1
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
2
|
Li M, Xu Y, Wu J, Wu C, Li A, Ji X. Circulating N-Terminal Probrain Natriuretic Peptide Levels in Relation to Ischemic Stroke and Its Subtypes: A Mendelian Randomization Study. Front Genet 2022; 13:795479. [PMID: 35273636 PMCID: PMC8902306 DOI: 10.3389/fgene.2022.795479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Mendelian randomization was used to evaluate the potential causal association between N-terminal probrain natriuretic peptide (NT-proBNP) and ischemic stroke based on summary statistics data from large-scale genome-wide association studies. Three single-nucleotide polymorphisms (SNPs) rs198389, rs13107325, and rs11105306 associated with NT-proBNP levels found in large general populations and in patients with acute heart disease were used as instrumental variables. The results of genetic association analysis of each single SNP show that there is no significant association between NT-proBNP levels and ischemic stroke or its subtypes, whereas rs198389 alone has a suggestive association with large-artery atherosclerosis stroke. The MR analysis of three SNPs shows that NT-proBNP levels may reduce the risk of small-vessel occlusion stroke suggestively. This genetic analysis provides insights into the pathophysiology and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Xu
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chuanjie Wu
- Department of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States
| | - Xunming Ji
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Battaglini D, Robba C, Lopes da Silva A, Dos Santos Samary C, Leme Silva P, Dal Pizzol F, Pelosi P, Rocco PRM. Brain-heart interaction after acute ischemic stroke. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:163. [PMID: 32317013 PMCID: PMC7175494 DOI: 10.1186/s13054-020-02885-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Early detection of cardiovascular dysfunctions directly caused by acute ischemic stroke (AIS) has become paramount. Researchers now generally agree on the existence of a bidirectional interaction between the brain and the heart. In support of this theory, AIS patients are extremely vulnerable to severe cardiac complications. Sympathetic hyperactivity, hypothalamic-pituitary-adrenal axis, the immune and inflammatory responses, and gut dysbiosis have been identified as the main pathological mechanisms involved in brain-heart axis dysregulation after AIS. Moreover, evidence has confirmed that the main causes of mortality after AIS include heart attack, congestive heart failure, hemodynamic instability, left ventricular systolic dysfunction, diastolic dysfunction, arrhythmias, electrocardiographic anomalies, and cardiac arrest, all of which are more or less associated with poor outcomes and death. Therefore, intensive care unit admission with continuous hemodynamic monitoring has been proposed as the standard of care for AIS patients at high risk for developing cardiovascular complications. Recent trials have also investigated possible therapies to prevent secondary cardiovascular accidents after AIS. Labetalol, nicardipine, and nitroprusside have been recommended for the control of hypertension during AIS, while beta blockers have been suggested both for preventing chronic remodeling and for treating arrhythmias. Additionally, electrolytic imbalances should be considered, and abnormal rhythms must be treated. Nevertheless, therapeutic targets remain challenging, and further investigations might be essential to complete this complex multi-disciplinary puzzle. This review aims to highlight the pathophysiological mechanisms implicated in the interaction between the brain and the heart and their clinical consequences in AIS patients, as well as to provide specific recommendations for cardiovascular management after AIS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Adriana Lopes da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Dos Santos Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiotherapy, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal Pizzol
- Unidade Acadêmica de Ciências da Saude, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Brown J, Kingsbury C, Lee J, Vandenbark AA, Meza‐Romero R, Offner H, Borlongan CV. Spleen participation in partial MHC class II construct neuroprotection in stroke. CNS Neurosci Ther 2020; 26:663-669. [PMID: 32237074 PMCID: PMC7298973 DOI: 10.1111/cns.13369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pathological progression of stroke in the peripheral and central nervous systems (PNS and CNS) is characterized by multiple converging signalling pathways that exacerbate neuroinflammation-mediated secondary cell death. This creates a need for a novel type of immunotherapy capable of simultaneously lowering the synergistic inflammatory responses in the PNS and CNS, specifically the spleen and brain. Previously, we demonstrated that partial major histocompatibility complex (MHC) class II constructs can be administered subcutaneously to promote histological and behavioural effects that alleviate common symptoms found in a murine model of transient stroke. This MHC class II manipulates T cell cytokine expression in both PNS and CNS, resulting in dampened inflammation. In our long-standing efforts towards translational research, we recently demonstrated that a potent next generation mouse-based partial MHC class II construct named DRmQ (DRa1L50Q -mMOG-35-55) similarly induces neuroprotection in stroke rats, replicating the therapeutic effects of the human homolog as DRhQ (DRa1L50Q -human (h)MOG-35-55) in stroke mice. Our preclinical studies showed that DRmQ reduces motor deficits, infarct volume and peri-infarct cell loss by targeting inflammation in this second species. Moreover, we provided mechanistic support in both animal studies that partial MHC class II constructs effectively modulate the spleen, an organ which plays a critical role in modulating secondary cell death. Together, these preclinical studies satisfy testing the constructs in two stroke models, which is a major criterion of the Stroke Therapy Academic Industry Roundtable (STAIR) criteria and a key step in effectively translating this drug to the clinic. Additional translational studies, including dose-response and larger animal models may be warranted to bring MHC class II constructs closer to the clinic.
