1
|
Arif Y, Son JJ, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging. GeroScience 2024; 46:3021-3034. [PMID: 38175521 PMCID: PMC11009213 DOI: 10.1007/s11357-023-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Age-related changes in the neurophysiology underlying motor control are well documented, but whether these changes are specific to motor function or more broadly reflect age-related alterations in fronto-parietal circuitry serving attention and other higher-level processes remains unknown. Herein, we collected high-density magnetoencephalography (MEG) in 72 healthy adults (age 28-63 years) as they completed an adapted version of the multi-source interference task that involved two subtypes of cognitive interference (i.e., flanker and Simon) and their integration (i.e., multi-source). All MEG data were examined for age-related changes in neural oscillatory activity using a whole-brain beamforming approach. Our primary findings indicated robust behavioral differences in task performance based on the type of interference, as well as stronger beta oscillations with increasing age in the right dorsolateral prefrontal cortices (flanker and multi-source conditions), left parietal (flanker and Simon), and medial parietal regions (multi-source). Overall, these data indicate that healthy aging is associated with alterations in higher-order association cortices that are critical for attention and motor control in the context of cognitive interference.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA.
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
2
|
Zhang X, Wang H, Guo Y, Long J. Beta rebound reduces subsequent movement preparation time by modulating of GABAA inhibition. Cereb Cortex 2024; 34:bhae037. [PMID: 38342689 DOI: 10.1093/cercor/bhae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/13/2024] Open
Abstract
Post-movement beta synchronization is an increase of beta power relative to baseline, which commonly used to represent the status quo of the motor system. However, its functional role to the subsequent voluntary motor output and potential electrophysiological significance remain largely unknown. Here, we examined the reaction time of a Go/No-Go task of index finger tapping which performed at the phases of power baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds (ballistic/self-paced) in 13 healthy subjects. We found a correlation between the post-movement beta synchronization and reaction time that larger post-movement beta synchronization prolonged the reaction time during Go trials. To probe the electrophysiological significance of post-movement beta synchronization, we assessed intracortical inhibitory measures probably involving GABAB (long-interval intracortical inhibition) and GABAA (short-interval intracortical inhibition) receptors in beta baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds. We found that short-interval intracortical inhibition but not long-interval intracortical inhibition increased in post-movement beta synchronization peak compared with that in the power baseline, and was negatively correlated with the change of post-movement beta synchronization peak value. These novel findings indicate that the post-movement beta synchronization is related to forward model updating, with high beta rebound predicting longer time for the preparation of subsequent movement by inhibitory neural pathways of GABAA.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Houmin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqiu Guo
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- Pazhou Lab, Guangzhou 510335, China
| |
Collapse
|
3
|
Whittier TT, Patrick CM, Fling BW. Somatosensory Information in Skilled Motor Performance: A Narrative Review. J Mot Behav 2023; 55:453-474. [PMID: 37245865 DOI: 10.1080/00222895.2023.2213198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Historically, research aimed at improving motor performance has largely focused on the neural processes involved in motor execution due to their role in muscle activation. However, accompanying somatosensory and proprioceptive sensory information is also vitally involved in performing motor skills. Here we review research from interdisciplinary fields to provide a description for how somatosensation informs the successful performance of motor skills as well as emphasize the need for careful selection of study methods to isolate the neural processes involved in somatosensory perception. We also discuss upcoming strategies of intervention that have been used to improve performance via somatosensory targets. We believe that a greater appreciation for somatosensation's role in motor learning and control will enable researchers and practitioners to develop and apply methods for the enhancement of human performance that will benefit clinical, healthy, and elite populations alike.
Collapse
Affiliation(s)
- Tyler T Whittier
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Christopher M Patrick
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | - Brett W Fling
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Bonaiuto JJ, Little S, Neymotin SA, Jones SR, Barnes GR, Bestmann S. Laminar dynamics of high amplitude beta bursts in human motor cortex. Neuroimage 2021; 242:118479. [PMID: 34407440 PMCID: PMC8463839 DOI: 10.1016/j.neuroimage.2021.118479] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022] Open
Abstract
Motor cortical activity in the beta frequency range is one of the strongest and most studied movement-related neural signals. At the single trial level, beta band activity is often characterized by transient, high amplitude, bursting events rather than slowly modulating oscillations. The timing of these bursting events is tightly linked to behavior, suggesting a more dynamic functional role for beta activity than previously believed. However, the neural mechanisms underlying beta bursts in sensorimotor circuits are poorly understood. To address this, we here leverage and extend recent developments in high precision MEG for temporally resolved laminar analysis of burst activity, combined with a neocortical circuit model that simulates the biophysical generators of the electrical currents which drive beta bursts. This approach pinpoints the generation of beta bursts in human motor cortex to distinct excitatory synaptic inputs to deep and superficial cortical layers, which drive current flow in opposite directions. These laminar dynamics of beta bursts in motor cortex align with prior invasive animal recordings within the somatosensory cortex, and suggest a conserved mechanism for somatosensory and motor cortical beta bursts. More generally, we demonstrate the ability for uncovering the laminar dynamics of event-related neural signals in human non-invasive recordings. This provides important constraints to theories about the functional role of burst activity for movement control in health and disease, and crucial links between macro-scale phenomena measured in humans and micro-circuit activity recorded from animal models.
