1
|
Jacob LPL, Bailes SM, Williams SD, Stringer C, Lewis LD. Brainwide hemodynamics predict neural rhythms across sleep and wakefulness in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577429. [PMID: 38352426 PMCID: PMC10862763 DOI: 10.1101/2024.01.29.577429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the brainwide dynamics underlying these oscillations are unknown. Using simultaneous EEG and fast fMRI in humans drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI networks predict alpha (8-12 Hz) and delta (1-4 Hz) fluctuations. We predicted moment-to-moment EEG power variations from fMRI activity in held-out subjects, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify the large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal, brainwide dynamics.
Collapse
Affiliation(s)
- Leandro P. L. Jacob
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney M. Bailes
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | - Stephanie D. Williams
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | | | - Laura D. Lewis
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA USA
| |
Collapse
|
2
|
Baena D, Gabitov E, Ray LB, Doyon J, Fogel SM. Motor learning promotes regionally-specific spindle-slow wave coupled cerebral memory reactivation. Commun Biol 2024; 7:1492. [PMID: 39533111 PMCID: PMC11557691 DOI: 10.1038/s42003-024-07197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain & Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Szakács H, Mutlu MC, Balestrieri G, Gombos F, Braun J, Kringelbach ML, Deco G, Kovács I. Navigating Pubertal Goldilocks: The Optimal Pace for Hierarchical Brain Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308364. [PMID: 38489748 DOI: 10.1002/advs.202308364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions. To this end, the connection between maturational stages and the level of hierarchical organization of large-scale brain networks in 12-13-year-old females is analyzed. Skeletal maturity is used as a proxy for pubertal progress. The degree of maturity is defined by the difference between bone age and chronological age. To assess the level of hierarchical organization in the brain, the temporal dynamic of closed eye resting state high-density electroencephalography (EEG) in the alpha frequency range is analyzed. Different levels of hierarchical order are captured by the measured asymmetry in the directionality of information flow between different regions. The calculated EEG-based entropy production of participant groups is then compared with accelerated, average, and decelerated maturity. Results indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order, and both accelerated and decelerated timelines result in diminished cortical organization. This suggests that a "Goldilocks rule" of brain development is favoring a particular maturational tempo.
Collapse
Affiliation(s)
- Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- Semmelweis University Doctoral School, Division of Mental Health Sciences, 26 Üllői road, Budapest, 1085, Hungary
| | - Murat Can Mutlu
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Giulio Balestrieri
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
| | - Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
| | - Jochen Braun
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Wellington Square, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Wellington Square, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 122-140 Carrer de Tànger, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), 23 Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Ilona Kovács
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
- Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, 25-27 Kazinczy Street, Budapest, 1075, Hungary
| |
Collapse
|
4
|
Northoff G, Scalabrini A, Fogel S. Topographic-dynamic reorganisation model of dreams (TRoD) - A spatiotemporal approach. Neurosci Biobehav Rev 2023; 148:105117. [PMID: 36870584 DOI: 10.1016/j.neubiorev.2023.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Dreams are one of the most bizarre and least understood states of consciousness. Bridging the gap between brain and phenomenology of (un)conscious experience, we propose the Topographic-dynamic Re-organization model of Dreams (TRoD). Topographically, dreams are characterized by a shift towards increased activity and connectivity in the default-mode network (DMN) while they are reduced in the central executive network, including the dorsolateral prefrontal cortex (except in lucid dreaming). This topographic re-organization is accompanied by dynamic changes; a shift towards slower frequencies and longer timescales. This puts dreams dynamically in an intermediate position between awake state and NREM 2/SWS sleep. TRoD proposes that the shift towards DMN and slower frequencies leads to an abnormal spatiotemporal framing of input processing including both internally- and externally-generated inputs (from body and environment). In dreams, a shift away from temporal segregation to temporal integration of inputs results in the often bizarre and highly self-centric mental contents as well as hallucinatory-like states. We conclude that topography and temporal dynamics are core features of the TroD, which may provide the connection of neural and mental activity, e.g., brain and experience during dreams as their "common currency".
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Stuart Fogel
- Sleep and Neuroscience, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute and Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Baena D, Fang Z, Gibbings A, Smith D, Ray LB, Doyon J, Owen AM, Fogel SM. Functional differences in cerebral activation between slow wave-coupled and uncoupled sleep spindles. Front Neurosci 2023; 16:1090045. [PMID: 36741053 PMCID: PMC9889560 DOI: 10.3389/fnins.2022.1090045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Spindles are often temporally coupled to slow waves (SW). These SW-spindle complexes have been implicated in memory consolidation that involves transfer of information from the hippocampus to the neocortex. However, spindles and SW, which are characteristic of NREM sleep, can occur as part of this complex, or in isolation. It is not clear whether dissociable parts of the brain are recruited when coupled to SW vs. when spindles or SW occur in isolation. Here, we tested differences in cerebral activation time-locked to uncoupled spindles, uncoupled SW and coupled SW-spindle complexes using simultaneous EEG-fMRI. Consistent with the "active system model," we hypothesized that brain activations time-locked to coupled SW-spindles would preferentially occur in brain areas known to be critical for sleep-dependent memory consolidation. Our results show that coupled spindles and uncoupled spindles recruit distinct parts of the brain. Specifically, we found that hippocampal activation during sleep is not uniquely related to spindles. Rather, this process is primarily driven by SWs and SW-spindle coupling. In addition, we show that SW-spindle coupling is critical in the activation of the putamen. Importantly, SW-spindle coupling specifically recruited frontal areas in comparison to uncoupled spindles, which may be critical for the hippocampal-neocortical dialogue that preferentially occurs during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Aaron Gibbings
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Dylan Smith
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Laura B. Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Adrian M. Owen
- The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Stuart M. Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada,School of Psychology, University of Ottawa, Ottawa, ON, Canada,The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,*Correspondence: Stuart M. Fogel,
| |
Collapse
|
6
|
Baena D, Fang Z, Ray LB, Owen AM, Fogel SM. Brain activations time locked to slow wave-coupled sleep spindles correlates with intellectual abilities. Cereb Cortex 2022; 33:5409-5419. [PMID: 36336346 DOI: 10.1093/cercor/bhac428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Sleep spindles (SP) are one of the few known electrophysiological neuronal biomarkers of interindividual differences in cognitive abilities and aptitudes. Recent simultaneous electroencephalography with functional magnetic resonance imaging (EEG-fMRI) studies suggest that the magnitude of the activation of brain regions recruited during spontaneous spindle events is specifically related to Reasoning abilities. However, it is not known if the relationship with cognitive abilities differs between uncoupled spindles, uncoupled slow waves (SW), and coupled SW–SP complexes, nor have the functional-neuroanatomical substrates that support this relationship been identified. Here, we investigated the functional significance of activation of brain areas recruited during SW-coupled spindles, uncoupled spindles, and uncoupled slow waves. We hypothesize that brain activations time locked to SW-coupled spindle complexes will be primarily associated to Reasoning abilities, especially in subcortical areas. Our results provide direct evidence that the relationship between Reasoning abilities and sleep spindles depends on spindle coupling status. Specifically, we found that the putamen and thalamus, recruited during coupled SW–SP events were positively correlated with Reasoning abilities. In addition, we found a negative association between Reasoning abilities and hippocampal activation time-locked to uncoupled SWs that might reflect a refractory mechanism in the absence of new, intensive hippocampal-dependent memory processing.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal , Ontario K1Z 7K4, Ottawa, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University , London, Ontario N6A 5B7, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University , London, Ontario N6A 5C1, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal , Ontario K1Z 7K4, Ottawa, Canada
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- University of Ottawa, Brain & Mind Research Institute , Ontario K1N 6N5, Ottawa, Canada
- The Brain & Mind Institute, Western University , London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Mann‐Krzisnik D, Mitsis GD. Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition. Hum Brain Mapp 2022; 43:4045-4073. [PMID: 35567768 PMCID: PMC9374895 DOI: 10.1002/hbm.25902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022] Open
Abstract
The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.