Collapse
Affiliation(s)
- John Brown
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| | - Jea‐Young Lee
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| | - Arthur A. Vandenbark
- Neuroimmunology Research R&D‐31VA Portland Health Care SystemPortlandORUSA,Department of Neurology and Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Roberto Meza‐Romero
- Neuroimmunology Research R&D‐31VA Portland Health Care SystemPortlandORUSA,Department of Neurology and Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Halina Offner
- Neuroimmunology Research R&D‐31VA Portland Health Care SystemPortlandORUSA,Department of Neurology and Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain RepairCenter of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFLUSA
| |
Collapse
|
5
|
Lesion configuration effect on stroke-related cardiac autonomic dysfunction. Brain Res 2020; 1733:146711. [PMID: 32035088 DOI: 10.1016/j.brainres.2020.146711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autonomic nervous system (ANS) malfunction is a common sequel of stroke. The impact of lesion configuration on the expression of stroke-related ANS malfunction is largely unknown. OBJECTIVE To examine the relationship between stroke location and ANS malfunction, as reflected in cardiac rhythm control. METHODS 25 patients in the subacute phase post first-ever ischemic stroke were recruited for the study. Heart rate monitor (RS800CX) was used to record RR intervals analyzed as heart rate variability (HRV) parameters. Lesion data derived from follow-up CT scans of the brain was used for voxel-based lesion symptom mapping (VLSM) analysis (MEDx software, Medical Numerics) to identify voxels of the normalized brain where damage exerts a significant impact on the HRV scores. RESULTS AND CONCLUSION ANS control of the cardiac rhythm, as expressed in the HRV, was affected by damage to a large array of cortical and subcortical structures in the right hemisphere. In the left hemisphere only damage confined to a small set of subcortical structures was shown to exert a significant impact on the recorded HRV measures. In addition, VLSM analysis disclosed a different pattern of cerebral control over two widely used standard time-dependent measures of the HRV - SDNN and RMSSD, with the former being sensitive to damage in a much larger array of structures in both hemispheres.
Collapse
|
6
|
Tian F, Liu T, Xu G, Ghazi T, Sajjad A, Farrehi P, Wang MM, Borjigin J. Surge of corticocardiac coupling in SHRSP rats exposed to forebrain cerebral ischemia. J Neurophysiol 2019; 121:842-852. [PMID: 30625009 DOI: 10.1152/jn.00533.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sudden death is an important but underrecognized consequence of stroke. Acute stroke can disturb central control of autonomic function and result in cardiac dysfunction and sudden death. Previous study showed that bilateral common carotid artery ligation (BCCAL) in the spontaneously hypertensive stroke-prone rat strain (SHRSP) is a well-established model for forebrain ischemic sudden death. This study aims to investigate the temporal dynamic changes in electrical activities of the brain and heart and functional interactions between the two vital organs following forebrain ischemia. EEG and ECG signals were simultaneously collected from nine SHRSP and eight Wistar-Kyoto (WKY) rats. RR interval was analyzed to investigate the cardiac response to brain ischemia. EEG power and coherence (CCoh) analysis were conducted to study the cortical response. Corticocardiac coherence (CCCoh) and directional connectivity (CCCon) were analyzed to determine brain-heart connection. Heart rate variability (HRV) was analyzed to evaluate autonomic functionality. BCCAL resulted in 100% mortality in SHRSP within 14 h, whereas no mortality was observed in WKY rats. The functionality of both the brain and the heart were significantly altered in SHRSP compared with WKY rats after BCCAL. SHRSP, but not WKY rats, exhibited intermittent surge of CCCoh, which paralleled the elevated CCCon and reduced HRV, following the onset of ischemia until sudden death. Elevated brain-heart coupling invariably associated with the disruption of the autonomic nervous system and the risk of sudden death. This study may improve our understanding of the mechanism of forebrain ischemia-induced sudden death. NEW & NOTEWORTHY This study demonstrates a marked surge of corticocardiac coupling in rats dying from focal cerebral ischemia, consistent with our earlier data in rats exposed to fatal asphyxia. Since the bidirectional electrical signal coupling (corticocardiac coherence) and communication (corticocardiac connectivity) between the brain and the heart are only identified in dying animals, they could be used as potential biomarkers to predict the risk of sudden death.