Collapse
Affiliation(s)
- James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK; Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK.
| | - Simon Little
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Samuel A Neymotin
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Neuroscience, Brown University, Providence, RI, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI, USA; Center for Neurorestoration and Neurotechnology, Providence VAMC, Providence, RI, USA
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK; Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK
| |
Collapse
|
5
|
Heinrichs-Graham E, Taylor BK, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Parietal Oscillatory Dynamics Mediate Developmental Improvement in Motor Performance. Cereb Cortex 2020; 30:6405-6414. [PMID: 32705142 DOI: 10.1093/cercor/bhaa199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Numerous recent studies have sought to determine the developmental trajectories of motor-related oscillatory responses from youth to adulthood. However, most of this work has relied on simple movements, and rarely have these studies linked developmental neural changes with maturational improvements in motor performance. In this study, we recorded magnetoencephalography during a complex finger-tapping task in a large sample of 107 healthy youth aged 9-15 years old. The relationships between region-specific neural activity, age, and performance metrics were examined using structural equation modeling. We found strong developmental effects on behavior and beta oscillatory activity during movement planning, as well as associations between planning-related beta activity and activity within the same region during the movement execution period. However, when all factors were tested, we found that only right parietal cortex beta dynamics mediated the relationship between age and performance on the task. These data suggest that strong, sustained beta activity within the right parietal cortex enhances motor performance, and that these sustained oscillations develop through childhood into early adolescence. In sum, these are the first data to link developmental trajectories in beta oscillatory dynamics with distinct motor performance metrics and implicate the right parietal cortex as a crucial hub in movement execution.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, UNMC, Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Brittany K Taylor
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, UNMC, Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Julia M Stephen
- The Mind Research Network, Albuquerque, New Mexico, USA.,Department of Neurosciences, University of New Mexico (UNM), Albuquerque, New Mexico, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, UNMC, Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| |
Collapse
|
6
|
Saltuklaroglu T, Bowers A, Harkrider AW, Casenhiser D, Reilly KJ, Jenson DE, Thornton D. EEG mu rhythms: Rich sources of sensorimotor information in speech processing. BRAIN AND LANGUAGE 2018; 187:41-61. [PMID: 30509381 DOI: 10.1016/j.bandl.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/27/2017] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Tim Saltuklaroglu
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA.
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, 606 N. Razorback Road, Fayetteville, AR 72701, USA
| | - Ashley W Harkrider
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Devin Casenhiser
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Kevin J Reilly
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - David E Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Spokane, WA 99210-1495, USA
| | - David Thornton
- Department of Hearing, Speech, and Language Sciences, Gallaudet University, 800 Florida Avenue NE, Washington, DC 20002, USA
| |
Collapse
|
7
|
Heinrichs-Graham E, McDermott TJ, Mills MS, Wiesman AI, Wang YP, Stephen JM, Calhoun VD, Wilson TW. The lifespan trajectory of neural oscillatory activity in the motor system. Dev Cogn Neurosci 2018. [PMID: 29525417 PMCID: PMC5949086 DOI: 10.1016/j.dcn.2018.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lifespan trajectory of resting and motor-related beta oscillations is unknown. These beta dynamics were examined in participants aged 9–75 years using MEG imaging. Resting beta levels and motor-related beta oscillations follow unique trajectories. The dynamic relationship between these two measures predicts motor performance.
Numerous studies connect beta oscillations in the motor cortices to volitional movement, and beta is known to be aberrant in multiple movement disorders. However, the dynamic interplay between these beta oscillations, motor performance, and spontaneous beta power (e.g., during rest) in the motor cortices remains unknown. This study utilized magnetoencephalography (MEG) to investigate these three parameters and their lifespan trajectory in 57 healthy participants aged 9–75 years old. Movement-related beta activity was imaged using a beamforming approach, and voxel time series data were extracted from the peak voxels in the primary motor cortices. Our results indicated that spontaneous beta power during rest followed a quadratic lifespan trajectory, while movement-related beta oscillations linearly increased with age. Follow-on analyses showed that spontaneous beta power and the beta minima during movement, together, significantly predicted task performance above and beyond the effects of age. These data are the first to show lifespan trajectories among measures of beta activity in the motor cortices, and suggest that the healthy brain compensates for age-related increases in spontaneous beta activity by increasing the strength of beta oscillations within the motor cortices which, when successful, enables normal motor performance into later life.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA,.
| | | | | | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Julia M Stephen
- The Mind Research Network, Albuquerque, NM, USA,; Department of Neurosciences, University of New Mexico (UNM), Albuquerque, NM, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA,; Department of Neurosciences, University of New Mexico (UNM), Albuquerque, NM, USA,; Department of Electrical and Computer Engineering, UNM, Albuquerque, NM, USA,; Department of Computer Science, UNM, Albuquerque, NM, USA,; Department of Psychiatry, UNM, Albuquerque, NM, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| |
Collapse
|
8
|
Beta Rebound in Visuomotor Adaptation: Still the Status Quo? J Neurosci 2018; 36:6365-7. [PMID: 27307225 DOI: 10.1523/jneurosci.1007-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/14/2016] [Indexed: 11/21/2022] Open
|
9
|
Lee JJ, Schmit BD. Effect of sensory attenuation on cortical movement-related oscillations. J Neurophysiol 2017; 119:971-978. [PMID: 29187547 DOI: 10.1152/jn.00171.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the impact of induced sensory deficits on cortical, movement-related oscillations measured using electroencephalography (EEG). We hypothesized that EEG patterns in healthy subjects with induced sensory reduction would be comparable to EEG found after chronic loss of sensory feedback. EEG signals from 64 scalp locations were measured from 10 healthy subjects. Participants dorsiflexed their ankle after prolonged vibration of the tibialis anterior (TA). Beta band time frequency decompositions were calculated using wavelets and compared across conditions. Changes in patterns of movement-related brain activity were observed following attenuation of sensory feedback. A significant decrease in beta power of event-related synchronization was associated with simple ankle dorsiflexion after prolonged vibration of the TA. Attenuation of sensory feedback in young, healthy subjects led to a corresponding decrease in beta band synchronization. This temporary change in beta oscillations suggests that these modulations are a mechanism for sensorimotor integration. The loss of sensory feedback found in spinal cord injury patients contributes to changes in EEG signals underlying motor commands. Similar alterations in cortical signals in healthy subjects with reduced sensory feedback implies these changes reflect normal sensorimotor integration after reduced sensory input rather than brain plasticity. NEW & NOTEWORTHY Transient attenuation of sensory afferents in young, healthy adults led to similar changes in brain activity found previously in volunteers with incomplete spinal cord injury. Beta band power associated with ankle movement in these controls was attenuated after prolonged vibration of the tibialis anterior. Evoked potential measurements suggest that prolonged vibration reduces phasing across trials as the mechanism behind this attenuation of cortical activity.
Collapse
Affiliation(s)
- Joseph J Lee
- Department of Biomedical Engineering, Marquette University , Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
10
|
Heinrichs-Graham E, Hoburg JM, Wilson TW. The peak frequency of motor-related gamma oscillations is modulated by response competition. Neuroimage 2017; 165:27-34. [PMID: 28966082 DOI: 10.1016/j.neuroimage.2017.09.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022] Open
Abstract
Movement execution generally occurs in an environment with numerous distractors, and requires the selection of a motor plan from multiple possible alternatives. However, the impact of such distractors on cortical motor function during movement remains largely unknown. Previous studies have identified two movement-related oscillatory responses that are critical to motor planning and execution, and these responses include the peri-movement beta event-related desynchronization (ERD) and the movement-related gamma synchronization (MRGS). In the current study, we investigate how visual distractors cuing alternative movements modulate the beta ERD and MRGS responses. To this end, we recorded magnetoencephalography (MEG) during an arrow-based version of the Eriksen flanker task in 42 healthy adults. All MEG data were transformed in to the time-frequency domain and the beta ERD and MRGS responses were imaged using a beamformer. Virtual sensors (voxel time series) were then extracted from the peak voxels of each response for the congruent and incongruent flanker conditions separately, and these data were examined for conditional differences during the movement. Our results indicated that participants exhibited the classic "flanker effect," as they responded significantly slower during incongruent relative to congruent trials. Our most important MEG finding was a significant increase in the peak frequency of the MRGS in the incongruent compared to the congruent condition, with no conditional effect on response amplitude. In addition, we found significantly stronger peri-movement beta ERD responses in the ipsilateral motor cortex during incongruent compared to congruent trials, but no conditional effect on frequency. These data are the first to show that the peak frequency of the MRGS response is linked to the task parameters, and varies from trial to trial in individual participants. More globally, these data suggest that beta and gamma oscillations are modulated by visual distractors causing response competition.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA.