Collapse
Affiliation(s)
- Dylan Mann‐Krzisnik
- Graduate Program in Biological and Biomedical EngineeringMcGill UniversityMontréalQuebecCanada
| | | |
Collapse
|
8
|
Prokopiou PC, Xifra-Porxas A, Kassinopoulos M, Boudrias MH, Mitsis GD. Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task Execution. Brain Topogr 2022; 35:302-321. [PMID: 35488957 DOI: 10.1007/s10548-022-00898-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Being able to accurately quantify the hemodynamic response function (HRF) that links the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) signal to the underlying neural activity is important both for elucidating neurovascular coupling mechanisms and improving the accuracy of fMRI-based functional connectivity analyses. In particular, HRF estimation using BOLD-fMRI is challenging particularly in the case of resting-state data, due to the absence of information about the underlying neuronal dynamics. To this end, using simultaneously recorded electroencephalography (EEG) and fMRI data is a promising approach, as EEG provides a more direct measure of neural activations. In the present work, we employ simultaneous EEG-fMRI to investigate the regional characteristics of the HRF using measurements acquired during resting conditions. We propose a novel methodological approach based on combining distributed EEG source space reconstruction, which improves the spatial resolution of HRF estimation and using block-structured linear and nonlinear models, which enables us to simultaneously obtain HRF estimates and the contribution of different EEG frequency bands. Our results suggest that the dynamics of the resting-state BOLD signal can be sufficiently described using linear models and that the contribution of each band is region specific. Specifically, it was found that sensory-motor cortices exhibit positive HRF shapes, whereas the lateral occipital cortex and areas in the parietal cortex, such as the inferior and superior parietal lobule exhibit negative HRF shapes. To validate the proposed method, we repeated the analysis using simultaneous EEG-fMRI measurements acquired during execution of a unimanual hand-grip task. Our results reveal significant associations between BOLD signal variations and electrophysiological power fluctuations in the ipsilateral primary motor cortex, particularly for the EEG beta band, in agreement with previous studies in the literature.
Collapse
Affiliation(s)
- Prokopis C Prokopiou
- Integrated Program in Neuroscience, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Alba Xifra-Porxas
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Michalis Kassinopoulos
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Marie-Hélène Boudrias
- Integrated Program in Neuroscience, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada.,School of Physical and Occupational Therapy, McGill University, Montréal, QC, H3G 1Y5, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montréal (CRIR), CISSS Laval - Jewish Rehabilitation Hospital, Laval, Canada
| | - Georgios D Mitsis
- Integrated Program in Neuroscience, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada. .,Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada. .,Department of Bioengineering, McGill University, Montréal, QC, H3A 0E9, Canada.
| |
Collapse
|
9
|
Shao Y, Zou G, Tabarak S, Chen J, Gao X, Yao P, Liu J, Li Y, Xiong N, Pan W, Ma M, Zhou S, Xu J, Ma Y, Deng J, Sun Q, Bao Y, Sun W, Shi J, Zou Q, Gao JH, Sun H. Spindle-related brain activation in patients with insomnia disorder: An EEG-fMRI study. Brain Imaging Behav 2021; 16:659-670. [PMID: 34499294 DOI: 10.1007/s11682-021-00544-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Sleep spindles have been implicated in sleep protection, depression and anxiety. However, spindle-related brain imaging mechanism underpinning the deficient sleep protection and emotional regulation in insomnia disorder (ID) remains elusive. The aim of the current study is to investigate the relationship between spindle-related brain activations and sleep quality, symptoms of depression and anxiety in patients with ID. Participants (n = 46, 28 females, 18-60 years) were recruited through advertisements including 16 with ID, according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and 30 matched controls. Group differences in spindle-related brain activations were analyzed using multimodality data acquired with simultaneous electroencephalography and functional magnetic resonance imaging during sleep. Compared with controls, patients with ID showed significantly decreased bilateral spindle-related brain activations in the cingulate gyrus (familywise error corrected p ˂ 0.05, cluster size 4401 mm3). Activations in the cingulate gyrus were negatively correlated with Pittsburgh Sleep Quality Index scores (r = -0.404, p = 0.005) and Self-Rating Anxiety Scale scores (r = -0.364, p = 0.013), in the pooled sample. These findings underscore the key role of spindle-related brain activations in the cingulate gyrus in subjective sleep quality and emotional regulation in ID.
Collapse
Affiliation(s)
- Yan Shao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Guangyuan Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Serik Tabarak
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ping Yao
- Department of Physiology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuezhen Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Nana Xiong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Wen Pan
- Sleep Medicine Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Mengying Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuqin Zhou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yundong Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qiqing Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yanping Bao
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wei Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Qihong Zou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China. .,Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China. .,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China. .,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China. .,McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
10
|
Egan MK, Larsen R, Wirsich J, Sutton BP, Sadaghiani S. Safety and data quality of EEG recorded simultaneously with multi-band fMRI. PLoS One 2021; 16:e0238485. [PMID: 34214093 PMCID: PMC8253410 DOI: 10.1371/journal.pone.0238485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Simultaneously recorded electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is highly informative yet technically challenging. Until recently, there has been little information about EEG data quality and safety when used with newer multi-band (MB) fMRI sequences. Here, we measure the relative heating of a MB protocol compared with a standard single-band (SB) protocol considered to be safe. We also evaluated EEG quality recorded concurrently with the MB protocol on humans. MATERIALS AND METHODS We compared radiofrequency (RF)-related heating at multiple electrodes and magnetic field magnitude, B1+RMS, of a MB fMRI sequence with whole-brain coverage (TR = 440 ms, MB factor = 4) against a previously recommended, safe SB sequence using a phantom outfitted with a 64-channel EEG cap. Next, 9 human subjects underwent eyes-closed resting state EEG-fMRI using the MB sequence. Additionally, in three of the subjects resting state EEG was recorded also during the SB sequence and in an fMRI-free condition to directly compare EEG data quality across scanning conditions. EEG data quality was assessed by the ability to remove gradient and cardioballistic artifacts along with a clean spectrogram. RESULTS The heating induced by the MB sequence was lower than that of the SB sequence by a factor of 0.73 ± 0.38. This is consistent with an expected heating ratio of 0.64, calculated from the square of the ratio of B1+RMS values of the sequences. In the resting state EEG data, gradient and cardioballistic artifacts were successfully removed using traditional template subtraction. All subjects showed an individual alpha peak in the spectrogram with a posterior topography characteristic of eyes-closed EEG. The success of artifact rejection for the MB sequence was comparable to that in traditional SB sequences. CONCLUSIONS Our study shows that B1+RMS is a useful indication of the relative heating of fMRI protocols. This observation indicates that simultaneous EEG-fMRI recordings using this MB sequence can be safe in terms of RF-related heating, and that EEG data recorded using this sequence is of acceptable quality after traditional artifact removal techniques.
Collapse
Affiliation(s)
- Maximillian K. Egan
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Ryan Larsen
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Jonathan Wirsich
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- EEG and Epilepsy Unit, Univ. Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Brad P. Sutton
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Bioengineering Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Sepideh Sadaghiani
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
11
|
Lin Z, Tam F, Churchill NW, Lin FH, MacIntosh BJ, Schweizer TA, Graham SJ. Trail Making Test Performance Using a Touch-Sensitive Tablet: Behavioral Kinematics and Electroencephalography. Front Hum Neurosci 2021; 15:663463. [PMID: 34276323 PMCID: PMC8281242 DOI: 10.3389/fnhum.2021.663463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/28/2021] [Indexed: 12/04/2022] Open
Abstract
The Trail Making Test (TMT) is widely used to probe brain function and is performed with pen and paper, involving Parts A (linking numbers) and B (alternating between linking numbers and letters). The relationship between TMT performance and the underlying brain activity remains to be characterized in detail. Accordingly, sixteen healthy young adults performed the TMT using a touch-sensitive tablet to capture enhanced performance metrics, such as the speed of linking movements, during simultaneous electroencephalography (EEG). Linking and non-linking periods were derived as estimates of the time spent executing and preparing movements, respectively. The seconds per link (SPL) was also used to quantify TMT performance. A strong effect of TMT Part A and B was observed on the SPL value as expected (Part B showing increased SPL value); whereas the EEG results indicated robust effects of linking and non-linking periods in multiple frequency bands, and effects consistent with the underlying cognitive demands of the test.