Collapse
Affiliation(s)
- Fangyun Tian
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Tiecheng Liu
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Gang Xu
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Talha Ghazi
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Azeem Sajjad
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Peter Farrehi
- Cardiovascular Center, University of Michigan , Ann Arbor, Michigan.,Department of Internal Medicine-Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Michael M Wang
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan.,Department of Neurology, University of Michigan , Ann Arbor, Michigan.,Neuroscience Graduate Program, University of Michigan , Ann Arbor, Michigan.,Cardiovascular Center, University of Michigan , Ann Arbor, Michigan.,Veterans Administration Ann Arbor Healthcare System , Ann Arbor, Michigan
| | - Jimo Borjigin
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan.,Department of Neurology, University of Michigan , Ann Arbor, Michigan.,Neuroscience Graduate Program, University of Michigan , Ann Arbor, Michigan.,Cardiovascular Center, University of Michigan , Ann Arbor, Michigan.,Michigan Center for Integrative Research in Critical Care, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
7
|
Venkat P, Chen J, Chopp M. Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke. J Cereb Blood Flow Metab 2018; 38:2165-2178. [PMID: 29888985 PMCID: PMC6282218 DOI: 10.1177/0271678x18782789] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ischemic stroke is caused by a regional interruption of cerebral blood flow to the brain. Rigorous pre-clinical and clinical research has made landmark progress in stroke treatment using thrombolytics and endovascular thrombectomy. Although numerous successful neuroprotective therapeutic agents for ischemic stroke have been reported in pre-clinical studies, most of them failed in clinical testing. Persistent pre-clinical research has demonstrated that the ischemic brain is not only passively dying but is also actively recovering. Within the neurovascular niche in the peri-infarct tissue, repair mechanisms thrive on the interactions between the neural and vascular compartments. In this review, we discuss exogenous therapy using mesenchymal stromal cell-derived exosomes to amplify endogenous brain repair mechanisms and to induce neurorestorative effects after stroke. Emerging evidence indicates that multiple communication axes between the various organs such as the brain, heart, kidney and gut, and whole body immune response mediated by the spleen can also affect stroke outcome. Therefore, in this review, we summarize this evidence and initiate a discussion on the potential to improve stroke outcome by amplifying multiple brain repair mechanisms after stroke, and by targeting peripheral organs and downstream events to enhance recovery in the injured brain and promote over all well being.
Collapse
Affiliation(s)
- Poornima Venkat
- 1 Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jieli Chen
- 1 Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- 1 Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,2 Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
8
|
Guo S, Deng W, Xing C, Zhou Y, Ning M, Lo EH. Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes. Neurobiol Dis 2018; 126:117-123. [PMID: 30031157 DOI: 10.1016/j.nbd.2018.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The emerging concept of the vasculome suggests that microvessels contribute to function and dysfunction in every organ. In the brain, aging and comorbidities such as hypertension and diabetes significantly influence a wide variety of neurodegenerative and cerebrovascular disorders, but the underlying mechanisms are complex and remain to be fully elucidated. Here, we hypothesize that aging, hypertension and diabetes perturb gene networks in the vasculome. Microvascular endothelial cells were isolated from mouse brain and heart, and their transcriptomes were profiled with microarrays. For aging, we compared 5 mo vs 15 mo old C57BL6 male mice. For hypertension, we compared 4 mo old normotensive BPN vs hypertensive BPH male mice. For diabetes, we compared 3 mo old diabetic db/db mice with their matching C57BLKS controls. Four overall patterns arose from these comparative analyses. First, organ differences between brain and heart were larger than effects of age and co-morbidities per se. Second, across all conditions, more genes were altered in the brain vasculome compared with the heart. Third, age, hypertension and diabetes perturbed the brain and heart vasculomes in mostly distinct ways, with little overlap. Fourth, nevertheless, a few common pathways were detected in the brain, expressed mostly as a suppression of immune response. These initial drafts of the brain and heart vasculomes in the context of aging and vascular comorbidities should provide a framework for designing future investigations into potential targets and mechanisms in CNS disease.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA
| | - Wenjun Deng
- Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA
| | - Changhong Xing
- Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA
| | - Yiming Zhou
- Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA
| | - MingMing Ning
- Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA.