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| |
Collapse
|
11
|
Mykland MS, Bjørk MH, Stjern M, Sand T. Alterations in post-movement beta event related synchronization throughout the migraine cycle: A controlled, longitudinal study. Cephalalgia 2017; 38:718-729. [PMID: 28478712 DOI: 10.1177/0333102417709011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background The migraine brain is believed to have altered cortical excitability compared to controls and between migraine cycle phases. Our aim was to evaluate post-activation excitability through post-movement beta event related synchronization (PMBS) in sensorimotor cortices with and without sensory discrimination. Subjects and methods We recorded EEG of 41 migraine patients and 31 healthy controls on three different days with classification of days in relation to migraine phases. During each recording, subjects performed one motor and one sensorimotor task with the right wrist. Controls and migraine patients in the interictal phase were compared with repeated measures (R-) ANOVA and two sample Student's t-test. Migraine phases were compared to the interictal phase with R-ANOVA and paired Student's t-test. Results The difference between PMBS at the contralateral and ipsilateral sensorimotor cortex was altered throughout the migraine cycle. Compared to the interictal phase, we found decreased PMBS at the ipsilateral sensorimotor cortex in the ictal phase and increased PMBS in the preictal phase. Lower ictal PMBS was found in bilateral sensorimotor cortices in patients with right side headache predominance. Conclusion The cyclic changes of PMBS in migraine patients may indicate that a dysfunction in deactivation and interhemispheric inhibition of the sensorimotor cortex is involved in the migraine attack cascade.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Marte Helene Bjørk
- 2 Department of Clinical Medicine, University of Bergen, Bergen, Norway
- 3 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- 4 Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- 4 Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Heinrichs-Graham E, Kurz MJ, Gehringer JE, Wilson TW. The functional role of post-movement beta oscillations in motor termination. Brain Struct Funct 2017; 222:3075-3086. [PMID: 28337597 DOI: 10.1007/s00429-017-1387-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022]
Abstract
Shortly after movement termination, there is a strong increase or resynchronization of the beta rhythm (15-30 Hz) across the sensorimotor network of humans, known as the post-movement beta rebound (PMBR). This response has been associated with active inhibition of the motor network following the completion of a movement, sensory afferentation of the sensorimotor cortices, and other functions. However, studies that have directly probed the role of the PMBR in movement execution have reported mixed results, possibly due to differences in the amount of total motor output and/or movement complexity. Herein, we used magnetoencephalography during an isometric-force control task to examine whether alterations in the timing of motor termination demands modulate the PMBR, independent of differences in the motor output itself. Briefly, we manipulated the amount of time between the cue to initiate the force and the cue to terminate the force, such that participants were either forced to terminate quickly or slowly. We also performed a control experiment to test for temporal predictability effects. Our results indicated that the PMBR was stronger immediately following movement termination in the prefrontal cortices, supplementary motor area, left postcentral gyrus, paracentral lobule, and parietal cortex when participants were forced to terminate more quickly. These results were not attributable to the temporal predictability of each condition. These findings support the notion that the PMBR response at least partially serves motor inhibition, independent of the parameters within the motor output itself, and that particular nodes of the motor network may be differentially modulated by motor termination.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA.,Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Max J Kurz
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA.,Department of Physical Therapy, Munroe-Meyer Institute, UNMC, Omaha, NE, USA
| | - James E Gehringer
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA.,Department of Physical Therapy, Munroe-Meyer Institute, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA. .,Department of Neurological Sciences, UNMC, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA.
| |
Collapse
|
13
|
Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS. Cereb Cortex 2016; 26:3977-90. [PMID: 27522077 PMCID: PMC5028010 DOI: 10.1093/cercor/bhw245] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits.
Collapse
Affiliation(s)
- Andrea Guerra
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Magdalena Nowak
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Florinda Ferreri
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio FIN-70100, Finland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
14
|
Houdayer E, Comi G, Leocani L. The Neurophysiologist Perspective into MS Plasticity. Front Neurol 2015; 6:193. [PMID: 26388835 PMCID: PMC4558527 DOI: 10.3389/fneur.2015.00193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a frequent, highly debilitating inflammatory demyelinating disease, starting to manifest in early adulthood and presenting a wide variety of symptoms, which are often resistant to pharmacological treatments. Cortical dysfunctions have been demonstrated to be key components of MS condition, and plasticity of the corticospinal motor system is highly involved in major MS symptoms, such as fatigue, spasticity, or pain. Cortical dysfunction in MS can be studied with neurophysiological tools, such as electroencephalography (EEG) and related techniques (evoked potentials) or transcranial magnetic stimulation (TMS). These techniques are now widely used to provide essential elements of MS diagnosis and can also be used to modulate plasticity. Indeed, the recent development of non-invasive brain stimulation techniques able to induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation, has brought promising results as add-on treatments. In this review, we will focus on the use of these tools (EEG and TMS) to study plasticity in MS and on the major techniques used to modulate plasticity in MS.
Collapse
Affiliation(s)
- Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
15
|
Parkkonen E, Laaksonen K, Piitulainen H, Parkkonen L, Forss N. Modulation of the ∽20-Hz motor-cortex rhythm to passive movement and tactile stimulation. Brain Behav 2015; 5:e00328. [PMID: 25874163 PMCID: PMC4396160 DOI: 10.1002/brb3.328] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/21/2014] [Accepted: 01/25/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Integration of afferent somatosensory input with motor-cortex output is essential for accurate movements. Prior studies have shown that tactile input modulates motor-cortex excitability, which is reflected in the reactivity of the ∽ 20-Hz motor-cortex rhythm. ∽ 20-Hz rebound is connected to inhibition or deactivation of motor cortex whereas suppression has been associated with increased motor cortex activity. Although tactile sense carries important information for controlling voluntary actions, proprioception likely provides the most essential feedback for motor control. METHODS To clarify how passive movement modulates motor-cortex excitability, we studied with magnetoencephalography (MEG) the amplitudes and peak latencies of suppression and rebound of the ∽ 20-Hz rhythm elicited by tactile stimulation and passive movement of right and left index fingers in 22 healthy volunteers. RESULTS Passive movement elicited a stronger and more robust ∽ 20-Hz rebound than tactile stimulation. In contrast, the suppression amplitudes did not differ between the two stimulus types. CONCLUSION Our findings suggest that suppression and rebound represent activity of two functionally distinct neuronal populations. The ∽ 20-Hz rebound to passive movement could be a suitable tool to study the functional state of the motor cortex both in healthy subjects and in patients with motor disorders.