Collapse
Affiliation(s)
- Zhongmin Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Fa-Hsuan Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Simon J Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
12
|
Uji M, Cross N, Pomares FB, Perrault AA, Jegou A, Nguyen A, Aydin U, Lina JM, Dang-Vu TT, Grova C. Data-driven beamforming technique to attenuate ballistocardiogram artefacts in electroencephalography-functional magnetic resonance imaging without detecting cardiac pulses in electrocardiography recordings. Hum Brain Mapp 2021; 42:3993-4021. [PMID: 34101939 PMCID: PMC8288107 DOI: 10.1002/hbm.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non‐invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG–fMRI are strongly influenced by MRI‐related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time. The standard BCG correction (i.e., average artefact subtraction [AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG) recording. However, ECG signals are also distorted and will become problematic for detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial filtering technique to attenuate all unwanted source activities outside of the brain. Specifically, we applied the beamforming technique to attenuate the BCG artefact in EEG–fMRI, and also to recover meaningful task‐based neural signals during an attentional network task (ANT) which required participants to identify visual cues and respond accurately. We analysed EEG–fMRI data in 20 healthy participants during the ANT, and compared four different BCG corrections (non‐BCG corrected, AAS BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected). We demonstrated that the beamforming approach did not only significantly reduce the BCG artefacts, but also significantly recovered the expected task‐based brain activity when compared to the standard AAS correction. This data‐driven beamforming technique appears promising especially for longer data acquisition of sleep and resting EEG–fMRI. Our findings extend previous work regarding the recovery of meaningful EEG signals by an optimized suppression of MRI‐related artefacts.
Collapse
Affiliation(s)
- Makoto Uji
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada
| | - Nathan Cross
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Florence B Pomares
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Aurore A Perrault
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Aude Jegou
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Alex Nguyen
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Umit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Jean-Marc Lina
- Departement de Genie Electrique, Ecole de Technologie Superieure, Montreal, Quebec, Canada.,Centre de Recherches Mathematiques, Montréal, Québec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de Recherches Mathematiques, Montréal, Québec, Canada.,Multimodal Functional Imaging Lab, Biomedical Engineering Department, Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
Michels L, Riese F, Meyer R, Kälin AM, Leh SE, Unschuld PG, Luechinger R, Hock C, O'Gorman R, Kollias S, Gietl A. EEG-fMRI Signal Coupling Is Modulated in Subjects With Mild Cognitive Impairment and Amyloid Deposition. Front Aging Neurosci 2021; 13:631172. [PMID: 33967737 PMCID: PMC8104007 DOI: 10.3389/fnagi.2021.631172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment indicates disturbed brain physiology which can be due to various mechanisms including Alzheimer's pathology. Combined functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings (EEG-fMRI) can assess the interplay between complementary measures of brain activity and EEG changes to be localized to specific brain regions. We used a two-step approach, where we first examined changes related to a syndrome of mild cognitive impairment irrespective of pathology and then studied the specific impact of amyloid pathology. After detailed clinical and neuropsychological characterization as well as a positron emission tomography (PET) scans with the tracer 11-[C]-Pittsburgh Compound B to estimate cerebral amyloid deposition, 14 subjects with mild cognitive impairment (MCI) (mean age 75.6 SD: 8.9) according to standard criteria and 21 cognitively healthy controls (HCS) (mean age 71.8 SD: 4.2) were assessed with EEG-fMRI. Thalamo-cortical alpha-fMRI signal coupling was only observed in HCS. Additional EEG-fMRI signal coupling differences between HCS and MCI were observed in parts of the default mode network, salience network, fronto-parietal network, and thalamus. Individuals with significant cerebral amyloid deposition (amyloid-positive MCI and HCS combined compared to amyloid-negative HCS) displayed abnormal EEG-fMRI signal coupling in visual, fronto-parietal regions but also in the parahippocampus, brain stem, and cerebellum. This finding was paralleled by stronger absolute fMRI signal in the parahippocampus and weaker absolute fMRI signal in the inferior frontal gyrus in amyloid-positive subjects. We conclude that the thalamocortical coupling in the alpha band in HCS more closely reflects previous findings observed in younger adults, while in MCI there is a clearly aberrant coupling in several networks dominated by an anticorrelation in the posterior cingulate cortex. While these findings may broadly indicate physiological changes in MCI, amyloid pathology was specifically associated with abnormal fMRI signal responses and disrupted coupling between brain oscillations and fMRI signal responses, which especially involve core regions of memory: the hippocampus, para-hippocampus, and lateral prefrontal cortex.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Riese
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,University Research Priority Programs (URPP) ≪Dynamics of Healthy Aging≫, University of Zurich, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Andrea M Kälin
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sandra E Leh
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Paul G Unschuld
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Geriatric Psychiatry, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Roger Luechinger
- Institute of Biomedical Engineering, University and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune AG, Schlieren, Switzerland
| | - Ruth O'Gorman
- Center for Magnetic Resonance Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Anton Gietl
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Philiastides MG, Tu T, Sajda P. Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI. Annu Rev Neurosci 2021; 44:315-334. [PMID: 33761268 DOI: 10.1146/annurev-neuro-100220-093239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.
Collapse
Affiliation(s)
- Marios G Philiastides
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8AD, Scotland;
| | - Tao Tu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Paul Sajda
- Departments of Biomedical Engineering, Electrical Engineering, and Radiology and the Data Science Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
15
|
Samogin J, Marino M, Porcaro C, Wenderoth N, Dupont P, Swinnen SP, Mantini D. Frequency-dependent functional connectivity in resting state networks. Hum Brain Mapp 2020; 41:5187-5198. [PMID: 32840936 PMCID: PMC7670639 DOI: 10.1002/hbm.25184] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Functional magnetic resonance imaging studies have documented the resting human brain to be functionally organized in multiple large‐scale networks, called resting‐state networks (RSNs). Other brain imaging techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), have been used for investigating the electrophysiological basis of RSNs. To date, it is largely unclear how neural oscillations measured with EEG and MEG are related to functional connectivity in the resting state. In addition, it remains to be elucidated whether and how the observed neural oscillations are related to the spatial distribution of the network nodes over the cortex. To address these questions, we examined frequency‐dependent functional connectivity between the main nodes of several RSNs, spanning large part of the cortex. We estimated connectivity using band‐limited power correlations from high‐density EEG data collected in healthy participants. We observed that functional interactions within RSNs are characterized by a specific combination of neuronal oscillations in the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) bands, which highly depend on the position of the network nodes. This finding may contribute to a better understanding of the mechanisms through which neural oscillations support functional connectivity in the brain.
Collapse
Affiliation(s)
- Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Camillo Porcaro
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.,Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.,Research in Advanced Neurorehabilitation, S. Anna Istitute, Crotone, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Patrick Dupont
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
16
|
Wang C, Kang M, Li Z, Li Y, Guan M, Zou Z, Wu M, Lou W, Xu J. Altered relation of resting-state alpha rhythm with blood oxygen level dependent signal in healthy aging: Evidence by EEG-fMRI fusion analysis. Clin Neurophysiol 2020; 131:2105-2114. [PMID: 32682238 DOI: 10.1016/j.clinph.2020.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/12/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The goal of this study is to explore the changes of spatial correlates of alpha rhythm in the aged adults. METHODS Electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data were simultaneously recorded from 27 young and 19 elderly adults at resting state with their eyes closed. Alpha rhythm power fluctuation was extracted from EEG signal of parietal-occipital region and was fused with fMRI data by correlating alpha rhythm with blood oxygen level dependent (BOLD) signal using general linear models. RESULTS For both young adults and the elderly, the regions correlated with alpha rhythm power were widely distributed in cortical and subcortical regions. However, compared to young adults, correlations between alpha rhythm and the activity of thalamus and frontal regions were significantly reduced in the elderly. In addition, an increased correlation with alpha rhythm was found in frontal, insula and cingulate gyrus regions in the elderly. CONCLUSIONS Changes in the roles of the above brain regions may be present in the generation or modulation of alpha rhythm due to age advancing. SIGNIFICANCE This study provides novel insight into the alteration of the spatial correlates of alpha rhythm in the elderly by using simultaneous EEG-fMRI data fusion analysis.