| |
Collapse
|
9
|
Al-Khazraji BK, Appleton CT, Beier F, Birmingham TB, Shoemaker JK. Osteoarthritis, cerebrovascular dysfunction and the common denominator of inflammation: a narrative review. Osteoarthritis Cartilage 2018; 26:462-470. [PMID: 29406252 DOI: 10.1016/j.joca.2018.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Population-based cohort studies suggest an association between osteoarthritis (OA) and cerebrovascular disease, yet the mechanisms underlying vascular comorbidities in OA remain unclear. The purpose of this narrative review is to discuss the literature examining inflammation in OA with a focus on physiological mechanisms, and whether overlapping mechanisms exist in cerebrovascular dysfunction. METHOD A literature search was conducted in PubMed using combinations of search terms: osteoarthritis, cerebrovascular (disease/dysfunction/risk), cardiovascular (disease/dysfunction/risk), aging/ageing, inflammation, inflammatory mediators, cytokine, c-reactive protein, interleukin, advanced glycation end-products, metabolic syndrome, reactive oxidative species, cognitive impairment, (vascular-related) dementia, small cerebral vessel disease, endothelial function, blood-brain barrier, gender/sex, hypertension, peripheral vascular health, and physical activity. Reference lists of identified articles were also researched manually. RESULTS Overlapping inflammatory factors that may contribute to onset and progression of both OA and cerebrovascular dysfunction are presented. We describe oxidative mechanisms involving pro-inflammatory cytokines and oxidative species, advanced glycation end-products, sex hormones, microvascular dysfunction and osteoprotegerin, and their specific roles in potentially contributing to OA and cerebrovascular dysfunction. CONCLUSION Synthesis of the current literature suggests future investigations may benefit from directly testing cerebrovascular hemodynamics and cognitive function in individuals with or at risk of OA to elucidate common physiological mechanisms.
Collapse
Affiliation(s)
- B K Al-Khazraji
- School of Kinesiology, Faculty of Health Sciences, Western University, Canada; Bone and Joint Institute, Western University, Canada
| | - C T Appleton
- Department of Medicine, Schulich School of Medicine and Dentistry, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Canada; Bone and Joint Institute, Western University, Canada
| | - F Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Canada; Bone and Joint Institute, Western University, Canada
| | - T B Birmingham
- School of Physical Therapy, Faculty of Health Sciences, Western University, Canada; Bone and Joint Institute, Western University, Canada
| | - J K Shoemaker
- School of Kinesiology, Faculty of Health Sciences, Western University, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Canada; Bone and Joint Institute, Western University, Canada.
| |
Collapse
|
10
|
Onal EM, Sag AA, Sal O, Yerlikaya A, Afsar B, Kanbay M. Erythropoietin mediates brain-vascular-kidney crosstalk and may be a treatment target for pulmonary and resistant essential hypertension. Clin Exp Hypertens 2017; 39:197-209. [PMID: 28448184 DOI: 10.1080/10641963.2016.1246565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organ crosstalk pathways represent the next frontier for target-mining in molecular medicine for existing syndromes. Pulmonary hypertension and resistant essential hypertension are syndromes that have been proven elusive in etiology, and frequently refractory to first-line management. Underlying crosstalk mechanisms, not yet considered in these treatments, may hinder outcomes or unlock novel treatments. This review focuses systematically on erythropoietin, a synthesizable molecule, as a mediator of brain-kidney crosstalk. Insights gained from this review will be applied to cardiovascular diseases in a clinician-directed fashion.