Collapse
Affiliation(s)
- Eeva Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland ; Aalto NeuroImaging, MEG-Core, Aalto University School of Science Espoo, Finland ; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland ; Aalto NeuroImaging, MEG-Core, Aalto University School of Science Espoo, Finland ; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland ; Aalto NeuroImaging, MEG-Core, Aalto University School of Science Espoo, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland ; Aalto NeuroImaging, MEG-Core, Aalto University School of Science Espoo, Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland ; Aalto NeuroImaging, MEG-Core, Aalto University School of Science Espoo, Finland ; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital Finland
| |
Collapse
|
16
|
Sallard E, Tallet J, Thut G, Deiber MP, Barral J. Post-switching beta synchronization reveals concomitant sensory reafferences and active inhibition processes. Behav Brain Res 2014; 271:365-73. [DOI: 10.1016/j.bbr.2014.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022]
|
17
|
Altered corticomuscular coherence elicited by paced isotonic contractions in individuals with cerebral palsy: a case-control study. J Electromyogr Kinesiol 2014; 24:928-33. [PMID: 25127492 DOI: 10.1016/j.jelekin.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022] Open
Abstract
The purpose of the study was to analyze corticomuscular coherence during planning and execution of simple hand movements in individuals with cerebral palsy (CP) and healthy controls (HC). Fourteen individuals with CP and 15 HC performed voluntary paced movements (opening and closing the fist) in response to a warning signal. Simultaneous scalp EEG and surface EMG of extensor carpi radialis brevis were recorded during 15 isotonic contractions. Time-frequency corticomuscular coherence (EMG-C3/C4) before and during muscular contraction, as well as EMG intensity, onset latency and duration were analyzed. Although EMG intensity was similar in both groups, individuals with CP exhibited longer onset latency and increased duration of the muscular contraction than HC. CP also showed higher corticomuscular coherence in beta EEG band during both planning and execution of muscular contraction, as well as lower corticomuscular coherence in gamma EEG band at the beginning of the contraction as compared with HC. In conclusion, our results suggest that individuals with CP are characterized by an altered functional coupling between primary motor cortex and effector muscles during planning and execution of isotonic contractions. In addition, the usefulness of corticomuscular coherence as a research tool for exploring deficits in motor central processing in persons with early brain damage is discussed.
Collapse
|
18
|
Cremoux S, Tallet J, Berton E, Dal Maso F, Amarantini D. Motor-related cortical activity after cervical spinal cord injury: multifaceted EEG analysis of isometric elbow flexion contractions. Brain Res 2013; 1533:44-51. [PMID: 23939224 DOI: 10.1016/j.brainres.2013.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
Electroencephalographic (EEG) studies have well established that motor cortex (M1) activity ~20 Hz decreases during muscular contraction and increases as soon as contraction stops, which are known as event-related desynchronization (ERD) and event-related synchronization (ERS), respectively. ERD is supposed to reflect M1 activation, sending information to recruited muscles, while the process underlying ERS is interpreted either as active cortical inhibition or as processing of sensory inputs. Investigation of the process behind ERD/ERS in people with spinal cord injury (SCI) would be particularly relevant since their M1 remains effective despite decreased sensorimotor abilities. In this study, we recorded net joint torque and EEG in 6 participants with cervical SCI and 8 healthy participants who performed isometric elbow flexion at 3 force levels. Multifaceted EEG analysis was introduced to assess ERD/ERS according to their amplitude, frequency range and duration. The results revealed that net joint torque increased with the required force level for all participants and time to contraction inhibition was longer in the SCI group. At the cortical level, ERD/ERS frequency ranges increased with the required force level in all participants, indicating that the modulation of cortical activity with force level is preserved after SCI. However, ERS amplitude decreased only in SCI participants, which may be linked to delayed contraction inhibition. All in all, cortical modulation of frequency range and amplitude could reflect two different kinds of neural communication.
Collapse
Affiliation(s)
- Sylvain Cremoux
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France.
| | | | | | | | | |
Collapse
|
19
|
Zaepffel M, Trachel R, Kilavik BE, Brochier T. Modulations of EEG beta power during planning and execution of grasping movements. PLoS One 2013; 8:e60060. [PMID: 23555884 PMCID: PMC3605373 DOI: 10.1371/journal.pone.0060060] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
Although beta oscillations (≈ 13–35 Hz) are often considered as a sensorimotor rhythm, their functional role remains debated. In particular, the modulations of beta power during preparation and execution of complex movements in different contexts were barely investigated. Here, we analysed the beta oscillations recorded with electroencephalography (EEG) in a precued grasping task in which we manipulated two critical parameters: the grip type (precision vs. side grip) and the force (high vs. low force) required to pull an object along a horizontal axis. A cue was presented 3 s before a GO signal and provided full, partial or no information about the two movement parameters. We measured beta power over the centro-parietal areas during movement preparation and execution as well as during object hold. We explored the modulations of power in relation to the amount and type of prior information provided by the cue. We also investigated how beta power was affected by the grip and force parameters. We observed an increase in beta power around the cue onset followed by a decrease during movement preparation and execution. These modulations were followed by a transient power increase during object hold. This pattern of modulations did not differ between the 4 movement types (2 grips ×2 forces). However, the amount and type of prior information provided by the cue had a significant effect on the beta power during the preparatory delay. We discuss how these results fit with current hypotheses on the functional role of beta oscillations.