Collapse
Affiliation(s)
- Chao Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Mengfei Kang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yongli Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Health Management, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Guan
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China.
| |
Collapse
|
17
|
Smith D, Fang Z, Thompson K, Fogel S. Sleep and individual differences in intellectual abilities. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Fang Z, Ray LB, Houldin E, Smith D, Owen AM, Fogel SM. Sleep Spindle-dependent Functional Connectivity Correlates with Cognitive Abilities. J Cogn Neurosci 2019; 32:446-466. [PMID: 31659927 DOI: 10.1162/jocn_a_01488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
EEG studies have shown that interindividual differences in the electrophysiological properties of sleep spindles (e.g., density, amplitude, duration) are highly correlated with trait-like "reasoning" abilities (i.e., "fluid intelligence"; problem-solving skills; the ability to employ logic or identify complex patterns), but not interindividual differences in STM or "verbal" intellectual abilities. Previous simultaneous EEG-fMRI studies revealed brain activations time-locked to spindles. Our group has recently demonstrated that the extent of activation in a subset of these regions was related to interindividual differences in reasoning intellectual abilities, specifically. However, spindles reflect communication between spatially distant and functionally distinct brain areas. The functional communication among brain regions related to spindles and their relationship to reasoning abilities have yet to be investigated. Using simultaneous EEG-fMRI sleep recordings and psychophysiological interaction analysis, we identified spindle-related functional communication among brain regions in the thalamo-cortical-BG system, the salience network, and the default mode network. Furthermore, the extent of the functional connectivity of the cortical-striatal circuitry and the thalamo-cortical circuitry was specifically related to reasoning abilities but was unrelated to STM or verbal abilities, thus suggesting that individuals with higher fluid intelligence have stronger functional coupling among these brain areas during spontaneous spindle events. This may serve as a first step in further understanding the function of sleep spindles and the brain network functional communication, which support the capacity for fluid intelligence.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain & Mind Institute, Western University, London, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western University, London, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Evan Houldin
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Dylan Smith
- University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada.,University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| |
Collapse
|
20
|
Frauscher B, von Ellenrieder N, Zelmann R, Doležalová I, Minotti L, Olivier A, Hall J, Hoffmann D, Nguyen DK, Kahane P, Dubeau F, Gotman J. Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain 2019; 141:1130-1144. [PMID: 29506200 DOI: 10.1093/brain/awy035] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/01/2018] [Indexed: 11/13/2022] Open
Abstract
In contrast to scalp EEG, our knowledge of the normal physiological intracranial EEG activity is scarce. This multicentre study provides an atlas of normal intracranial EEG of the human brain during wakefulness. Here we present the results of power spectra analysis during wakefulness. Intracranial electrodes are placed in or on the brain of epilepsy patients when candidates for surgical treatment and non-invasive approaches failed to sufficiently localize the epileptic focus. Electrode contacts are usually in cortical regions showing epileptic activity, but some are placed in normal regions, at distance from the epileptogenic zone or lesion. Intracranial EEG channels defined using strict criteria as very likely to be in healthy brain regions were selected from three tertiary epilepsy centres. All contacts were localized in a common stereotactic space allowing the accumulation and superposition of results from many subjects. Sixty-second artefact-free sections during wakefulness were selected. Power spectra were calculated for 38 brain regions, and compared to a set of channels with no spectral peaks in order to identify significant peaks in the different regions. A total of 1785 channels with normal brain activity from 106 patients were identified. There were on average 2.7 channels per cm3 of cortical grey matter. The number of contacts per brain region averaged 47 (range 6-178). We found significant differences in the spectral density distributions across the different brain lobes, with beta activity in the frontal lobe (20-24 Hz), a clear alpha peak in the occipital lobe (9.25-10.25 Hz), intermediate alpha (8.25-9.25 Hz) and beta (17-20 Hz) frequencies in the parietal lobe, and lower alpha (7.75-8.25 Hz) and delta (0.75-2.25 Hz) peaks in the temporal lobe. Some cortical regions showed a specific electrophysiological signature: peaks present in >60% of channels were found in the precentral gyrus (lateral: peak frequency range, 20-24 Hz; mesial: 24-30 Hz), opercular part of the inferior frontal gyrus (20-24 Hz), cuneus (7.75-8.75 Hz), and hippocampus (0.75-1.25 Hz). Eight per cent of all analysed channels had more than one spectral peak; these channels were mostly recording from sensory and motor regions. Alpha activity was not present throughout the occipital lobe, and some cortical regions showed peaks in delta activity during wakefulness. This is the first atlas of normal intracranial EEG activity; it includes dense coverage of all cortical regions in a common stereotactic space, enabling direct comparisons of EEG across subjects. This atlas provides a normative baseline against which clinical EEGs and experimental results can be compared. It is provided as an open web resource (https://mni-open-ieegatlas. RESEARCH mcgill.ca).
Collapse
Affiliation(s)
- Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medicine and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | | - Rina Zelmann
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Irena Doležalová
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lorella Minotti
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - André Olivier
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jeffery Hall
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Dominique Hoffmann
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - Dang Khoa Nguyen
- Centre hospitalier de l'Université de Montréal - Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Philippe Kahane
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Liu S, Ma R, Liu X, Zhang C, Chen Y, Jin C, Wang H, Cui J, Zhang X. Using Transcranial Alternating Current Stimulation (tACS) to Improve Romantic Relationships Can Be a Promising Approach. Front Psychol 2019; 10:365. [PMID: 30863342 PMCID: PMC6399378 DOI: 10.3389/fpsyg.2019.00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
The romantic relationship refers to the specific relationship in which partners are dependent upon each other to obtain satisfactory outcomes and facilitate the pursuit of their most important needs and goals. Satisfying romantic relationships is a strong predictor of better psychological well-being, better physical health, and longer life expectancy. However, romantic relationships are not all smooth-sailing and lovers are often confronted with a variety of unavoidable issues that constantly challenge the stability of their romantic relationships. Dissatisfying romantic relationships are harmful and even destructive. Dyads of lovers engage in a variety of efforts to protect and maintain their romantic relationships based on qualitative research methods including theories- and psychological consultation-based approaches. Unfortunately, those existing approaches do not seem to effectively improve romantic relationships. Thus, it is necessary to seek an efficient approach regulating dyads of lovers in romantic relationships simultaneously. Transcranial alternating current stimulation (tACS) with advantages over existing approaches satisfies this purpose. We discuss the practicability of tACS in detail, as well as why and how tACS can be utilized to improve romantic relationships. In summary, this review firstly introduced the concept of romantic relationship and the necessity of enhancing it. Then, it discussed methods to improve romantic relationships including some existing approaches. This review next discussed the practicability of using tACS to improve romantic relationships. Finally, it shone a spotlight on potential future directions for researches aiming to improve romantic relationships.
Collapse
Affiliation(s)
- Shen Liu
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
| | - Ru Ma
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoming Liu
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
- School of Foreign Languages, Anhui Jianzhu University, Hefei, China
| | - Chong Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yijun Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chenggong Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hangwei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jiangtian Cui
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaochu Zhang
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei Medical Research Center on Alcohol Addiction, Anhui Mental Health Center, Hefei, China
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| |
Collapse
|
22
|
Fang Z, Ray LB, Owen AM, Fogel SM. Brain Activation Time-Locked to Sleep Spindles Associated With Human Cognitive Abilities. Front Neurosci 2019; 13:46. [PMID: 30787863 PMCID: PMC6372948 DOI: 10.3389/fnins.2019.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Simultaneous electroencephalography and functional magnetic resonance imaging (EEG–fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with “Reasoning” abilities (i.e., “fluid intelligence”; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG–fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain and Mind Institute, Western University, London, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Laura B Ray
- Brain and Mind Institute, Western University, London, ON, Canada.,Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Stuart M Fogel
- Brain and Mind Institute, Western University, London, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
23
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp JF, Muthukumaraswamy SD. Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation. Psychopharmacology (Berl) 2018; 235:3479-3493. [PMID: 30426183 DOI: 10.1007/s00213-018-5064-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study. METHODS We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal. RESULTS AND CONCLUSIONS Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| |
Collapse
|
24
|
Prestel M, Steinfath TP, Tremmel M, Stark R, Ott U. fMRI BOLD Correlates of EEG Independent Components: Spatial Correspondence With the Default Mode Network. Front Hum Neurosci 2018; 12:478. [PMID: 30542275 PMCID: PMC6277921 DOI: 10.3389/fnhum.2018.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023] Open
Abstract
Goal: We aimed to identify electroencephalographic (EEG) signal fluctuations within independent components (ICs) that correlate to spontaneous blood oxygenation level dependent (BOLD) activity in regions of the default mode network (DMN) during eyes-closed resting state. Methods: We analyzed simultaneously acquired EEG and functional magnetic resonance imaging (fMRI) eyes-closed resting state data in a convenience sample of 30 participants. IC analysis (ICA) was used to decompose the EEG time-series and common ICs were identified using data-driven IC clustering across subjects. The IC time courses were filtered into seven frequency bands, convolved with a hemeodynamic response function (HRF) and used to model spontaneous fMRI signal fluctuations across the brain. In parallel, group ICA analysis was used to decompose the fMRI signal into ICs from which the DMN was identified. Frequency and IC cluster associated hemeodynamic correlation maps obtained from the regression analysis were spatially correlated with the DMN. To investigate the reliability of our findings, the analyses were repeated with data collected from the same subjects 1 year later. Results: Our results indicate a relationship between power fluctuations in the delta, theta, beta and gamma frequency range and the DMN in different EEG ICs in our sample as shown by small to moderate spatial correlations at the first measurement (0.234 < |r| < 0.346, p < 0.0001). Furthermore, activity within an EEG component commonly identified as eye movements correlates with BOLD activity within regions of the DMN. In addition, we demonstrate that correlations between EEG ICs and the BOLD signal during rest are in part stable across time. Discussion: We show that ICA source separated EEG signals can be used to investigate electrophysiological correlates of the DMN. The relationship between the eye movement component and the DMN points to a behavioral association between DMN activity and the level of eye movement or the presence of neuronal activity in this component. Previous findings of an association between frontal midline theta activity and the DMN were replicated.