Collapse
Affiliation(s)
| | - Alan Alper Sag
- b Division of Interventional Radiology, Department of Radiology , Koç University School of Medicine , Istanbul , Turkey
| | - Oguzhan Sal
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Baris Afsar
- c Suleyman Demirel University, Faculty of Medicine, Department of Internal Medicine , Section of Nephrology , Isparta , Turkey
| | - Mehmet Kanbay
- d Division of Nephrology, Department of Internal Medicine , Koç University School of Medicine , Istanbul , Turkey
| |
Collapse
|
11
|
Corey S, Ghanekar S, Sokol J, Zhang JH, Borlongan CV. An update on stem cell therapy for neurological disorders: cell death pathways as therapeutic targets. Chin Neurosurg J 2017. [DOI: 10.1186/s41016-016-0071-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
12
|
Acosta SA, Mashkouri S, Nwokoye D, Lee JY, Borlongan CV. Chronic inflammation and apoptosis propagate in ischemic cerebellum and heart of non-human primates. Oncotarget 2017; 8:102820-102834. [PMID: 29262526 PMCID: PMC5732692 DOI: 10.18632/oncotarget.18330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023] Open
Abstract
The major pathological consequences of cerebral ischemia are characterized by neurological deficits commonly ascribed to the infarcted tissue and its surrounding region, however, brain areas, as well as peripheral organs, distal from the original injury may manifest as subtle disease sequelae that can increase the risks of co-morbidities complicating the disease symptoms. To evaluate the vulnerability of the cerebellum and the heart to secondary injuries in the late stage of transient global ischemia (TGI) model in non-human primates (NHP), brain and heart tissues were collected at six months post-TGI. Unbiased stereological analyses of immunostained tissues showed significant Purkinje cells loss in lobule III and lobule IX of the TGI cerebellum relative to sham cerebellum, with corresponding upregulation of inflammatory and apoptotic cells. Similarly, TGI hearts revealed significant activation of inflammatory and apoptotic cells relative to sham hearts. Aberrant inflammation and apoptosis in the cerebellum and the heart of chronic TGI-exposed NHPs suggest distal secondary injuries manifesting both centrally and peripherally. These results advance our understanding on the sustained propagation of chronic secondary injuries after TGI, highlighting the need to develop therapeutic interventions targeting the brain, as well as the heart, in order to abrogate cerebral ischemia and its related co-morbidities.
Collapse
Affiliation(s)
- Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Sherwin Mashkouri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Diana Nwokoye
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jea Y Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
13
|
Zhu H, Gui Q, Hui X, Wang X, Jiang J, Ding L, Sun X, Wang Y, Chen H. TGF-β1/Smad3 Signaling Pathway Suppresses Cell Apoptosis in Cerebral Ischemic Stroke Rats. Med Sci Monit 2017; 23:366-376. [PMID: 28110342 PMCID: PMC5282965 DOI: 10.12659/msm.899195] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We desired to observe the changes of transforming growth factor-β1/drosophila mothers against decapentaplegic protein (TGF-β1/Smad3) signaling pathway in the hippocampus region of cerebral ischemic stroke rats so that the effects of this pathway on nerve cells can be investigated. MATERIAL AND METHODS The ischemic stroke models were built by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. TGF-β1 and TGF-β1 inhibitors were injected into rat models while TGF-β1, TGF-β1 siRNA, Smad3, and Smad3 siRNA were transfected into cells. Infarct sizes were measured using triphenyltetrazolium chloride (TTC) staining, while the apoptosis rate of cells were calculated by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining. Levels of TGF-β1, Smad3, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR), immunohistochemical, and Western blot analysis. RESULTS The expressions of TGF-β1/Smad3 signal pathway were significantly increased in both model rats and BV2 cells, whereas the expression of Bcl-2 was down-regulated (P<0.05). The TGF-β1/Smad3 signal pathway exhibited protective effects, including the down-regulation of infarction size in cerebral tissues and the down-regulation of apoptosis rate of BV2 cells by increasing the expression of Bcl-2 (P<0.05). In addition, these effects could be antagonized by the corresponding inhibitors and siRNA (P<0.05). CONCLUSIONS The TGF-β1/Smad3 signaling pathway was up-regulated once cerebral ischemic stroke was simulated. TGF-β1 may activate the expression of Bcl-2 via Smad3 to suppress the apoptosis of neurons.
Collapse
Affiliation(s)
- Haiping Zhu
- Department of Neurosurgery, The First People's Hospital of Changshou City, Changshou, Jiangsu, China (mainland)
| | - Qunfeng Gui
- Department of Neurosurgery, Yancheng Third People's Hospital, The affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China (mainland)
| | - Xiaobo Hui
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaodong Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jian Jiang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Lianshu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaoyang Sun
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yanping Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Huaqun Chen
- Department of Neurosurgery, Yancheng Third People's Hospital, The affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China (mainland)
| |
Collapse
|
14
|
Yang M, Orgah J, Zhu J, Fan G, Han J, Wang X, Zhang B, Zhu Y. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion. Brain Res 2016; 1642:516-523. [PMID: 27107944 DOI: 10.1016/j.brainres.2016.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects.
Collapse
Affiliation(s)
- Mingzhu Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China
| | - John Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China
| | - Jie Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China
| | - Xiaoying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China; Neuroscience Program, Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02135, USA
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, 220 Dongting Road, Tianjin 300457, China; Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|