Collapse
Affiliation(s)
- Manuel Zaepffel
- Institut de Neurosciences Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France.
| | | | | | | |
Collapse
|
20
|
Reyns N, Derambure P, Duhamel A, Bourriez JL, Blond S, Houdayer E. Motor cortex stimulation modulates defective central beta rhythms in patients with neuropathic pain. Clin Neurophysiol 2012; 124:761-9. [PMID: 23151426 DOI: 10.1016/j.clinph.2012.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Motor cortex stimulation therapy (MCS) is increasingly used to control refractory neuropathic pain. Post-movement beta synchronization (PMBS) is defined as a sharp increase in beta-frequency electroencephalographic power following movement offset and may reflect sensorimotor cortex inhibition induced, at least in part, by cortical processing of movement-related sensory afferent inputs. PMBS pattern is then often altered in case of neuropathic pain. The main objective of the present study was to test the hypothesis that implanted MCS modulates PMBS in patients presenting with neuropathic pain. METHODS Using a high-resolution, 128-electrode electroencephalographic system, we recorded and compared, before and during MCS, PMBS patterns during brisk, unilateral right and left index finger extension in 8 patients presenting with neuropathic pain. RESULTS The pre-operative PMBS patterns were altered in all cases. MCS increased the spatial distribution and amplitude of PMBS in most of cases and restored maximum-intensity of PMBS contralateral to the painful body side. These modifications appeared significantly correlated with the analgesic effect of MCS. CONCLUSION This study provides evidence of central beta rhythms neuromodulation induced by MCS. SIGNIFICANCE The restoration by MCS of defective cortical inhibition in patients with neuropathic pain is evoked.
Collapse
Affiliation(s)
- Nicolas Reyns
- Department of Functional Neurosurgery, FRE 3291 CNRS, Université Lille Nord de France, France.
| | | | | | | | | | | |
Collapse
|
21
|
Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A. The ups and downs of β oscillations in sensorimotor cortex. Exp Neurol 2012; 245:15-26. [PMID: 23022918 DOI: 10.1016/j.expneurol.2012.09.014] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 11/27/2022]
Abstract
Since the first descriptions of sensorimotor rhythms by Berger (1929) and by Jasper and Penfield (1949), the potential role of beta oscillations (~13-30 Hz) in the brain has been intensely investigated. We start this review by showing that experimental studies in humans and monkeys have reached a consensus on the facts that sensorimotor beta power is low during movement, transiently increases after movement end (the "beta rebound") and tonically increases during object grasping. Recently, a new surge of studies exploiting more complex sensorimotor tasks including multiple events, such as instructed delay tasks, reveal novel characteristics of beta oscillatory activity. We therefore proceed by critically reviewing also this literature to understand whether modulations of beta oscillations in task epochs other than those during and after movement are consistent across studies, and whether they can be reconciled with a role for beta oscillations in sensorimotor transmission. We indeed find that there are additional processes that also strongly affect sensorimotor beta oscillations, such as visual cue anticipation and processing, fitting with the view that beta oscillations reflect heightened sensorimotor transmission beyond somatosensation. However, there are differences among studies, which may be interpreted more readily if we assume multiple processes, whose effects on the overall measured beta power overlap in time. We conclude that beta oscillations observed in sensorimotor cortex may serve large-scale communication between sensorimotor and other areas and the periphery.
Collapse
Affiliation(s)
- Bjørg Elisabeth Kilavik
- Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille University, Marseille, France.
| | | | | | | | | |
Collapse
|
22
|
Ferreri F, Ponzo D, Hukkanen T, Mervaala E, Könönen M, Pasqualetti P, Vecchio F, Rossini PM, Määttä S. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study. J Neurophysiol 2012; 108:314-23. [DOI: 10.1152/jn.00796.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When linking in time electrical stimulation of the peripheral nerve with transcranial magnetic stimulation (TMS), the excitability of the motor cortex can be modulated to evoke clear inhibition, as reflected by the amplitude decrement in the motor-evoked potentials (MEPs). This specific property, designated short-latency afferent inhibition (SAI), occurs when the nerve–TMS interstimulus interval (ISI) is approximately 25 ms and is considered to be a corticothalamic phenomenon. The aim of the present study was to use the electroencephalographic (EEG) responses to navigated-TMS coregistration to better characterize the neuronal circuits underlying SAI. The present experimental set included magnetic resonance imaging (MRI)–navigated TMS and 60-channel TMS-compatible EEG devices. TMS-evoked EEG responses and MEPs were analyzed in eight healthy volunteers; ISIs between median nerve and cortical stimulation were determined relative to the latency of the individual N20 component of the somatosensory-evoked potential (SEP) obtained after stimulation of the median nerve. ISIs from the latency of the N20 plus 3 ms and N20 plus 10 ms were investigated. In all experimental conditions, TMS-evoked EEG responses were characterized by a sequence of negative deflections peaking at approximately 7, 44, and 100 ms alternating with positive peaks at approximately 30, 60, and 180 ms post-TMS. Moreover, ISI N20+3 ms modulated both EEG-evoked activity and MEPs. In particular, it inhibited MEP amplitudes, attenuated cortical P60 and N100 responses, and induced motor cortex beta rhythm selective decrement of phase locking. The findings of the present experiment suggest the cortical origin of SAI that could result from the cortico–cortical activation of GABAergic-mediated inhibition onto the corticospinal neurons modulated by cholinergic activation able to reducing intralaminar inhibition and promoting intracolumnar inhibition.