Collapse
Affiliation(s)
- Marcel Prestel
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Tim Paul Steinfath
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Tremmel
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Ott
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Huang X, Long Z, Lei X. Electrophysiological signatures of the resting-state fMRI global signal: A simultaneous EEG-fMRI study. J Neurosci Methods 2018; 311:351-359. [PMID: 30236777 DOI: 10.1016/j.jneumeth.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The global signal of resting-state functional magnetic resonance imaging (fMRI) constitutes an intrinsic fluctuation and presents an opportunity to characterize and understand the activity of the whole brain. Recently, evidence that the global signal contains neurophysiologic information has been growing, but the global signal of electroencephalography (EEG) has never been determined. NEW METHODS We developed a new method to obtain the EEG global signal. The EEG global signal was reconstructed by the reference electrode standardization technique and represented the outer cortical electrophysiological activity. To investigate its relationship with the global signal of resting-state fMRI, a simultaneous EEG-fMRI signal was recorded, and this was analyzed in 24 subjects. RESULTS We found that the global signal of resting-state fMRI showed a positive correlation with power fluctuations of the EEG global signal in the γ band (30-45 Hz) and a negative correlation in the low-frequency band (4-20 Hz). COMPARISON WITH EXISTING METHOD(S) Compared with the global signal of fMRI, the global signal of EEG provides more temporal information about outer cortical neural activity. CONCLUSIONS These results provide new evidence for the electrophysiology information of the global signal of resting-state fMRI. More importantly, due to its high correlation with the fMRI global signal, the EEG global signal may serve as a new biomarker for neurological disorders.
Collapse
Affiliation(s)
- Xiaoli Huang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality of Ministry of Education, Chongqing, 400715, China
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality of Ministry of Education, Chongqing, 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality of Ministry of Education, Chongqing, 400715, China; Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, 400715, China.
| |
Collapse
|
26
|
Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci Rep 2018; 8:8902. [PMID: 29891929 PMCID: PMC5995808 DOI: 10.1038/s41598-018-27187-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) signals recorded during simultaneous functional magnetic resonance imaging (fMRI) are contaminated by strong artifacts. Among these, the ballistocardiographic (BCG) artifact is the most challenging, due to its complex spatio-temporal dynamics associated with ongoing cardiac activity. The presence of BCG residuals in EEG data may hide true, or generate spurious correlations between EEG and fMRI time-courses. Here, we propose an adaptive Optimal Basis Set (aOBS) method for BCG artifact removal. Our method is adaptive, as it can estimate the delay between cardiac activity and BCG occurrence on a beat-to-beat basis. The effective creation of an optimal basis set by principal component analysis (PCA) is therefore ensured by a more accurate alignment of BCG occurrences. Furthermore, aOBS can automatically estimate which components produced by PCA are likely to be BCG artifact-related and therefore need to be removed. The aOBS performance was evaluated on high-density EEG data acquired with simultaneous fMRI in healthy subjects during visual stimulation. As aOBS enables effective reduction of BCG residuals while preserving brain signals, we suggest it may find wide application in simultaneous EEG-fMRI studies.
Collapse
|
27
|
Rusiniak M, Wróbel A, Cieśla K, Pluta A, Lewandowska M, Wójcik J, Skarżyński PH, Wolak T. The relationship between alpha burst activity and the default mode network. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 2017; 180:577-593. [PMID: 29196270 DOI: 10.1016/j.neuroimage.2017.11.062] [Citation(s) in RCA: 583] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
The present review discusses a well-established method for characterizing resting-state activity of the human brain using multichannel electroencephalography (EEG). This method involves the examination of electrical microstates in the brain, which are defined as successive short time periods during which the configuration of the scalp potential field remains semi-stable, suggesting quasi-simultaneity of activity among the nodes of large-scale networks. A few prototypic microstates, which occur in a repetitive sequence across time, can be reliably identified across participants. Researchers have proposed that these microstates represent the basic building blocks of the chain of spontaneous conscious mental processes, and that their occurrence and temporal dynamics determine the quality of mentation. Several studies have further demonstrated that disturbances of mental processes associated with neurological and psychiatric conditions manifest as changes in the temporal dynamics of specific microstates. Combined EEG-fMRI studies and EEG source imaging studies have indicated that EEG microstates are closely associated with resting-state networks as identified using fMRI. The scale-free properties of the time series of EEG microstates explain why similar networks can be observed at such different time scales. The present review will provide an overview of these EEG microstates, available methods for analysis, the functional interpretations of findings regarding these microstates, and their behavioral and clinical correlates.
