tang B, Shen L. Mutation and clinical characteristics of autosomal-dominant hereditary spastic paraplegias in China. NEURODEGENER DIS 2014; 14:176-83. [PMID: 25341883 DOI: 10.1159/000365513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hereditary spastic paraplegias constitute a heterogeneous group of inherited neurodegenerative disorders. To date, there has been no systematic mutation and clinical analysis for a large group of autosomal-dominant hereditary spastic paraplegias in China. OBJECTIVE The purpose of this study was to investigate the mutation frequencies and the clinical phenotypes of Chinese spastic paraplegia patients. METHODS Direct sequencing and a multiplex ligation-dependent probe amplification assay were applied to detect the mutations of SPAST and ATL1 in 54 autosomal-dominant hereditary spastic paraplegia probands and 66 isolated cases. Next, mutations in NIPA1, KIF5A, REEP1 and SLC33A1 were detected in the negative patients. Subsets of spastic paraplegia patients were genotyped for the modifying variants. Further, detailed clinical data regarding the genetically diagnosed families were analysed. RESULTS Altogether, 27 families were diagnosed as SPG4, 3 as SPG3A and 1 as SPG6. No mutations in KIF5A, REEP1 or SLC33A1 were found; 9 SPAST mutations were novel. There was no p.S44L or p.P45Q variant in SPAST and no p.G563A variant in HSPD1 in either the 120 spastic paraplegia patients or the 500 controls. There was a remarkable clinical difference between the SPG4 and non-SPG4 patients and even between genders among the SPG4 patients. Non-penetrance and remarkable gender difference were observed in some SPG4 and SPG3A families. CONCLUSIONS Our data confirm that hereditary spastic paraplegias in China represent a heterogeneous group of genetic neurodegenerative disorders in autosomal-dominant and apparently sporadic forms. Novel genotype-phenotype correlations were established. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Yingying Luo
- Department of Neurology, Xianga Hospital of Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
12
|
Arkadir D, Noreau A, Goldman JS, Rouleau GA, Alcvalay RN. Pure hereditary spastic paraplegia due to a de novo mutation in the NIPA1 gene. Eur J Neurol 2013; 21:e2. [PMID: 25133278 DOI: 10.1111/ene.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hedera P. Recurrent de novo c.316G>A mutation in NIPA1 hotspot. J Neurol Sci 2013; 335:231-2. [DOI: 10.1016/j.jns.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 11/16/2022]
|
14
|
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013; 126:307-28. [PMID: 23897027 DOI: 10.1007/s00401-013-1115-8] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), "mutilating sensory neuropathy with spastic paraplegia" owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.
Collapse
|
15
|
A diagnostic gene chip for hereditary spastic paraplegias. Brain Res Bull 2013; 97:112-8. [DOI: 10.1016/j.brainresbull.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/31/2013] [Accepted: 07/02/2013] [Indexed: 02/07/2023]
|
16
|
TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation. Acta Neuropathol 2012; 124:285-91. [PMID: 22302102 DOI: 10.1007/s00401-012-0947-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/24/2012] [Indexed: 12/12/2022]
Abstract
Mutations in NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome) have been described as a cause of autosomal dominant hereditary spastic paraplegia (HSP) known as SPG6 (spastic paraplegia-6). We present the first neuropathological description of a patient with a NIPA1 mutation, and clinical phenotype of complicated HSP with motor neuron disease-like syndrome and cognitive decline. Postmortem examination revealed degeneration of lateral corticospinal tracts and dorsal columns with motor neuron loss. TDP-43 immunostaining showed widespread spinal cord and cerebral skein-like and round neuronal cytoplasmic inclusions. We ruled out NIPA1 mutations in 419 additional cases of motor neuron disease. These findings suggest that hereditary spastic paraplegia due to NIPA1 mutations could represent a TDP-43 proteinopathy.
Collapse
|
17
|
Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 2012; 318:1-18. [PMID: 22554690 DOI: 10.1016/j.jns.2012.03.025] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (SPG) is a clinically and genetically heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive spasticity and weakness of the lower-limbs (pure SPG) and, majoritorian, additional more extensive neurological or non-neurological manifestations (complex or complicated SPG). Pure SPG is characterised by progressive spasticity and weakness of the lower-limbs, and occasionally sensory disturbances or bladder dysfunction. Complex SPGs additionally include cognitive impairment, dementia, epilepsy, extrapyramidal disturbances, cerebellar involvement, retinopathy, optic atrophy, deafness, polyneuropathy, or skin lesions in the absence of coexisting disorders. Nineteen SPGs follow an autosomal-dominant (AD-SPG), 27 an autosomal-recessive (AR-SPG), 5 X-linked (XL-SPG), and one a maternal trait of inheritance. SPGs are due to mutations in genes encoding for proteins involved in the maintenance of corticospinal tract neurons. Among the AD-SPGs, 40-45% of patients carry mutations in the SPAST-gene (SPG4) and 10% in the ATL1-gene (SPG3), while the other 9 genes are more rarely involved (NIPA1 (SPG6), KIAA0196 (SPG8), KIF5A (SPG10), RNT2 (SPG12), SPGD1 (SPG13), BSCL2 (SPG17), REEP1 (SPG31), ZFYVE27 (SPG33, debated), and SLC33A1 (SPG42, debated)). Among the AR-SPGs, ~20% of the patients carry mutations in the KIAA1840 (SPG11) gene whereas the 15 other genes are rarely mutated and account for SPGs in single families yet (CYP7B1 (SPG5), SPG7 (SPG7), ZFYVE26 (SPG15), ERLIN2 (SPG18), SPG20 (SPG20), ACP33 (SPG21), KIF1A (SPG30), FA2H (SPG35), NTE (SPG39), GJA12/GJC2 (SPG44), KIAA0415 (SPG48) and 4 genes encoding for the AP4-complex (SPG47)). Among the XL-SPGs, 3 causative genes have been identified (L1CAM (SPG1), PLP1 (SPG2), and SLC16A2 (SPG22)). The diagnosis of SPGs is based on clinical, instrumental and genetic investigations. Treatment is exclusively symptomatic.
Collapse
|