Collapse
Affiliation(s)
- Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, University Campus Biomedico, Rome, Italy
| | - David Ponzo
- Department of Neurology, University Campus Biomedico, Rome, Italy
- AFaR Department of Neuroscience, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
| | - Taina Hukkanen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Patrizio Pasqualetti
- Department of Neurology, University Campus Biomedico, Rome, Italy
- AFaR Department of Neuroscience, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
| | - Fabrizio Vecchio
- AFaR Department of Neuroscience, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
| | - Paolo Maria Rossini
- Department of Neurology, Catholic University, Rome, Italy; and
- L'Instituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome and Casa di Cura San Raffaele, Cassino, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Movement preparation and cortical processing of afferent inputs in cortical tremor: An event-related (de)synchronization (ERD/ERS) study. Clin Neurophysiol 2012; 123:1207-15. [DOI: 10.1016/j.clinph.2011.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/17/2011] [Accepted: 10/29/2011] [Indexed: 11/22/2022]
|
24
|
Muthuraman M, Tamás G, Hellriegel H, Deuschl G, Raethjen J. Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography. PLoS One 2012; 7:e33928. [PMID: 22470495 PMCID: PMC3309938 DOI: 10.1371/journal.pone.0033928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena. We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated. High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.
Collapse
|
25
|
Tombini M, Rigosa J, Zappasodi F, Porcaro C, Citi L, Carpaneto J, Rossini PM, Micera S. Combined Analysis of Cortical (EEG) and Nerve Stump Signals Improves Robotic Hand Control. Neurorehabil Neural Repair 2011; 26:275-81. [DOI: 10.1177/1545968311408919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Interfacing an amputee’s upper-extremity stump nerves to control a robotic hand requires training of the individual and algorithms to process interactions between cortical and peripheral signals. Objective. To evaluate for the first time whether EEG-driven analysis of peripheral neural signals as an amputee practices could improve the classification of motor commands. Methods. Four thin-film longitudinal intrafascicular electrodes (tf-LIFEs-4) were implanted in the median and ulnar nerves of the stump in the distal upper arm for 4 weeks. Artificial intelligence classifiers were implemented to analyze LIFE signals recorded while the participant tried to perform 3 different hand and finger movements as pictures representing these tasks were randomly presented on a screen. In the final week, the participant was trained to perform the same movements with a robotic hand prosthesis through modulation of tf-LIFE-4 signals. To improve the classification performance, an event-related desynchronization/synchronization (ERD/ERS) procedure was applied to EEG data to identify the exact timing of each motor command. Results. Real-time control of neural (motor) output was achieved by the participant. By focusing electroneurographic (ENG) signal analysis in an EEG-driven time window, movement classification performance improved. After training, the participant regained normal modulation of background rhythms for movement preparation (α/β band desynchronization) in the sensorimotor area contralateral to the missing limb. Moreover, coherence analysis found a restored α band synchronization of Rolandic area with frontal and parietal ipsilateral regions, similar to that observed in the opposite hemisphere for movement of the intact hand. Of note, phantom limb pain (PLP) resolved for several months. Conclusions Combining information from both cortical (EEG) and stump nerve (ENG) signals improved the classification performance compared with tf-LIFE signals processing alone; training led to cortical reorganization and mitigation of PLP.
Collapse
Affiliation(s)
| | - Jacopo Rigosa
- BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Camillo Porcaro
- ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
- Newcastle University, Newcastle upon Tyne, UK
| | - Luca Citi
- BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Paolo Maria Rossini
- Casa di Cura S. Raffaele, Cassino and IRCCS S. Raffaele-Pisana, Rome, Italy
- Catholic University, Rome, Italy
| | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
26
|
Tamás G, Raethjen J, Muthuraman M, Folhoffer A, Deuschl G, Szalay F, Takáts A, Kamondi A. Disturbed post-movement beta synchronization in Wilson's disease with neurological manifestation. Neurosci Lett 2011; 494:240-4. [PMID: 21406212 DOI: 10.1016/j.neulet.2011.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/20/2011] [Accepted: 03/08/2011] [Indexed: 12/26/2022]
Abstract
We analyzed the changes of post-movement beta synchronization (PMBS) of the electroencephalogram (EEG) in Wilson's disease with neurological manifestation. Our aim was to determine if PMBS in Wilson's disease is altered in a different way than in Parkinson's disease or in essential tremor. Our purpose was to find out whether the analysis of PMBS could help the diagnosis in ambiguous cases. Ten patients with neurological manifestation of Wilson's disease and ten controls performed self-paced movements with the dominant hand during EEG acquisition. Five electrodes above the sensorimotor cortex were selected for evaluation (C3, C1, Cz, C2, C4) as contralateral (C); contralateral medial (CM); medial (M); ipsilateral medial (IM); ipsilateral (I) relative to the dominant hand. Power and latency of PMBS were calculated by time resolved power spectral analysis with multitaper method. PMBS power in the C electrode position was significantly lower in patients than in controls, its contralateral preponderance disappeared in the patient group. In every location, latency of PMBS was significantly longer in the Wilson group compared to controls. More altered PMBS could be measured in patients with both basal ganglia and cerebellar involvements. Since decreased power of PMBS was observed in Parkinson's disease and increased latency in essential tremor, the combined change of PMBS can indicate pathology of different neural circuits and may help the diagnosis in challenging cases.