Collapse
Affiliation(s)
- Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; Lemanic Biomedical Imaging Centre (CIBM), Lausanne and Geneva, Switzerland.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| |
Collapse
|
29
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
30
|
Vaudano AE, Ruggieri A, Avanzini P, Gessaroli G, Cantalupo G, Coppola A, Sisodiya SM, Meletti S. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks. Brain 2017; 140:981-997. [PMID: 28334965 DOI: 10.1093/brain/awx009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/11/2016] [Indexed: 12/19/2022] Open
Abstract
See Hamandi (doi:10.1093/awx049) for a scientific commentary on this article.Photosensitivity is a condition in which lights induce epileptiform activities. This abnormal electroencephalographic response has been associated with hyperexcitability of the visuo-motor system. Here, we evaluate if intrinsic dysfunction of this network is present in brain activity at rest, independently of any stimulus and of any paroxysmal electroencephalographic activity. To address this issue, we investigated the haemodynamic correlates of the spontaneous alpha rhythm, which is considered the hallmark of the brain resting state, in photosensitive patients and in people without photosensitivity. Second, we evaluated the whole-brain functional connectivity of the visual thalamic nuclei in the various populations of subjects under investigation. Forty-four patients with epilepsy and 16 healthy control subjects underwent an electroencephalography-correlated functional magnetic resonance imaging study, during an eyes-closed condition. The following patient groups were included: (i) genetic generalized epilepsy with photosensitivity, 16 subjects (mean age 25 ± 10 years); (ii) genetic generalized epilepsy without photosensitivity, 13 patients (mean age 25 ± 11 years); (iii) focal epilepsy, 15 patients (mean age 25 ± 9 years). For each subject, the posterior alpha power variations were convolved with the standard haemodynamic response function and used as a regressor. Within- and between-groups second level analyses were performed. Whole brain functional connectivity was evaluated for two thalamic regions of interest, based on the haemodynamic findings, which included the posterior thalamus (pulvinar) and the medio-dorsal thalamic nuclei. Genetic generalized epilepsy with photosensitivity demonstrated significantly greater mean alpha-power with respect to controls and other epilepsy groups. In photosensitive epilepsy, alpha-related blood oxygen level-dependent signal changes demonstrated lower decreases relative to all other groups in the occipital, sensory-motor, anterior cingulate and supplementary motor cortices. Coherently, the same brain regions demonstrated abnormal connectivity with the visual thalamus only in epilepsy patients with photosensitivity. As predicted, our findings indicate that the cortical-subcortical network generating the alpha oscillation at rest is different in people with epilepsy and visual sensitivity. This difference consists of a decreased alpha-related inhibition of the visual cortex and sensory-motor networks at rest. These findings represent the substrate of the clinical manifestations (i.e. myoclonus) of the photoparoxysmal response. Moreover, our results provide the first evidence of the existence of a functional link between the circuits that trigger the visual sensitivity phenomenon and those that generate the posterior alpha rhythm.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, OCSE Hospital, Modena, Italy.,Neurology Unit, OCSAE Hospital, Azienda Ospedaliera Universitaria, Modena, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Science, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, OCSE Hospital, Modena, Italy.,Neurology Unit, OCSAE Hospital, Azienda Ospedaliera Universitaria, Modena, Italy
| | - Pietro Avanzini
- Department of Neuroscience, University of Parma, Consiglio nazionale delle Ricerche - CNR, Parma, Italy
| | - Giuliana Gessaroli
- Neurology Unit, OCSAE Hospital, Azienda Ospedaliera Universitaria, Modena, Italy
| | - Gaetano Cantalupo
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Antonietta Coppola
- Epilepsy Centre, Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, LondonWC1N 3BG, UK.,Epilepsy Society, Chalfont-St-Peter, Bucks SL9 0RJ, UK
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, OCSE Hospital, Modena, Italy.,Neurology Unit, OCSAE Hospital, Azienda Ospedaliera Universitaria, Modena, Italy
| |
Collapse
|
31
|
Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, Pinsard B, Benali H, Carrier J, Doyon J. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS One 2017; 12:e0174755. [PMID: 28422976 PMCID: PMC5396873 DOI: 10.1371/journal.pone.0174755] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
Motor memory consolidation is thought to depend on sleep-dependent reactivation of brain areas recruited during learning. However, up to this point, there has been no direct evidence to support this assertion in humans, and the physiological processes supporting such reactivation are unknown. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were conducted during post-learning sleep to directly investigate the spindle-related reactivation of a memory trace formed during motor sequence learning (MSL), and its relationship to overnight enhancement in performance (reflecting consolidation). We show that brain regions within the striato-cerebello-cortical network recruited during training on the MSL task, and in particular the striatum, were also activated during sleep, time-locked to spindles. Interestingly, the consolidated trace in the striatum was not simply strengthened, but was transformed/reorganized from rostrodorsal (associative) to caudoventral (sensorimotor) subregions. Moreover, the degree of the reactivation was correlated with overnight improvements in performance. Altogether, the present findings demonstrate that striatal reactivation linked to sleep spindles in the post-learning night, is related to motor memory consolidation.
Collapse
Affiliation(s)
- Stuart Fogel
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain & Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Genevieve Albouy
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Bradley R. King
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Catherine Vien
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Arnaud Bore
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Habib Benali
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Functional Neuroimaging Laboratory, INSERM, Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Centre D’études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
32
|
Baenninger A, Palzes VA, Roach BJ, Mathalon DH, Ford JM, Koenig T. Abnormal Coupling Between Default Mode Network and Delta and Beta Band Brain Electric Activity in Psychotic Patients. Brain Connect 2017; 7:34-44. [PMID: 27897031 DOI: 10.1089/brain.2016.0456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Common-phase synchronization of neuronal oscillations is a mechanism by which distributed brain regions can be integrated into transiently stable networks. Based on the hypothesis that schizophrenia is characterized by deficits in functional integration within neuronal networks, this study aimed to explore whether psychotic patients exhibit differences in brain regions involved in integrative mechanisms. We report an electroencephalography (EEG)-informed functional magnetic resonance imaging analysis of eyes-open resting-state data collected from patients and healthy controls at two study sites. Global field synchronization (GFS) was chosen as an EEG measure indicating common-phase synchronization across electrodes. Several brain clusters appeared to be coupled to GFS differently in patients and controls. Activation in brain areas belonging to the default mode network was negatively associated to GFS delta (1-3.5 Hz) and positively to GFS beta (13-30 Hz) bands in patients, whereas controls showed an opposite pattern for both GFS frequency bands in those regions; activation in the extrastriate visual cortex was inversely related to GFS alpha1 (8.5-10.5 Hz) band in healthy controls, while patients had a tendency toward a positive relationship. Taken together, the GFS measure might be useful for detecting additional aspects of deficient functional network integration in psychosis.
Collapse
Affiliation(s)
- Anja Baenninger
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern , Bern, Switzerland .,2 Center for Cognition, Learning and Memory, University of Bern , Bern, Switzerland
| | | | - Brian J Roach
- 3 San Francisco VA Medical Center , San Francisco, California
| | - Daniel H Mathalon
- 3 San Francisco VA Medical Center , San Francisco, California.,4 Department of Psychiatry, University of California San Francisco , San Francisco, California
| | - Judith M Ford
- 3 San Francisco VA Medical Center , San Francisco, California.,4 Department of Psychiatry, University of California San Francisco , San Francisco, California
| | - Thomas Koenig
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern , Bern, Switzerland .,2 Center for Cognition, Learning and Memory, University of Bern , Bern, Switzerland
| |
Collapse
|
33
|
Mareček R, Lamoš M, Labounek R, Bartoň M, Slavíček T, Mikl M, Rektor I, Brázdil M. Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks. Neural Comput 2017; 29:968-989. [PMID: 28095199 DOI: 10.1162/neco_a_00933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.
Collapse
Affiliation(s)
- Radek Mareček
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Martin Lamoš
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic, and Brno University of Technology, 60190 Brno, Czech Republic
| | - René Labounek
- Brno University of Technology, 60190 Brno, Czech Republic, and Department of Neurology, Palacky University, 77515 Olomouc, Czech Republic
| | - Marek Bartoň
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Tomáš Slavíček
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic, and Brno University of Technology, 60190 Brno, Czech Repulbic
| | - Michal Mikl
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Ivan Rektor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Milan Brázdil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
34
|
Functional MRI Correlates of Resting-State Temporal Theta and Delta EEG Rhythms. J Clin Neurophysiol 2017; 34:69-76. [DOI: 10.1097/wnp.0000000000000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Fogel S, Vien C, Karni A, Benali H, Carrier J, Doyon J. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiol Aging 2016; 49:154-164. [PMID: 27815989 DOI: 10.1016/j.neurobiolaging.2016.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/08/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults.
Collapse
Affiliation(s)
- Stuart Fogel
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; School of Psychology, University of Ottawa, Ottawa, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Catherine Vien
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada
| | - Avi Karni
- Laboratory for Human Brain & Learning, Sagol Department of Neurobiology & the E.J. Safra Brain Research Center, University of Haifa, Haifa, Israel
| | - Habib Benali
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Functional Neuroimaging Laboratory, INSERM, Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre d'études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada.
| |
Collapse
|
36
|
LeVan P, Zhang S, Knowles B, Zaitsev M, Hennig J. EEG-fMRI Gradient Artifact Correction by Multiple Motion-Related Templates. IEEE Trans Biomed Eng 2016; 63:2647-2653. [PMID: 27455518 DOI: 10.1109/tbme.2016.2593726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES In simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), artifacts on the EEG arise from the switching of magnetic field gradients in the MR scanner. These artifacts depend on head position, and are, therefore, difficult to remove in the presence of subject motion. In this study, gradient artifacts are modeled by multiple templates extracted from externally recorded motion information. METHODS Gradient artifact correction was performed in EEG-fMRI recordings by estimating artifactual templates modulated by slowly varying splines, as well as head position information. The EEG signal quality was then compared following two common methods: averaged artifact subtraction (AAS) and optimal basis sets (OBS). RESULTS Artifact correction using multiple templates estimated from splines or motion time courses outperformed the existing AAS and OBS approaches, as quantified by root-mean-square power across gradient epochs. Improvements were mostly seen in posterior EEG channels, where most of the residual artifacts are seen following the AAS and OBS methods. Residual spectral power was comparable to that of EEG signals recorded without fMRI scanning. CONCLUSION Gradient artifacts can be well modeled by multiple templates estimated from head position information, resulting in an effective artifact removal. SIGNIFICANCE This method can facilitate EEG-fMRI of uncooperative subjects in whom motion is inevitable, for example, to investigate high-frequency EEG activity in which gradient artifacts are particularly prominent.
Collapse
|
37
|
Marecek R, Lamos M, Mikl M, Barton M, Fajkus J, Rektor, Brazdil M. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study. J Neural Eng 2016; 13:046026. [PMID: 27432759 DOI: 10.1088/1741-2560/13/4/046026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. APPROACH We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. MAIN RESULTS Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. SIGNIFICANCE These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Collapse
Affiliation(s)
- R Marecek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Keles HO, Barbour RL, Omurtag A. Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS. Neuroimage 2016; 138:76-87. [PMID: 27236081 DOI: 10.1016/j.neuroimage.2016.05.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023] Open
Abstract
The brains of awake, resting human subjects display spontaneously occurring neural activity patterns whose magnitude is typically many times greater than those triggered by cognitive or perceptual performance. Evoked and resting state activations affect local cerebral hemodynamic properties through processes collectively referred to as neurovascular coupling. Its investigation calls for an ability to track both the neural and vascular aspects of brain function. We used scalp electroencephalography (EEG), which provided a measure of the electrical potentials generated by cortical postsynaptic currents. Simultaneously we utilized functional near-infrared spectroscopy (NIRS) to continuously monitor hemoglobin concentration changes in superficial cortical layers. The multi-modal signal from 18 healthy adult subjects allowed us to investigate the association of neural activity in a range of frequencies over the whole-head to local changes in hemoglobin concentrations. Our results verified the delayed alpha (8-16Hz) modulation of hemodynamics in posterior areas known from the literature. They also indicated strong beta (16-32Hz) modulation of hemodynamics. Analysis revealed, however, that beta modulation was likely generated by the alpha-beta coupling in EEG. Signals from the inferior electrode sites were dominated by scalp muscle related activity. Our study aimed to characterize the phenomena related to neurovascular coupling observable by practical, cost-effective, and non-invasive multi-modal techniques.
Collapse
Affiliation(s)
- Hasan Onur Keles
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Randall L Barbour
- Department of Pathology, Optical Tomography Group, State University of New York, NY, 11203, United States
| | - Ahmet Omurtag
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
39
|
Laventure S, Fogel S, Lungu O, Albouy G, Sévigny-Dupont P, Vien C, Sayour C, Carrier J, Benali H, Doyon J. NREM2 and Sleep Spindles Are Instrumental to the Consolidation of Motor Sequence Memories. PLoS Biol 2016; 14:e1002429. [PMID: 27032084 PMCID: PMC4816304 DOI: 10.1371/journal.pbio.1002429] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/11/2016] [Indexed: 11/18/2022] Open
Abstract
Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories.
Collapse
Affiliation(s)
- Samuel Laventure
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Stuart Fogel
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
- Department of Psychology, Western University, The Brain & Mind Institute, London, Ontario, Canada
| | - Ovidiu Lungu
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Geneviève Albouy
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
- KU Leuven, Leuven, Belgium
| | | | - Catherine Vien
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Chadi Sayour
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Julie Carrier
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
- Center for Advanced Research in Sleep Medicine, Montreal, Quebec, Canada
| | - Habib Benali
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Paris, France
| | - Julien Doyon
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| |
Collapse
|
40
|
Vosskuhl J, Huster RJ, Herrmann CS. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS-fMRI study. Neuroimage 2015; 140:118-25. [PMID: 26458516 DOI: 10.1016/j.neuroimage.2015.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/01/2023] Open
Abstract
Many studies have proven transcranial alternating current stimulation (tACS) to manipulate brain activity. Until now it is not known, however, how these manipulations in brain activity are represented in brain metabolism or how spatially specific these changes are. Alpha-tACS has been shown to enhance the amplitude of the individual alpha frequency (IAF) and a negative correlation between alpha amplitude and occipital BOLD signal was reported in numerous EEG/fMRI experiments. Thus, alpha-tACS was chosen to test the effects of tACS on the BOLD signal. A reduction thereof was expected during alpha-tACS which shows the spatial extent of tACS effects beyond modeling studies. Three groups of subjects were measured in an MRI scanner, receiving tACS at either their IAF (N=11), 1Hz (control; N=12) or sham (i.e., no stimulation - a second control; N=11) while responding to a visual vigilance task. Stimulation was administered in an interleaved pattern of tACS-on runs and tACS-free baseline periods. The BOLD signal was analyzed in response to tACS-onset during resting state and in response to seldom target stimuli. Alpha-tACS at 1.0mA reduced the task-related BOLD response to visual targets in the occipital cortex as compared to tACS-free baseline periods. The deactivation was strongest in an area where the BOLD signal was shown to correlate negatively with alpha amplitude. A direct effect of tACS on resting state BOLD signal levels could not be shown. Our findings suggest that tACS-related changes in BOLD activity occur only as a modulation of an existing BOLD response.
Collapse
Affiliation(s)
- Johannes Vosskuhl
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing4all", European Medical School, Faculty for Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - René J Huster
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing4all", European Medical School, Faculty for Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany; Department of Psychology, University of Oslo, 0373 Oslo, Norway; The Mind Research Network, Albuquerque, NM 87106, USA
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing4all", European Medical School, Faculty for Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
41
|
Frauscher B, von Ellenrieder N, Dubeau F, Gotman J. Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony. Neuroimage 2014; 105:1-12. [PMID: 25450108 PMCID: PMC4275575 DOI: 10.1016/j.neuroimage.2014.10.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 10/19/2014] [Indexed: 12/02/2022] Open
Abstract
In humans, the knowledge of intracranial correlates of spindles is mainly gathered from noninvasive neurophysiologic and functional imaging studies which provide an indirect estimate of neuronal intracranial activity. This potential limitation can be overcome by intracranial electroencephalography used in presurgical epilepsy evaluation. We investigated the intracranial correlates of scalp spindles using combined scalp and intracerebral depth electrodes covering the frontal, parietal and temporal neocortex, and the scalp and intracranial correlates of hippocampal and insula spindles in 35 pre-surgical epilepsy patients. Spindles in the scalp were accompanied by widespread cortical increases in sigma band energy (10–16 Hz): the highest percentages were observed in the frontoparietal lateral and mesial cortex, whereas in temporal lateral and mesial structures only a low or no simultaneous increase was present. This intracranial involvement during scalp spindles showed no consistent pattern, and exhibited unexpectedly low synchrony across brain regions. Hippocampal spindles were shorter and spatially restricted with a low synchrony even within the temporal lobe. Similar results were found for the insula. We suggest that the generation of spindles is under a high local cortical influence contributing to the concept of sleep as a local phenomenon and challenging the notion of spindles as widespread synchronous oscillations. Spindles in the scalp are accompanied by widespread cortical spindle activity. This activity is predominantly present in the frontoparietal lateral and mesial cortex. The intracranial involvement during scalp spindles shows no consistent pattern. The synchrony of spindles is unexpectedly low across different brain regions. Hippocampal spindles were shorter and occurred mostly not at time of scalp spindles.
Collapse
Affiliation(s)
- Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal H3A 2B4, Canada; Innsbruck Medical University, Department of Neurology, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - Nicolás von Ellenrieder
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal H3A 2B4, Canada; CONICET-LEICI, Universidad Nacional de La Plata, Calle 1 y 47, La Plata B1900TAG, Argentina.
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal H3A 2B4, Canada.
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal H3A 2B4, Canada.
| |
Collapse
|
42
|
Mangia AL, Pirini M, Cappello A. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Front Hum Neurosci 2014; 8:601. [PMID: 25147519 PMCID: PMC4124721 DOI: 10.3389/fnhum.2014.00601] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/18/2014] [Indexed: 12/03/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions.