Collapse
Affiliation(s)
- Gertrúd Tamás
- Department of Neurology, Semmelweis University, Balassa u. 6, 1083 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. Neuroimage 2010; 51:792-807. [PMID: 20116434 DOI: 10.1016/j.neuroimage.2010.01.077] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/24/2009] [Accepted: 01/22/2010] [Indexed: 11/21/2022] Open
Abstract
We measured visually-cued motor responses in two developmentally separate groups of children and compared these responses to a group of adults. We hypothesized that if post-movement beta rebound (PMBR) depends on developmentally sensitive processes, PMBR will be greatest in adults and progressively decrease in children performing a basic motor task as a function of age. Twenty children (10 young children 4-6 years; 10 adolescent children 11-13 years) and 10 adults all had MEG recorded during separate recordings of right and left index finger movements. Beta band (15-30 Hz) event-related desynchronization (ERD) of bi-lateral sensorimotor areas was observed to increase significantly from both contralateral and ipsilateral MI with age. Movement-related gamma synchrony (60-90 Hz) was also observed from contralateral MI for each age group. However, PMBR was significantly reduced in the 4-6 year group and, while more prominent, remained significantly diminished in the adolescent (11-13 year) age group as compared to adults. PMBR measures were weak or absent in the youngest children tested and appear maximally from bilateral MI in adults. Thus PMBR may reflect an age-dependent inhibitory process of the primary motor cortex which comes on-line with normal development. Previous studies have shown PMBR may be observed from MI following a variety of movement-related tasks in adult participants - however, the origin and purpose of the PMBR is unclear. The current study shows that the expected PMBR from MI observed from adults is increasingly diminished in adolescent and young children respectively. A reduction in PMBR from children may reflect reduced motor cortical inhibition. Relatively less motor inhibition may facilitate neuronal plasticity and promote motor learning in children.
Collapse
|
28
|
Tyvaert L, Houdayer E, Devanne H, Bourriez JL, Derambure P, Monaca C. Cortical involvement in the sensory and motor symptoms of primary restless legs syndrome. Sleep Med 2009; 10:1090-6. [PMID: 19427261 DOI: 10.1016/j.sleep.2008.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 01/18/2023]
Abstract
BACKGROUND Restless legs syndrome (RLS) is characterized by closely interrelated motor and sensory disorders. Two types of involuntary movement can be observed: periodic leg movements during wakefulness (PLMW) and periodic leg movements during sleep (PLMS). Basal ganglia dysfunction in primary RLS has often been suggested. However, clinical observations raise the hypothesis of sensorimotor cortical involvement in RLS symptoms. Here, we explored cortical function via movement-related beta and mu rhythm reactivity. METHODS Twelve patients with idiopathic, primary RLS were investigated and compared with 10 healthy subjects. In the patient group, we analyzed event-related beta and mu (de)synchronization (ERD/S) for PLMS and PLMW during a suggested immobilization test (SIT). An ERD/S analysis was also performed in patients and controls during self-paced right ankle dorsal flexion at 8:30 PM (i.e., the symptomatic period for patients) and 8:30 AM (the asymptomatic period). RESULTS Before PLMS, there was no ERD. Intense ERS was recorded after PLMS. As with voluntary movement, cortical ERD was always observed before PLMW. After PLMW, ERS had a diffuse scalp distribution. Furthermore, the ERS and ERD amplitudes and durations for voluntary movement were greater during the symptomatic period than during the asymptomatic period and in comparison with healthy controls, who presented an evening decrease in these parameters. Patients and controls had similar ERD and ERS patterns in the morning. CONCLUSION On the basis of a rhythm reactivity study, we conclude that the symptoms of RLS are related to cortical sensorimotor dysfunction.
Collapse
Affiliation(s)
- L Tyvaert
- Clinical Neurophysiology Department, Roger Salengro Hospital, Lille University Medical Center, Lille, France
| | | | | | | | | | | |
Collapse
|
29
|
Degardin A, Houdayer E, Bourriez JL, Destée A, Defebvre L, Derambure P, Devos D. Deficient "sensory" beta synchronization in Parkinson's disease. Clin Neurophysiol 2009; 120:636-42. [PMID: 19208497 DOI: 10.1016/j.clinph.2009.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/09/2008] [Accepted: 01/01/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. METHODS Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. RESULTS The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. DISCUSSION If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. SIGNIFICANCE Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.
Collapse
Affiliation(s)
- A Degardin
- Department of Neurology, EA2683, Lille University Hospital, France
| | | | | | | | | | | | | |
Collapse
|