Collapse
Affiliation(s)
- Anna L Mangia
- Department of Electrical, Electronic and Information Engineering, University of Bologna Cesena, Italy
| | - Marco Pirini
- Department of Electrical, Electronic and Information Engineering, University of Bologna Cesena, Italy
| | - Angelo Cappello
- Department of Electrical, Electronic and Information Engineering, University of Bologna Cesena, Italy
| |
Collapse
|
43
|
Custo A, Vulliemoz S, Grouiller F, Van De Ville D, Michel C. EEG source imaging of brain states using spatiotemporal regression. Neuroimage 2014; 96:106-16. [PMID: 24726337 DOI: 10.1016/j.neuroimage.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022] Open
Abstract
Relating measures of electroencephalography (EEG) back to the underlying sources is a long-standing inverse problem. Here we propose a new method to estimate the EEG sources of identified electrophysiological states that represent spontaneous activity, or are evoked by a stimulus, or caused by disease or disorder. Our method has the unique advantage of seamlessly integrating a statistical significance of the source estimate while efficiently eliminating artifacts (e.g., due to eye blinks, eye movements, bad electrodes). After determining the electrophysiological states in terms of stable topographies using established methods (e.g.: ICA, PCA, k-means, epoch average), we propose to estimate these states' time courses through spatial regression of a General Linear Model (GLM). These time courses are then used to find EEG sources that have a similar time-course (using temporal regression of a second GLM). We validate our method using both simulated and experimental data. Simulated data allows us to assess the difference between source maps obtained by the proposed method and those obtained by applying conventional source imaging of the state topographies. Moreover, we use data from 7 epileptic patients (9 distinct epileptic foci localized by intracranial EEG) and 2 healthy subjects performing an eyes-open/eyes-closed task to elicit activity in the alpha frequency range. Our results indicate that the proposed EEG source imaging method accurately localizes the sources for each of the electrical brain states. Furthermore, our method is particularly suited for estimating the sources of EEG resting states or otherwise weak spontaneous activity states, a problem not adequately solved before.
Collapse
Affiliation(s)
- Anna Custo
- Functional Brain Mapping Lab, University Hospital and Faculty of Medicine, Geneva, Switzerland.
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Clinic, University Hospital, Geneva, Switzerland; Functional Brain Mapping Lab, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Frederic Grouiller
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Christoph Michel
- Functional Brain Mapping Lab, University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
44
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014. [PMID: 24715886 DOI: 10.3389/fneur.2014.00031.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
45
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014; 5:31. [PMID: 24715886 PMCID: PMC3970017 DOI: 10.3389/fneur.2014.00031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
46
|
Vaudano AE, Ruggieri A, Vignoli A, Avanzini P, Benuzzi F, Gessaroli G, Nichelli PF, Darra F, Cantalupo G, Mastrangelo M, Dalla Bernardina B, Canevini MP, Meletti S. Epilepsy-related brain networks in ring chromosome 20 syndrome: an EEG-fMRI study. Epilepsia 2014; 55:403-13. [PMID: 24483620 DOI: 10.1111/epi.12539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify the brain networks that are involved in the different electroencephalography (EEG) abnormalities in patients with ring chromosome 20 [r(20)] syndrome. We hypothesize the existence of both distinctive and common brain circuits for the paroxysmal high voltage sharp waves (hSWs), the seizures, and the slow-wave 3-7 Hz rhythm that characterize this condition. METHODS Thirteen patients with [r(20)] syndrome were studied by means of EEG simultaneously recorded with functional magnetic resonance imaging (EEG-fMRI). EEG traces were reviewed in order to detect the pathologic interictal (hSWs) and ictal activities; the 3-7 Hz theta-delta power was derived using a fast Fourier transform. A group-level analysis was performed for each type of EEG abnormality separately using a fixed-effect model and a conjunction analysis. Finally, a second-level random-effect model was applied considering together the different EEG abnormalities, without distinction between hSW, seizures, or theta-delta rhythms. RESULTS Subcontinuous theta-delta rhythm was recorded in seven patients, seizures in two, and hSWs in three patients. The main results are the following: (1) the slow-wave rhythm was related to blood oxygen level-dependent (BOLD) increases in the premotor, sensory-motor, and temporoparietal cortex, and to BOLD decrements involving the default mode (DMN) and the dorsal attention networks (DANs); (2) the ictal-related BOLD changes showed an early involvement of the prefrontal lobe; (3) increases in BOLD signal over the basal ganglia, either for interictal and ictal activities, were observed; (4) a common pattern of positive BOLD changes in the bilateral perisylvian regions was found across the different EEG abnormalities. SIGNIFICANCE The BOLD increment in the perisylvian network and the decrease of the DMN and DAN could be the expression of the [r(20)] syndrome-related cognitive and behavioral deficits. The observed BOLD patterns are similar to the ones detected in other epileptic encephalopathies, suggesting that different epileptic disorders characterized by neurobehavioral regression are associated with dysfunction in similar brain networks. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Department of Biomedical Sciences, Metabolic, and Neuroscience, NOCSAE Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pisarenco I, Caporro M, Prosperetti C, Manconi M. High-density electroencephalography as an innovative tool to explore sleep physiology and sleep related disorders. Int J Psychophysiol 2014; 92:S0167-8760(14)00003-8. [PMID: 24412343 DOI: 10.1016/j.ijpsycho.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
High density EEG represents a promising tool to achieve new insights regarding sleep physiology and pathology. It combines the advantages of an EEG technique as an optimal temporal resolution with the spatial resolution of the neuroimaging. So far its application in sleep research contributed to better characterize some of the peculiar microstructural figures of sleep such as spindles and K-complexes, and to understand the fundamental relationships between sleep and synaptic plasticity, learning and consciousness. Its application is not limited to neurophysiology, being recently also applied to study some sleep related psychiatric and neurological disorders such as depression, schizophrenia, attention-deficit hyperactivity disorder, and stroke. adding some interesting new pieces in the pathophysiological puzzle of these diseases. Due to its non-invasive, repetitive and reliable tempo-spatial resolution it is reasonable that the field of application of this tool will be soon enlarged to other areas of neuroscience. The present review aims to offer a complete overview regarding the use of high density EEG over the last decade in sleep research and sleep medicine, including its possible future perspective.
Collapse
Affiliation(s)
- I Pisarenco
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - M Caporro
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - C Prosperetti
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - M Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland.
| |
Collapse
|
48
|
Assessing EEG sleep spindle propagation. Part 2: Experimental characterization. J Neurosci Methods 2014; 221:215-27. [DOI: 10.1016/j.jneumeth.2013.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/27/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022]
|
49
|
Poudel GR, Innes CRH, Bones PJ, Watts R, Jones RD. Losing the struggle to stay awake: divergent thalamic and cortical activity during microsleeps. Hum Brain Mapp 2014; 35:257-69. [PMID: 23008180 PMCID: PMC6869765 DOI: 10.1002/hbm.22178] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/24/2012] [Accepted: 07/12/2012] [Indexed: 11/07/2022] Open
Abstract
Maintaining alertness is critical for safe and successful performance of most human activities. Consequently, microsleeps during continuous visuomotor tasks, such as driving, can be very serious, not only disrupting performance but sometimes leading to injury or death due to accidents. We have investigated the neural activity underlying behavioral microsleeps--brief (0.5-15 s) episodes of complete failure to respond accompanied by slow eye-closures--and EEG theta activity during drowsiness in a continuous task. Twenty healthy normally-rested participants performed a 50-min continuous tracking task while fMRI, EEG, eye-video, and responses were simultaneously recorded. Visual rating of performance and eye-video revealed that 70% of the participants had frequent microsleeps. fMRI analysis revealed a transient decrease in thalamic, posterior cingulate, and occipital cortex activity and an increase in frontal, posterior parietal, and parahippocampal activity during microsleeps. The transient activity was modulated by the duration of the microsleep. In subjects with frequent microsleeps, power in the post-central EEG theta was positively correlated with the BOLD signal in the thalamus, basal forebrain, and visual, posterior parietal, and prefrontal cortices. These results provide evidence for distinct neural changes associated with microsleeps and with EEG theta activity during drowsiness in a continuous task. They also suggest that the occurrence of microsleeps during an active task is not a global deactivation process but involves localized activation of fronto-parietal cortex, which, despite a transient loss of arousal, may constitute a mechanism by which these regions try to restore responsiveness.
Collapse
Affiliation(s)
- Govinda R Poudel
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand; Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
50
|
Fogel SM, Albouy G, Vien C, Popovicci R, King BR, Hoge R, Jbabdi S, Benali H, Karni A, Maquet P, Carrier J, Doyon J. fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Hum Brain Mapp 2013; 35:3625-45. [PMID: 24302373 DOI: 10.1002/hbm.22426] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/14/2022] Open
Abstract
Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network.
Collapse
Affiliation(s)
- Stuart M Fogel
- The Brain & Mind Institute, Department of Psychology, Western University, London, Ontario, Canada; Functional Neuroimaging Unit, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|